

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-amino-3*H*-benzothiazolium) bis(7-oxabicyclo[2.2.1]heptane-2,3dicarboxylato)cobaltate(II) hexahydrate

Na Wang,^{a,b} Qiu-Yue Lin,^{a,b}* Jie Feng,^b Shi-Kun Li^{a,b} and Jun-Jun Zhao^b

^aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and ^bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China Correspondence e-mail: sky51@zjnu.cn

Received 13 May 2010; accepted 1 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.052; wR factor = 0.130; data-to-parameter ratio = 15.3.

In the crystal structure of the title salt, $(C_7H_7N_2S)_2[Co(C_8H_8-O_5)_2]\cdot 6H_2O$, the heterocyclic N atom of the 2-aminobenzothiazole molecule is protonated. The Co^{II} atom is situated on an inversion centre and exhibits a slightly distorted octahedral CoO₆ coordination defined by the bridging O atoms of the bicycloheptane unit and four carboxylate O atoms of two symmetry-related and fully deprotonated ligands. The crystal packing is stabilized by N-H···O hydrogen bonds between the cations and anions and by O-H···O hydrogen bonds including the crystal water molecules.

Related literature

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) is a lower toxicity anticancer drug, see: Shimi *et al.* (1982). For the importance of cobalt in biological systems, see: Jiao *et al.* (2005). For the isotypic structure of the Mn analogue, see: Wang *et al.* (2010). For related cobalt complexes, see: Wang *et al.* (1988, 2009).

Experimental

Crystal data

 $\begin{array}{ll} (C_7H_7N_2S)_2[\text{Co}(C_8H_8O_5)_2]\cdot 6H_2O & \gamma = 99.314 \ (4)^{\circ} \\ M_r = 837.73 & V = 881.92 \ (8) \ \text{\AA}^3 \\ \text{Triclinic, } P\overline{1} & Z = 1 \\ a = 6.6924 \ (4) \ \text{\AA} & \text{Mo } K\alpha \ \text{radiation} \\ b = 10.1294 \ (5) \ \text{\AA} & \mu = 0.69 \ \text{mm}^{-1} \\ c = 13.1860 \ (7) \ \text{\AA} & T = 296 \ \text{K} \\ \alpha = 90.094 \ (4)^{\circ} & 0.19 \times 0.16 \times 0.07 \ \text{mm} \\ \beta = 91.112 \ (4)^{\circ} \end{array}$

Data collection

Bruker APEXII area-detector	13051 measured reflections
diffractometer	3999 independent reflections
Absorption correction: multi-scan	2460 reflections with $I > 2\sigma(I)$
SADABS (Sheldrick, 1996)	$R_{\rm int} = 0.051$
$T_{\min} = 0.876, T_{\max} = 0.953$	

Refinement

ŀ

v S

3

1

$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of
$\nu R(F^2) = 0.130$	independent and constrained
= 1.03	refinement
999 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
62 parameters	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$
0 restraints	

Table 1

Selected bond lengths (Å).

Co1-O4	2.033 (2)	Co1-O5	2.160 (2)
Co1-O2	2.110 (2)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O1^{i}$	0.84 (2)	1.85 (2)	2.675 (3)	169 (3)
$N2-H2C\cdots O2^{i}$	0.86	2.00	2.851 (3)	173
$N2-H2D\cdots O2W^{ii}$	0.86	2.01	2.828 (4)	160
$O1W-H1WA\cdots O3W^{ii}$	0.82(2)	2.21 (2)	3.030 (4)	176 (4)
$O1W - H1WB \cdot \cdot \cdot O3W^{iii}$	0.84 (4)	1.94 (2)	2.769 (4)	171 (5)
$O2W - H2WA \cdots O3$	0.85 (2)	1.85 (2)	2.686 (3)	167 (4)
$O2W - H2WB \cdots O1W$	0.83(2)	1.95 (2)	2.772 (4)	171 (4)
$O3W - H3WA \cdots O1$	0.84(2)	2.01(2)	2.815 (3)	160 (4)
$O3W - H3WB \cdots O2W$	0.83 (4)	1.96 (4)	2.790 (4)	178 (4)
				·) 1

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2351).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jiao, K., Wang, Q. X., Sun, W. & Jian, F. F. (2005). J. Inorg. Biochem. 99, 1369-1375.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785-789.

