

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-(4-Aminophenyl)-2-ethoxy-4-(2thienyl)nicotinonitrile

Hoong-Kun Fun,^a*‡ Suchada Chantrapromma,^b§ Thawanrat Kobkeatthawin,^b Mahesh Padaki^c and Arun M. Isloor^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India Correspondence e-mail: hkfun@usm.my

Received 17 June 2010; accepted 18 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.038; wR factor = 0.085; data-to-parameter ratio = 13.1.

In the title nicotinonitrile derivative, $C_{18}H_{15}N_3OS$, the central pyridyl ring makes dihedral angles of 25.22 (10) and $24.80 (16)^{\circ}$ with the 4-aminophenyl and thiophene rings, respectively. The thiophene ring is disordered over two orientations by rotation around the C(thiophene)-C(pyridine) bond; the occupancies are 0.858 (2) and 0.142 (2). The ethoxy group is slightly twisted from the attached pyridyl ring $[C-O-C-C \text{ torsion angle} = 171.13 (16)^{\circ}]$. In the crystal structure, molecules are linked by $N-H \cdots N$ hydrogen bonds into chains along [010]. These chains are stacked along the *a* axis. $C-H \cdots \pi$ weak interactions involving the thiophene ring are observed.

Related literature

For reference bond-length data, see: Allen et al. (1987). For the synthesis and applications of nicotinonitrile derivatives, see: Amr & Abdulla (2006); Borgna et al. (1993); Fun et al. (2009); Goda et al. (2004); Kamal et al. (2007); Malinka et al. (1998). For related structures, see: Chantrapromma et al. (2009, 2010); Fun et al. (2009). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

V = 3094.3 (9) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.11 \times 0.04 \text{ mm}$

34805 measured reflections

3045 independent reflections 2188 reflections with $I > 2\sigma(I)$

 $\mu = 0.22 \text{ mm}^{-3}$

 $T=100~{\rm K}$

 $R_{\rm int} = 0.092$

Z = 8

Experimental

Crystal data

C18H15N3OS $M_{\rm r} = 321.38$ Orthorhombic, Pbca a = 7.0751 (12) Åb = 20.843 (4) Å c = 20.983 (4) Å

Data collection

Bruker APEXII DUO CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\rm min} = 0.928, T_{\rm max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.085$	independent and constrained
S = 1.05	refinement
3045 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
233 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
88 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the major disorder component of the thiophene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1N2\cdots N3^{i}$ $C3-H3A\cdots Cg1^{ii}$ $C12-H12A\cdots Cg1^{iii}$	0.92 (2) 0.93 0.93	2.29 (2) 2.93 2.78	3.197 (3) 3.566 (6) 3.430 (3)	168.2 (19) 127 128
Symmetry codes: (i) $x = \frac{1}{2}, y, -z = \frac{1}{2}.$	$-x+1, y-\frac{1}{2},$	$-z + \frac{1}{2};$ (ii)	$-x - 1, y + \frac{1}{2}, -$	$-z + \frac{3}{2};$ (iii)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Thailand Research Fund (TRF) and Prince of Songkla University for a research grant. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK-Surathkal, India, for providing research facilities. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/ PFIZIK/811012.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2394).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Amr, A.-G. E. & Abdulla, M. M. (2006). *Bioorg. Med. Chem.* 14, 4341–4352.
 Borgna, P., Pregnolato, M., Gamba, I. A. & Mellerio, G. (1993). *J. Heterocycl. Chem.* 30, 1079–1084.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chantrapromma, S., Fun, H.-K., Padaki, M., Suwunwong, T. & Isloor, A. M. (2010). Acta Cryst. E66, 0641–0642.
- Chantrapromma, S., Fun, H.-K., Suwunwong, T., Padaki, M. & Isloor, A. M. (2009). Acta Cryst. E65, o2914–o2915.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Fun, H.-K., Kobkeatthawin, T. & Chantrapromma, S. (2009). Acta Cryst. E65, 02532–02533.
- Goda, F. E., Abdel-Aziz, A. A.-M. & Attef, O. A. (2004). *Bioorg. Med. Chem.* **12**, 1845–1852.
- Kamal, A., Khan, M. N. A., Srinivasa Reddy, K. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004–1013.
- Malinka, W., Ryng, S., Sieklucka-Dziuba, M., Rajtar, G., Głowniak, A. & Kleinrok, Z. (1998). Farmaco. 53, 504–512.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o1811-o1812 [doi:10.1107/S160053681002369X]

