

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,8-Bis(benzyloxy)-3,6-diiodonaphthalene

Ying Liu, Leyong Wang,* Jingjing Wang, Li Liu and Mingyu Teng

School of Chemistry and Chemical Engineering, Nanjing University, Hankou Road 22, Nanjing 210093, People's Republic of China Correspondence e-mail: lywang@nju.edu.cn

Received 6 May 2010; accepted 24 May 2010

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.009 Å; R factor = 0.052; wR factor = 0.101; data-to-parameter ratio = 16.2.

In the crystal structure of the title compound, $C_{24}H_{18}I_2O_2$, one benzene ring is almost coplanar with the naphthyl system [dihedral angle = 6.6 (4)°], whereas the other is almost orthogonal [73.1 (2)°]. The crystal structure is consolidated by $C-H\cdots O$ and $C-H\cdots \pi$ interactions.

Related literature

For biomarkers for the Melanin metabolic process, see: Minto & Townsend (1997); Thompson *et al.* (2000); Zhang *et al.* (2008). For the synthesis of the title compound, see: Paruch *et al.* (2000).

Experimental

Crystal data C₂₄H₁₈I₂O₂

 $M_r=592.18$

•				
organic	com	no	un	ds
organic			~	

Z = 8Mo K α radiation $\mu = 3.02 \text{ mm}^{-1}$ T = 291 K $0.28 \times 0.24 \times 0.22 \text{ mm}$

Data collection

Monoclinic, C2/c

a = 31.222 (4) Å

b = 5.5684 (8) Å

c = 27.445 (4) Å

 $\beta = 118.680 \ (2)^{\circ}$

V = 4186.1 (10) Å³

Bruker SMART APEX CCD	10700 measured reflections
diffractometer	4111 independent reflections
Absorption correction: multi-scan	2679 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.038$
$T_{\min} = 0.485, \ T_{\max} = 0.556$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.052 & 253 \text{ parameters} \\ wR(F^2) = 0.101 & H\text{-atom parameters constrained} \\ S = 1.03 & \Delta\rho_{\max} = 0.81 \text{ e } \text{\AA}^{-3} \\ 4111 \text{ reflections} & \Delta\rho_{\min} = -0.86 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C19A-C24A ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C24 A – H24 A ···O1 BA^{i}	0.93	2.49	3.348 (8)	154 134
Symmetry codes: (i) $r_1 v + 1$	$\frac{0.97}{7.(ii) - r + \frac{1}{2}}$	$-v + \frac{3}{2} - 7$	5.515 (5)	154

Symmetry codes: (i) x, y + 1, z; (ii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge financial support by the Natural Science Foundation of Jiangsu (BK 2008259).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2673).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Minto, R. E. & Townsend, C. A. (1997). Chem. Rev. 97, 2537-2555.
- Paruch, K., Vyklicky, L., Katz, T. J., Incarvito, C. D. & Rheingold, A. L. (2000). J. Org. Chem. 65, 8774–8782.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thompson, J. E., Fahnestock, S., Farrall, L., Liao, D.-I., Valent, B. & Jordan, D. B. (2000). J. Biol. Chem. 275, 34867–34872.
- Zhang, Y. L., Hui, M. G., Zhao, W., Dong, H., Xu, Q., Li, S. H., Li, J., Zhang, J., Song, Y. C. & Tan, R. X. (2008). *Angew. Chem. Int. Ed.* **47**, 5823–5826.

supporting information

Acta Cryst. (2010). E66, o1577 [doi:10.1107/S1600536810019355]

1,8-Bis(benzyloxy)-3,6-diiodonaphthalene

Ying Liu, Leyong Wang, Jingjing Wang, Li Liu and Mingyu Teng

S1. Comment

The title compound (I), a known compound (Paruch *et al.*, 2000), was obtained as an intermediate during deuterium substitution reactions for generating biomarkers for the melanin metabolic process (Minto & Townsend, 1997; Thompson *et al.*, 2000; Zhang *et al.*, 2008). In order to reduce steric congestion, the benzene rings have different orientations with respect to the central naphthyl ring. Thus, one benzene ring (C12A–C17A) is almost co-planar with the naphthyl ring [dihedral angle = $6.6 (4)^{\circ}$] whereas the other (C19A–C24A) is almost orthogonal [dihedral angle = $73.1 (2)^{\circ}$].

Molecules are linked via weak intermolecular C–H···O [C24A–H24A···O1BAⁱ = 2.49 Å, C24A···O1BAⁱ = 3.348 (8) Å with angle at H24A = 15° for i: x, 1+y, z] and C–H··· π [C18A–H18A···Cg(C19A–C24A)ⁱⁱ = 2.77 Å, C18A···Cg(C19A–C24A)ⁱⁱ = 3.513 (5) Å with angle at H = 134° for ii: 1/2-x, 3/2-y, -z] interactions.

S2. Experimental

The precursor, 3,6-diiodonaphthalene-1,8-diol (0.4 g, 0.97 mmol), was added to a mixture of (bromomethyl)benzene (0.5 g, 2.92 mmol), potassium carbonate (0.53 g, 3.84 mmol), and acetone (40 mL) in a 50 mL flask. The mixture was heated to reflux for 4.5 hours and the solvent removed. The crude product was purified by column chromatography to give the pure title compound (I). The single crystals were obtained by slowly evaporating the solution of (I) from a petroleum and ethyl acetate mixture solvent.