Wang, Y.-J., Hu, R.-D., Lin, Q.-Y. & Cheng, J.-P. (2009). *Acta Cryst.* E65, m854. Wang, N., Wen, Y.-H., Lin, Q.-Y. & Feng, J. (2010). *Acta Cryst.* E66, m762.

Wang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20–27.

supporting information

Acta Cryst. (2010). E66, m763-m764 [doi:10.1107/S1600536810020921]

Bis(2-amino-3*H*-benzothiazolium) bis(7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato)cobaltate(II) hexahydrate

Na Wang, Qiu-Yue Lin, Jie Feng, Shi-Kun Li and Jun-Jun Zhao

S1. Comment

7-oxabicyclo[2,2,1] heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi *et al.*, 1982). Cobalt was recognized as an essential metal element widely distributed in biological systems such as cells and body (Jiao *et al.*, 2005). Several related cobalt complexes with the same ligand (Wang *et al.*, 1988) and with the ligand and with imidazole (Wang *et al.*, 2009) have been reported.

In the title complex, $(C_7H_7N_2S)^+_2[Co(C_8H_8O_5)_2]^{2-}(H_2O)_6$, the Co^{II} ion is located on a crystallographic centre of inversion. Two bridging oxygen atoms of the bicycloheptane units and four carboxylate oxygen atoms give rise to a slightly distorted octahedral coordination environment around the Co^{II} atom. The bond angles O2—Co1—O2ⁱ, O4—Co1—O4ⁱ and O5—Co1—O5ⁱ (i: -x+1, -y, -z.) are 180°, while the bond angles O4—Co1—O2 and O2—Co1—O4ⁱ open up slightly from 87.71 (9)° to 92.29 (9)°, resulting in a slight distortion from the ideal octahedral geometry. The crystal packing is stabilized by N—H···O hydrogen bonds between the cations and anions and by O—H···O hydrogen bonds including the crystal water molecules.

The crystal structure of $(C_7H_7N_2S)^+_2[Co(C_8H_8O_5)_2]^2(H_2O)_6$ is isotypic with that of the Mn analogue (Wang *et al.*, 2010) where slightly longer metal—oxygen bonds are observed.

S2. Experimental

Norcantharidin, cobalt acetate and 2-aminobenzothiazole were dissolved in 15 mL distilled water. The mixture was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. Pink crystals suitable for X-ray diffraction were obtained.

S3. Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97–0.98 Å and N—H = 0.86 Å and $U_{iso}(H)=1.2U_{eq}(\text{parent atom})$]. The H atoms of the water molecule were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

A view of the molecular units of the title salt showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability. Symmetry code: A (-x+2, -y, -z).

Bis(2-amino-3H-benzothiazolium) bis(7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato)cobaltate(II) hexahydrate

Crystal data	
$(C_7H_7N_2S)_2[Co(C_8H_8O_5)_2]\cdot 6H_2O$	Z = 1
$M_r = 837.73$	F(000) = 437
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.577 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.6924 (4) Å	Cell parameters from 2197 reflections
b = 10.1294 (5) Å	$\theta = 1.5 - 27.6^{\circ}$
c = 13.1860 (7) Å	$\mu = 0.69 \mathrm{~mm^{-1}}$
$\alpha = 90.094 \ (4)^{\circ}$	T = 296 K
$\beta = 91.112 \ (4)^{\circ}$	Block, pink
$\gamma = 99.314 \ (4)^{\circ}$	$0.19 \times 0.16 \times 0.07 \text{ mm}$
V = 881.92 (8) Å ³	
Data collection	
Bruker APEXII area-detector	13051 measured reflections
diffractometer	3999 independent reflections
Radiation source: fine-focus sealed tube	2460 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.051$
ω scans	$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 1.5^\circ$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
SADABS (Sheldrick, 1996)	$k = -11 \rightarrow 13$
$T_{\min} = 0.876, T_{\max} = 0.953$	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	262 parameters
Least-squares matrix: full	10 restraints
$R[F^2 > 2\sigma(F^2)] = 0.052$	Primary atom site location: structure-invariant
$wR(F^2) = 0.130$	direct methods