6-(4-Aminophenyl)-2-ethoxy-4-(2-thienyl)nicotinonitrile

Hoong-Kun Fun, Suchada Chantrapromma, Thawanrat Kobkeatthawin, Mahesh Padaki and Arun M. Isloor

S1. Comment

Heterocyclic compounds containing the pyridine ring are reported to possess a diverse range of biological activities such as antimicrobial, antitumor and anti-inflammatory (Amr & Abdulla, 2006; Borgna *et al.*, 1993; Goda *et al.*, 2004; Kamal *et al.*, 2007; Malinka *et al.*, 1998) properties. Our research is aimed at the synthesis and preliminary biological (*in vitro*) and pharmacological (*in vivo*) screening, together with enzyme inhibitory activity, of the nicotinonitrile derivatives. The title compound, which is a substituted pyridine compound, was synthesized by cyclization of our previous chalcone derivative (Fun *et al.*, 2009) and malononitrile.

The molecule of the title compound, $C_{18}H_{15}N_3OS$, is not planar (Fig. 1). The central pyridyl ring is inclined to the 4aminophenyl and thiophene rings with dihedral angles of 25.22 (10)° and 24.80 (16)°, respectively. The thiophene ring is disordered over two orientations by rotation around the C4—C5 bond, with occupancies of 0.858 (2) and 0.142 (1). The ethoxy group is twisted slightly from the attached pyridyl ring, as indicated by the torsion angles C14—O1—C16—C17 = 171.13 (16)° and C16—O1—C14—C15 = 179.01 (16)°. The bond distances agree with the literature values (Allen *et al.*, 1987) and are comparable with those for related structures (Chantrapromma *et al.*, 2009; 2010).

In the crystal structure, (Fig. 2), the molecules are linked by weak intermolecular N2—H1N2…N3 hydrogen bond (Table 1) into chains along [010]. These chains are stacked along the *a* axis. The crystal structure is further stabilized by C—H… π interactions (Table 1); *Cg*₁ is the centroid of the C1–C4/S1 ring (major disorder component).

S2. Experimental

(2E)-1-(4-Aminophenyl)-3-(2-thienyl)prop-2-en-1-one (0.34 g, 0.0015 mole) which was synthesized according to a previous procedure (Fun *et al.*, 2009) was added with continuous stirring to a freshly prepared sodium alkoxide solution (0.0014 mole of sodium in 100 ml of ethanol). Malononitrile (1.30 g, 0.02 mol) was then added with continuous stirring at room temperature until the precipitate separated out. The resulting solid was filtered (yield 68%). Yellow plate-shaped single crystals of the title compound suitable for *X*-ray structure determination were recrystalized from ethanol by the slow evaporation of the solvent at room temperature over several days. Mp. 470–471 K.

S3. Refinement

The amino H atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic, 0.97 for CH₂ and 0.96 Å for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining carbon-bound H atoms. A rotating group model was used for the methyl groups. Atoms S1, C1, C2, C3 of the thiophene ring are disordered over two positions by rotation about the C4-C5 bond; the occupancies are 0.858 (2) and 0.142 (2).

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius. The major and minor components of the disorder are shown by shaded and open bonds, respectively.