Secondary atom site location: difference Fourier map

S = 1.03

3999 reflections

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0599P)^2]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.5000	0.0000	0.0000	0.0303 (2)
S1	0.32716 (14)	0.26697 (8)	0.52780 (6)	0.0399 (2)
N1	0.2766 (4)	0.0309 (2)	0.60086 (19)	0.0302 (6)
H1N	0.277 (5)	-0.031 (3)	0.644 (2)	0.045*
N2	0.3473 (4)	0.1974 (3)	0.7234 (2)	0.0406 (7)
H2C	0.3394	0.1394	0.7713	0.049*
H2D	0.3742	0.2814	0.7375	0.049*
O1	0.7726 (3)	0.1597 (2)	0.25745 (15)	0.0384 (6)
O1W	0.1942 (5)	0.5445 (3)	0.4012 (2)	0.0706 (8)
H1WA	0.199 (7)	0.563 (5)	0.4621 (17)	0.106*
H1WB	0.085 (5)	0.492 (4)	0.393 (3)	0.106*
O2	0.6869 (3)	0.0130 (2)	0.13153 (15)	0.0376 (6)
O2W	0.5190 (4)	0.5231 (2)	0.2784 (2)	0.0546 (7)
H2WA	0.478 (6)	0.473 (4)	0.228 (2)	0.082*
H2WB	0.416 (4)	0.522 (4)	0.313 (3)	0.082*
O3	0.3619 (3)	0.3400 (2)	0.13885 (17)	0.0429 (6)
O3W	0.8114 (5)	0.3962 (3)	0.3736 (2)	0.0608 (7)
H3WA	0.828 (6)	0.334 (3)	0.334 (3)	0.091*
H3WB	0.723 (6)	0.432 (4)	0.345 (3)	0.091*
O4	0.3648 (3)	0.14697 (19)	0.06047 (16)	0.0369 (5)
O5	0.7143 (3)	0.15513 (19)	-0.06851 (15)	0.0327 (5)
C1	0.9035 (5)	0.1842 (3)	-0.0093 (2)	0.0334 (8)
H1A	0.9718	0.1064	-0.0002	0.040*
C2	1.0232 (5)	0.2949 (3)	-0.0715 (2)	0.0396 (8)
H2A	1.0898	0.2587	-0.1274	0.047*
H2B	1.1237	0.3514	-0.0299	0.047*
C3	0.8570 (5)	0.3722 (3)	-0.1100 (2)	0.0397 (8)
H3A	0.8797	0.4637	-0.0851	0.048*
H3B	0.8483	0.3724	-0.1835	0.048*
C4	0.6689 (5)	0.2912 (3)	-0.0646(2)	0.0321 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H4A	0.5435	0.3016	-0.1011	0.039*
C5	0.6600 (5)	0.3150 (3)	0.0495 (2)	0.0298 (7)
H5A	0.6967	0.4107	0.0645	0.036*
C6	0.8339 (5)	0.2379 (3)	0.0895 (2)	0.0301 (7)
H6A	0.9443	0.3018	0.1201	0.036*
C7	0.7589 (5)	0.1300 (3)	0.1659 (2)	0.0307 (7)
C8	0.4489 (5)	0.2639 (3)	0.0876 (2)	0.0314 (7)
С9	0.2570 (5)	0.1328 (4)	0.3395 (2)	0.0444 (9)
H9A	0.2729	0.2130	0.3041	0.053*
C10	0.2146 (5)	0.0118 (4)	0.2888 (3)	0.0497 (10)
H10A	0.2011	0.0102	0.2185	0.060*
C11	0.1922 (5)	-0.1068 (4)	0.3421 (3)	0.0466 (9)
H11A	0.1645	-0.1874	0.3067	0.056*
C12	0.2099 (5)	-0.1089 (3)	0.4467 (2)	0.0373 (8)
H12A	0.1936	-0.1892	0.4820	0.045*
C13	0.2522 (4)	0.0113 (3)	0.4966 (2)	0.0291 (7)
C14	0.2750 (5)	0.1318 (3)	0.4437 (2)	0.0325 (7)
C15	0.3185 (5)	0.1578 (3)	0.6290 (2)	0.0297 (7)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0393 (4)	0.0196 (3)	0.0308 (4)	0.0010 (3)	-0.0019 (3)	-0.0021 (2)
S1	0.0525 (6)	0.0285 (5)	0.0373 (5)	0.0028 (4)	-0.0009(4)	0.0063 (4)
N1	0.0372 (16)	0.0244 (15)	0.0291 (16)	0.0053 (12)	0.0018 (12)	0.0021 (11)
N2	0.058 (2)	0.0267 (15)	0.0354 (16)	0.0027 (13)	-0.0010 (13)	0.0014 (12)
O1	0.0575 (16)	0.0301 (12)	0.0265 (13)	0.0042 (11)	-0.0040 (10)	0.0005 (10)
O1W	0.068 (2)	0.074 (2)	0.0641 (19)	-0.0052 (16)	0.0018 (16)	-0.0069 (17)
O2	0.0504 (15)	0.0225 (12)	0.0367 (13)	-0.0029 (10)	-0.0079 (10)	0.0022 (9)
O2W	0.0644 (19)	0.0363 (15)	0.0614 (18)	0.0040 (13)	-0.0083 (14)	-0.0138 (13)
O3	0.0439 (15)	0.0339 (13)	0.0519 (15)	0.0093 (11)	0.0025 (11)	-0.0134 (11)
O3W	0.067 (2)	0.0509 (18)	0.0643 (19)	0.0122 (14)	-0.0146 (15)	-0.0112 (14)
O4	0.0377 (14)	0.0221 (12)	0.0493 (14)	-0.0002 (10)	0.0026 (10)	-0.0065 (10)
O5	0.0406 (13)	0.0233 (11)	0.0322 (12)	-0.0005 (10)	0.0010 (10)	-0.0025 (9)
C1	0.0352 (19)	0.0254 (17)	0.041 (2)	0.0085 (14)	0.0014 (15)	0.0004 (14)
C2	0.042 (2)	0.0328 (18)	0.042 (2)	0.0004 (16)	0.0076 (16)	0.0011 (15)
C3	0.059 (2)	0.0243 (17)	0.0333 (19)	-0.0023 (16)	0.0036 (16)	-0.0004 (14)
C4	0.042 (2)	0.0235 (16)	0.0312 (18)	0.0070 (14)	-0.0053 (14)	0.0016 (13)
C5	0.040 (2)	0.0162 (15)	0.0319 (18)	0.0022 (13)	-0.0031 (14)	-0.0021 (13)
C6	0.0338 (19)	0.0221 (16)	0.0325 (18)	-0.0005 (14)	-0.0042 (14)	-0.0009 (13)
C7	0.0327 (19)	0.0261 (17)	0.0334 (19)	0.0062 (14)	-0.0048 (14)	0.0034 (14)
C8	0.042 (2)	0.0246 (17)	0.0281 (17)	0.0072 (15)	-0.0037 (14)	0.0006 (14)
C9	0.048 (2)	0.053 (2)	0.032 (2)	0.0084 (18)	0.0041 (16)	0.0076 (17)
C10	0.047 (2)	0.075 (3)	0.0282 (19)	0.014 (2)	0.0015 (16)	-0.006 (2)
C11	0.039 (2)	0.053 (2)	0.047 (2)	0.0080 (18)	-0.0002 (17)	-0.0193 (19)
C12	0.037 (2)	0.0364 (19)	0.040 (2)	0.0114 (15)	0.0021 (15)	-0.0044 (16)
C13	0.0247 (18)	0.0316 (18)	0.0316 (18)	0.0061 (14)	0.0033 (13)	-0.0007 (14)
C14	0.0300 (18)	0.0328 (18)	0.0342 (19)	0.0038 (14)	0.0025 (14)	0.0029 (14)