Figure 2

The crystal packing of the title compound, viewed approximately along the c axis, showing chains along [010]. Hydrogen bonds are shown as dashed lines. Only the major disorder components are shown.

6- (4-Amin ophenyl)-2-ethoxy-4- (2-thienyl) pyridine-3-carbonitrile

<i>a</i> = 7.0751 (12) Å
b = 20.843 (4) Å
c = 20.983 (4) Å
$V = 3094.3 (9) Å^3$

Z = 8 F(000) = 1344 $D_x = 1.380 \text{ Mg m}^{-3}$ Melting point = 470–471 K Mo Kα radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3045 reflections

Data collection

Bruker APEXII DUO CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.928, T_{\max} = 0.992$

Primary atom site location: structure-invariant

Refinement

Refinement on F^2

 $wR(F^2) = 0.085$

3045 reflections

233 parameters

direct methods

88 restraints

S = 1.05

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.038$

 $\theta = 1.9-26.0^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 100 KPlate, yellow $0.35 \times 0.11 \times 0.04 \text{ mm}$

34805 measured reflections 3045 independent reflections 2188 reflections with $I > 2\sigma(I)$ $R_{int} = 0.092$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -8 \rightarrow 8$ $k = -25 \rightarrow 24$ $l = -25 \rightarrow 25$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0278P)^2 + 1.8001P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.21$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.56053 (19)	0.37231 (6)	0.25979 (6)	0.0190 (3)	
N1	0.5847 (2)	0.26630(7)	0.22980 (7)	0.0163 (4)	
N2	0.6671 (3)	0.01670 (9)	0.05279 (9)	0.0245 (4)	
N3	0.5866 (2)	0.39328 (8)	0.41791 (8)	0.0245 (4)	
C4	0.6016 (3)	0.21000 (9)	0.42677 (9)	0.0167 (4)	
S1	0.68410 (11)	0.13404 (3)	0.44617 (3)	0.01858 (19)	0.8583 (19)
C1	0.6115 (5)	0.14171 (15)	0.52389 (16)	0.0192 (7)	0.8583 (19)
H1A	0.6270	0.1101	0.5547	0.023*	0.8583 (19)