C15	0.0334 (19)	0.0268 (17)	0.0283 (18)	0.0032 (14)	0.0024 (14)	-0.0019 (13)		
Geomet	Geometric parameters (Å, °)							
Col—C	04	2.033 (2)	C1—C2		1.520 (4)		
Co1—C)4 ⁱ	2.033 (2)	C1—C6		1.521 (4)		
Co1—C	02	2.110 (2)	C1—H1A		0.9800		
Co1—C	02 ⁱ	2.110 (2)	C2—C3		1.539 (5)		
Co1—C)5 ⁱ	2.160 (2)	C2—H2A		0.9700		
Col—C)5	2.160 (2)	C2—H2B		0.9700		
S1-C1	5	1.730 (3)	C3—C4		1.521 (4)		
S1-C1	4	1.747 (3)	С3—НЗА		0.9700		
N1—C1	15	1.322 (4)	C3—H3B		0.9700		
N1—C1	13	1.392 (4)	C4—C5		1.527 (4)		
N1—H	1N	0.840 (1	7)	C4—H4A		0.9800		
N2—C1	15	1.308 (4)	C5—C8		1.519 (4)		
N2—H2	2C	0.8600		C5—C6		1.585 (4)		
N2—H2	2D	0.8600		C5—H5A		0.9800		
O1—C7	7	1.242 (3)	C6—C7		1.519 (4)		
01W—	H1WA	0.823 (1	8)	С6—Н6А		0.9800		
01W—	H1WB	0.839 (1	9)	C9—C14		1.377 (4)		
O2—C7	7	1.283 (3)	C9—C10		1.380 (5)		
02W—	H2WA	0.852 (1	8)	С9—Н9А		0.9300		
02W—	H2WB	0.828 (1	8)	C10—C11		1.381 (5)		
O3—C8	3	1.245 (4)	C10—H10A		0.9300		
O3W—	H3WA	0.842 (1	0.842 (18)			1.383 (4)		
O3W—	H3WB	0.831 (18)		C11—H11A		0.9300		
O4—C8	3	1.274 (3	1.274 (3)			1.369 (4)		
O5—C4	1	1.460 (3	1.460 (3)			0.9300		
05—C1	1	1.463 (4)	C13—C14		1.395 (4)		
04—Co	o1—O4 ⁱ	180.00 (14)	НЗА—СЗ—НЗВ		109.3		
04—Co	01—02	87.71 (9)	O5—C4—C3		102.3 (2)		
O4 ⁱ —C	o1—O2	92.29 (9)	O5—C4—C5	101.9 (2)			
04—Co	$o1-O2^i$	92.29 (9)	C3—C4—C5	111.7 (3)			
O4 ⁱ —C	o1—O2 ⁱ	87.71 (9)	O5—C4—H4A	113.3			
O2—Co	$o1-O2^i$	180.00 (6)	C3—C4—H4A	113.3			
04—Co	o1—O5 ⁱ	92.19 (8)	C5—C4—H4A 113.3		113.3		
O4 ⁱ —C	$o1-O5^i$	87.81 (8)	C8—C5—C4		110.4 (2)		
O2—Co	o1—O5 ⁱ	90.69 (8)	C8—C5—C6		115.9 (2)		
02 ⁱ —C	o1—O5 ⁱ	89.31 (8)	C4—C5—C6		100.7 (2)		
04—Co	01—05	87.81 (8)	C8—C5—H5A		109.8		
O4 ⁱ —C	o1—O5	92.19 (8)	C4—C5—H5A		109.8		
O2—Co	01—05	89.31 (8)	C6—C5—H5A		109.8		
O2 ⁱ —C	o1—O5	90.69 (8)	C7—C6—C1		113.9 (2)		
05 ⁱ —C	o1—O5	180.00 (12)	C7—C6—C5		112.7 (2)		
C15—S	51—C14	90.24 (1	4)	C1—C6—C5		101.1 (2)		
C15—N	N1—C13	114.3 (2)	С7—С6—Н6А		109.6		