C2	0.5284 (8)	0.1996 (2)	0.53499 (16)	0.0168 (8)	0.8583 (19)
H2A	0.4807	0.2124	0.5743	0.020*	0.8583 (19)
C3	0.5240 (8)	0.2374 (2)	0.4797 (2)	0.0231 (10)	0.8583 (19)
НЗА	0.4718	0.2783	0.4791	0.028*	0.8583 (19)
S1X	0.5077 (14)	0.2515 (4)	0.4850 (4)	0.0200 (18)*	0.1417 (19)
C1X	0.560 (5)	0.1904 (12)	0.5376 (10)	0.021 (8)*	0.1417 (19)
H1XA	0.5349	0.1919	0.5810	0.025*	0.1417 (19)
C2X	0.643 (3)	0.1399 (10)	0.5079 (8)	0.012 (5)*	0.1417 (19)
H2XA	0.6719	0.1011	0.5274	0.014*	0.1417 (19)
C3X	0.679 (3)	0.1544 (8)	0.4425 (9)	0.0231 (10)	0.14
H3XA	0.7470	0.1284	0.4149	0.028*	0.1417 (19)
C5	0.6017 (3)	0.23136 (9)	0.36009 (9)	0.0163 (4)	()
C6	0.6082 (3)	0.18612 (9)	0.31136 (9)	0.0176 (4)	
H6A	0.6197	0.1429	0.3217	0.021*	
C7	0.5978 (3)	0.20381 (9)	0.24772 (9)	0.0164 (4)	
C8	0.6032 (3)	0.15594 (9)	0.19636 (9)	0.0158 (4)	
С9	0.5488 (3)	0.09205 (9)	0.20666 (9)	0.0203 (4)	
H9A	0.5016	0.0800	0.2463	0.024*	
C10	0.5641 (3)	0.04666 (9)	0.15893 (9)	0.0201 (4)	
H10A	0.5253	0.0047	0.1666	0.024*	
C11	0.6372 (3)	0.06310 (9)	0.09920 (9)	0.0178 (4)	
C12	0.6864 (3)	0.12704 (9)	0.08808 (9)	0.0181 (4)	
H12A	0.7319	0.1392	0.0483	0.022*	
C13	0.6680 (3)	0.17231 (9)	0.13553 (9)	0.0171 (4)	
H13A	0.6995	0.2147	0.1269	0.021*	
C14	0.5779 (3)	0.30963 (9)	0.27536 (9)	0.0168 (4)	
C15	0.5874 (3)	0.29610 (9)	0.34132 (9)	0.0163 (4)	
C16	0.5537 (3)	0.38737 (9)	0.19226 (9)	0.0197 (4)	
H16A	0.4594	0.3611	0.1712	0.024*	
H16B	0.6754	0.3791	0.1727	0.024*	
C17	0.5035 (3)	0.45707 (9)	0.18628 (10)	0.0248 (5)	
H17A	0.5012	0.4689	0.1421	0.037*	
H17B	0.5961	0.4825	0.2082	0.037*	
H17C	0.3813	0.4644	0.2047	0.037*	
C18	0.5861 (3)	0.34927 (9)	0.38470 (9)	0.0181 (4)	
H1N2	0.586 (3)	-0.0177 (12)	0.0555 (11)	0.039 (7)*	
H2N2	0.678 (3)	0.0308 (10)	0.0137 (11)	0.029 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0293 (7)	0.0135 (7)	0.0143 (7)	0.0002 (6)	0.0006 (6)	0.0000 (6)
N1	0.0175 (8)	0.0123 (9)	0.0191 (9)	-0.0004 (7)	0.0020 (7)	-0.0014 (7)
N2	0.0355 (10)	0.0196 (10)	0.0184 (9)	-0.0040 (8)	-0.0002 (9)	-0.0040 (8)
N3	0.0352 (10)	0.0189 (10)	0.0195 (9)	0.0024 (8)	0.0004 (8)	0.0006 (8)
C4	0.0162 (9)	0.0156 (10)	0.0182 (10)	0.0001 (8)	-0.0005 (8)	0.0003 (8)
S1	0.0220 (3)	0.0159 (4)	0.0179 (3)	0.0049 (3)	0.0012 (2)	0.0032 (3)
C1	0.0239 (16)	0.0225 (16)	0.0113 (15)	0.0003 (12)	0.0022 (13)	0.0024 (13)

supporting information

C2	0.015 (2)	0.0202 (19)	0.0150 (15)	0.0005 (13)	0.0000 (11)	0.0003 (10)
C3	0.0245 (19)	0.019 (2)	0.025 (2)	-0.0002 (17)	0.0011 (13)	-0.0016 (17)
C3X	0.0245 (19)	0.019 (2)	0.025 (2)	-0.0002 (17)	0.0011 (13)	-0.0016 (17)
C5	0.0132 (9)	0.0181 (10)	0.0177 (10)	0.0004 (8)	0.0000 (8)	0.0014 (8)
C6	0.0178 (9)	0.0123 (10)	0.0227 (11)	0.0007 (8)	0.0019 (8)	0.0005 (8)
C7	0.0136 (9)	0.0154 (10)	0.0202 (10)	-0.0013 (8)	0.0019 (8)	-0.0003 (9)
C8	0.0157 (9)	0.0144 (10)	0.0172 (10)	0.0012 (8)	0.0009 (8)	0.0002 (8)
С9	0.0222 (10)	0.0195 (11)	0.0192 (10)	-0.0001 (9)	0.0026 (8)	0.0016 (9)
C10	0.0247 (10)	0.0138 (10)	0.0217 (11)	-0.0015 (8)	-0.0007 (9)	0.0009 (8)
C11	0.0179 (10)	0.0191 (10)	0.0163 (10)	0.0024 (8)	-0.0038 (8)	-0.0024 (8)
C12	0.0171 (9)	0.0217 (11)	0.0156 (10)	-0.0017 (9)	-0.0013 (8)	0.0029 (8)
C13	0.0161 (9)	0.0160 (10)	0.0193 (10)	-0.0005 (8)	-0.0008 (8)	0.0015 (8)
C14	0.0152 (9)	0.0145 (11)	0.0207 (10)	0.0007 (8)	0.0010 (8)	0.0009 (8)
C15	0.0146 (9)	0.0169 (10)	0.0174 (10)	0.0003 (8)	0.0020 (8)	-0.0015 (8)
C16	0.0265 (10)	0.0186 (11)	0.0141 (10)	-0.0010 (9)	0.0004 (8)	0.0002 (8)
C17	0.0347 (12)	0.0198 (11)	0.0200 (11)	0.0012 (9)	0.0033 (9)	0.0007 (9)
C18	0.0197 (10)	0.0173 (11)	0.0173 (10)	0.0019 (8)	0.0009 (8)	0.0048 (9)

Geometric parameters (Å, °)

O1—C14	1.352 (2)	СЗХ—НЗХА	0.9300
O1—C16	1.452 (2)	C5—C6	1.392 (3)
N1—C14	1.316 (2)	C5—C15	1.409 (3)
N1—C7	1.359 (2)	C6—C7	1.387 (3)
N2—C11	1.389 (2)	С6—Н6А	0.9300
N2—H1N2	0.92 (2)	C7—C8	1.469 (3)
N2—H2N2	0.87 (2)	C8—C13	1.398 (3)
N3—C18	1.152 (2)	C8—C9	1.403 (3)
C4—C3X	1.323 (14)	C9—C10	1.382 (3)
C4—C3	1.364 (5)	С9—Н9А	0.9300
C4—C5	1.468 (3)	C10—C11	1.399 (3)
C4—S1X	1.638 (8)	C10—H10A	0.9300
C4—S1	1.736 (2)	C11—C12	1.397 (3)
S1—C1	1.717 (3)	C12—C13	1.378 (3)
C1—C2	1.361 (4)	C12—H12A	0.9300
C1—H1A	0.9300	C13—H13A	0.9300
C2—C3	1.404 (6)	C14—C15	1.414 (3)
C2—H2A	0.9300	C15—C18	1.434 (3)
С3—НЗА	0.9300	C16—C17	1.501 (3)
S1X—C1X	1.725 (17)	C16—H16A	0.9700
C1X—C2X	1.355 (16)	C16—H16B	0.9700
C1X—H1XA	0.9300	С17—Н17А	0.9600
C2X—C3X	1.427 (17)	С17—Н17В	0.9600
C2X—H2XA	0.9300	С17—Н17С	0.9600
C14—O1—C16	116.59 (14)	N1—C7—C8	116.73 (17)
C14—N1—C7	117.34 (16)	C6—C7—C8	121.62 (17)
C11—N2—H1N2	113.9 (15)	C13—C8—C9	117.52 (17)