supporting information

C15—N1—H1N	121 (2)	С1—С6—Н6А	109.6
C13—N1—H1N	125 (2)	С5—С6—Н6А	109.6
C15—N2—H2C	120.0	O1—C7—O2	124.1 (3)
C15—N2—H2D	120.0	O1—C7—C6	118.3 (3)
H2C—N2—H2D	120.0	O2—C7—C6	117.7 (3)
H1WA—O1W—H1WB	104 (3)	O3—C8—O4	123.0 (3)
C7—O2—Co1	117.83 (18)	O3—C8—C5	118.9 (3)
H2WA—O2W—H2WB	104 (3)	04	118.0 (3)
H3WA_O3W_H3WB	104(3)	C14 - C9 - C10	118.4(3)
C8-04-Co1	1274(2)	C14 - C9 - H9A	120.8
C4-05-C1	95 5 (2)	C10—C9—H9A	120.8
C4-05-C01	117 10 (17)	C9-C10-C11	120.3(3)
C1 - 05 - Co1	111.96 (16)	C9-C10-H10A	119.8
05-C1-C2	101.5(2)	C_{11} C_{10} H_{10A}	119.8
05 C1 C6	101.3(2) 102.2(2)	C_{10} C_{11} C_{12}	117.0 121.7(3)
C_{2}^{-} C_{1}^{-} C_{6}^{-}	102.2(2) 111.5(2)	$C_{10} = C_{11} = U_{12}$	121.7 (5)
$C_2 - C_1 - C_0$	111.5 (5)	C12 $C11$ $U11A$	119.1
$C_2 = C_1 = H_1 A$	113.3	C12— $C12$ — $C11$ — $HIIA$	119.1
C2-CI-HIA	113.5	C13 - C12 - C11	117.7 (3)
Co-CI-HIA	113.5	C13 - C12 - H12A	121.1
C1 = C2 = C3	102.2 (3)	CII—CI2—HI2A	121.1
CI-C2-H2A	111.3	C12—C13—N1	126.7 (3)
С3—С2—Н2А	111.3	C12—C13—C14	121.1 (3)
C1—C2—H2B	111.3	N1—C13—C14	112.2 (3)
C3—C2—H2B	111.3	C9—C14—C13	120.7 (3)
H2A—C2—H2B	109.2	C9—C14—S1	128.9 (3)
C4—C3—C2	101.5 (2)	C13—C14—S1	110.4 (2)
C4—C3—H3A	111.5	N2—C15—N1	123.8 (3)
С2—С3—Н3А	111.5	N2—C15—S1	123.3 (2)
C4—C3—H3B	111.5	N1—C15—S1	112.9 (2)
С2—С3—Н3В	111.5		
O4—Co1—O2—C7	-42.6 (2)	C2-C1-C6-C5	72.9 (3)
O4 ⁱ —Co1—O2—C7	137.4 (2)	C8—C5—C6—C7	-3.8 (3)
O5 ⁱ —Co1—O2—C7	-134.8 (2)	C4—C5—C6—C7	-122.9 (3)
O5—Co1—O2—C7	45.2 (2)	C8—C5—C6—C1	118.2 (3)
O2—Co1—O4—C8	58.0 (2)	C4—C5—C6—C1	-0.9 (3)
O2 ⁱ —Co1—O4—C8	-122.0 (2)	Co1—O2—C7—O1	139.8 (2)
O5 ⁱ —Co1—O4—C8	148.6 (2)	Co1—O2—C7—C6	-40.9(3)
O5—Co1—O4—C8	-31.4(2)	C1—C6—C7—O1	152.8 (3)
O4—Co1—O5—C4	-10.50(18)	C5—C6—C7—O1	-92.7(3)
O4 ⁱ —Co1—O5—C4	169.50 (18)	C1—C6—C7—O2	-26.5(4)
O2—Co1—O5—C4	-98.23 (18)	C5—C6—C7—O2	87.9 (3)
O2 ⁱ —Co1—O5—C4	81.77 (18)	Co1—O4—C8—O3	-167.9(2)
O4—Co1—O5—C1	98.29 (18)	Co1—O4—C8—C5	16.1 (4)
$O4^{i}$ —Co1—O5—C1	-81.71(18)	C4—C5—C8—O3	-128.2(3)
$02-C_01-05-C_1$	10.55 (18)	C6-C5-C8-O3	1182(3)
02^{i} —Co1—O5—C1	-169.45(18)	C4—C5—C8—O4	48.0 (3)
C4-O5-C1-C2	-57.1 (3)	C6-C5-C8-O4	-65.7(3)
	(~)		(-)