C11—N2—H2N2	116.0 (14)	C13—C8—C7	120.83 (17)
H1N2—N2—H2N2	112 (2)	C9—C8—C7	121.63 (17)
C3X—C4—C3	109.2 (9)	С10—С9—С8	121.11 (18)
C3X—C4—C5	120.2 (8)	С10—С9—Н9А	119.4
C3—C4—C5	130.5 (3)	С8—С9—Н9А	119.4
C3X—C4—S1X	116.3 (8)	C9—C10—C11	120.71 (18)
C5—C4—S1X	123.5 (3)	C9—C10—H10A	119.6
C3—C4—S1	109.1 (2)	C11—C10—H10A	119.6
C5—C4—S1	119.99 (14)	N2—C11—C12	120.63 (18)
S1X—C4—S1	116.3 (3)	N2—C11—C10	120.94 (18)
C1—S1—C4	92.13 (12)	C12—C11—C10	118.39 (17)
C2—C1—S1	112.0 (3)	C13—C12—C11	120.61 (18)
C2—C1—H1A	124.0	C13—C12—H12A	119.7
S1—C1—H1A	124.0	C11—C12—H12A	119.7
C1—C2—C3	111.5 (3)	C12—C13—C8	121.57 (18)
C1—C2—H2A	124.3	С12—С13—Н13А	119.2
C3—C2—H2A	124.3	C8—C13—H13A	119.2
C4—C3—C2	115.4 (4)	N1—C14—O1	119.39 (17)
С4—С3—НЗА	122.3	N1—C14—C15	124.92 (17)
С2—С3—НЗА	122.3	O1—C14—C15	115.69 (16)
C4—S1X—C1X	90.0 (8)	C5—C15—C14	117.90 (17)
C2X—C1X—S1X	111.9 (15)	C5-C15-C18	124.26 (17)
C2X—C1X—H1XA	124.1	C14—C15—C18	117.83 (17)
S1X—C1X—H1XA	124.1	O1—C16—C17	107.39 (15)
C1X—C2X—C3X	110.7 (16)	O1—C16—H16A	110.2
C1X—C2X—H2XA	124.6	C17—C16—H16A	110.2
C3X—C2X—H2XA	124.6	O1—C16—H16B	110.2
C4—C3X—C2X	110.6 (14)	C17—C16—H16B	110.2
С4—С3Х—Н3ХА	124.7	H16A—C16—H16B	108.5
С2Х—С3Х—Н3ХА	124.7	С16—С17—Н17А	109.5
C6—C5—C15	116.48 (17)	C16—C17—H17B	109.5
C6—C5—C4	119.64 (17)	H17A—C17—H17B	109.5
C15—C5—C4	123.82 (17)	C16—C17—H17C	109.5
C7—C6—C5	121.69 (18)	H17A—C17—H17C	109.5
С7—С6—Н6А	119.2	H17B—C17—H17C	109.5
С5—С6—Н6А	119.2	N3—C18—C15	177.8 (2)
N1—C7—C6	121.64 (17)		
C3X-C4-S1-C1	93 (10)	C14—N1—C7—C6	-1.5(3)
C3—C4—S1—C1	0.1 (3)	C14—N1—C7—C8	179.37 (16)
C5—C4—S1—C1	-172.59 (18)	C5—C6—C7—N1	1.4 (3)
S1X—C4—S1—C1	1.6 (4)	C5—C6—C7—C8	-179.56 (17)
C4—S1—C1—C2	-0.2 (3)	N1—C7—C8—C13	25.1 (3)
S1—C1—C2—C3	0.2 (5)	C6—C7—C8—C13	-154.02 (19)
C3X—C4—C3—C2	-5.3 (12)	N1—C7—C8—C9	-156.59 (17)
C5—C4—C3—C2	171.7 (3)	C6—C7—C8—C9	24.3 (3)
S1X—C4—C3—C2	-170 (5)	C13—C8—C9—C10	1.9 (3)
S1—C4—C3—C2	-0.1 (5)	C7—C8—C9—C10	-176.49 (18)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the major disorder component of the thiophene ring.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N2—H1 <i>N</i> 2····N3 ⁱ	0.92 (2)	2.29 (2)	3.197 (3)	168.2 (19)
C3—H3 <i>A</i> ··· <i>Cg</i> 1 ⁱⁱ	0.93	2.93	3.566 (6)	127
C12—H12 A ···Cg1 ⁱⁱⁱ	0.93	2.78	3.430 (3)	128

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x-1, y+1/2, -z+3/2; (iii) x-1/2, y, -z-1/2.