Co1-05-C1-C2	-179.28 (17)	C14—C9—C10—C11	-0.3 (5)
C4—O5—C1—C6	58.2 (2)	C9-C10-C11-C12	0.4 (5)
Co1—O5—C1—C6	-64.0 (2)	C10-C11-C12-C13	-0.5 (5)
O5—C1—C2—C3	35.8 (3)	C11—C12—C13—N1	-179.8 (3)
C6—C1—C2—C3	-72.4 (3)	C11—C12—C13—C14	0.5 (5)
C1—C2—C3—C4	-0.9 (3)	C15—N1—C13—C12	179.5 (3)
C1—O5—C4—C3	56.9 (3)	C15—N1—C13—C14	-0.8 (4)
Co1—O5—C4—C3	175.04 (17)	C10-C9-C14-C13	0.4 (5)
C1—O5—C4—C5	-58.7 (3)	C10-C9-C14-S1	180.0 (3)
Co1	59.4 (2)	C12—C13—C14—C9	-0.5 (5)
C2—C3—C4—O5	-34.6 (3)	N1—C13—C14—C9	179.7 (3)
C2—C3—C4—C5	73.7 (3)	C12-C13-C14-S1	179.8 (2)
O5—C4—C5—C8	-86.5 (3)	N1-C13-C14-S1	0.1 (3)
C3—C4—C5—C8	165.0 (3)	C15—S1—C14—C9	-179.2 (3)
O5—C4—C5—C6	36.5 (3)	C15—S1—C14—C13	0.5 (2)
C3—C4—C5—C6	-72.0 (3)	C13—N1—C15—N2	-179.9 (3)
O5—C1—C6—C7	86.2 (3)	C13—N1—C15—S1	1.2 (3)
C2-C1-C6-C7	-166.0 (3)	C14—S1—C15—N2	-179.9 (3)
O5—C1—C6—C5	-34.9 (3)	C14—S1—C15—N1	-0.9 (2)

Symmetry code: (i) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	D—H··· A
N1—H1N····O1 ⁱⁱ	0.84 (2)	1.85 (2)	2.675 (3)	169 (3)
N2—H2 <i>C</i> ···O2 ⁱⁱ	0.86	2.00	2.851 (3)	173
N2—H2 D ···O2 W ⁱⁱⁱ	0.86	2.01	2.828 (4)	160
O1W—H1 WA ···O3 W ⁱⁱⁱ	0.82 (2)	2.21 (2)	3.030 (4)	176 (4)
$O1W - H1WB - O3W^{iv}$	0.84 (4)	1.94 (2)	2.769 (4)	171 (5)
O2 <i>W</i> —H2 <i>WA</i> ···O3	0.85 (2)	1.85 (2)	2.686 (3)	167 (4)
O2 <i>W</i> —H2 <i>WB</i> ···O1 <i>W</i>	0.83 (2)	1.95 (2)	2.772 (4)	171 (4)
O3 <i>W</i> —H3 <i>WA</i> ···O1	0.84 (2)	2.01 (2)	2.815 (3)	160 (4)
O3 <i>W</i> —H3 <i>WB</i> ···O2 <i>W</i>	0.83 (4)	1.96 (4)	2.790 (4)	178 (4)

Symmetry codes: (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*-1, *y*, *z*.