S3. Refinement

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.

1,8-Bis(benzyloxy)-3,6-diiodonaphthalene

Crystal data C₂₄H₁₈I₂O₂ $M_r = 592.18$ Monoclinic, C2/c Hall symbol: -C 2yc a = 31.222 (4) Å b = 5.5684 (8) Å c = 27.445 (4) Å $\beta = 118.680$ (2)° V = 4186.1 (10) Å³ Z = 8

F(000) = 2272 $D_x = 1.879 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3618 reflections $\theta = 2.6-27.6^{\circ}$ $\mu = 3.02 \text{ mm}^{-1}$ T = 291 KBlock, brown $0.28 \times 0.24 \times 0.22 \text{ mm}$ Data collection

Bruker SMART APEX CCD	10700 measured reflections
diffractometer	4111 independent reflections
Radiation source: sealed tube	2679 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.038$
φ and ω scans	$\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -38 \rightarrow 36$
(<i>SADABS</i> ; Sheldrick, 2004)	$k = -6 \rightarrow 5$
$T_{\min} = 0.485, T_{\max} = 0.556$	$l = -31 \rightarrow 33$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
S = 1.03	H-atom parameters constrained
4111 reflections	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2 + 1.22P]$
253 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.81$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.86$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1BA	0.532315 (16)	-0.52925 (9)	0.184014 (16)	0.05132 (16)	
I2BA	0.419035 (16)	0.51148 (9)	-0.067214 (17)	0.05151 (15)	
O2BA	0.35208 (14)	0.3984 (7)	0.08149 (16)	0.0368 (9)	
O1BA	0.39304 (14)	0.1087 (7)	0.16410 (16)	0.0363 (9)	
C7BA	0.3862 (2)	0.4364 (11)	0.0199 (2)	0.0382 (14)	
H7AA	0.3664	0.5679	0.0024	0.046*	
C1BA	0.42086 (19)	0.0189 (11)	0.1420 (2)	0.0324 (12)	
C18A	0.31949 (19)	0.5945 (10)	0.0502 (2)	0.0328 (12)	
H18A	0.3029	0.5558	0.0109	0.039*	
H18B	0.3382	0.7401	0.0554	0.039*	
C9BA	0.41640 (19)	0.1355 (11)	0.0930 (2)	0.0320 (12)	
C8BA	0.38423 (18)	0.3302 (10)	0.0639 (2)	0.0295 (12)	
C3BA	0.4817 (2)	-0.2471 (10)	0.1437 (2)	0.0344 (13)	
C12A	0.36459 (19)	0.1100 (11)	0.2302 (2)	0.0319 (12)	
C16A	0.3090 (2)	0.4135 (12)	0.2268 (2)	0.0433 (15)	
H16A	0.2918	0.5539	0.2108	0.052*	

C24A	0.28382 (19)	0.8405 (11)	0.0981 (2)	0.0327 (13)
H24A	0.3086	0.9526	0.1070	0.039*
C10A	0.4473 (2)	0.0466 (11)	0.0720 (2)	0.0387 (14)
C20A	0.2453 (2)	0.4703 (11)	0.0574 (2)	0.0398 (14)
H20A	0.2444	0.3288	0.0389	0.048*
C5BA	0.4469 (2)	0.1581 (13)	0.0250 (3)	0.0464 (16)
H5AA	0.4667	0.0990	0.0111	0.056*
C23A	0.2477 (2)	0.8811 (13)	0.1134 (3)	0.0479 (16)
H23A	0.2486	1.0209	0.1324	0.057*
C17A	0.3387 (2)	0.3144 (11)	0.2077 (2)	0.0351 (13)
H17A	0.3411	0.3891	0.1788	0.042*
C21A	0.2097 (2)	0.5140 (13)	0.0718 (2)	0.0433 (14)
H21A	0.1843	0.4052	0.0619	0.052*
C19A	0.2827 (2)	0.6336 (11)	0.0698 (2)	0.0338 (13)
C4BA	0.4804 (2)	-0.1452 (11)	0.0988 (2)	0.0357 (13)
H4AA	0.5009	-0.1993	0.0854	0.043*
C14A	0.3307 (2)	0.1026 (12)	0.2930 (3)	0.0421 (15)
H14A	0.3280	0.0315	0.3221	0.051*
C22A	0.2115 (2)	0.7196 (11)	0.1009 (2)	0.0370 (14)
H22A	0.1879	0.7468	0.1119	0.044*
C6BA	0.4180 (2)	0.3482 (12)	0.0009 (2)	0.0397 (14)
C2BA	0.4528 (2)	-0.1716 (10)	0.1661 (2)	0.0331 (12)
H2AA	0.4547	-0.2482	0.1972	0.040*
C11A	0.3975 (2)	-0.0106 (11)	0.2126 (2)	0.0341 (12)
H11A	0.4310	-0.0026	0.2422	0.041*
H11B	0.3885	-0.1783	0.2044	0.041*
C15A	0.3048 (2)	0.3079 (13)	0.2684 (3)	0.0470 (16)
H15A	0.2842	0.3741	0.2806	0.056*
C13A	0.3607 (2)	0.0025 (13)	0.2745 (3)	0.0469 (15)
H13A	0.3784	-0.1359	0.2911	0.056*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1BA	0.0530 (3)	0.0509 (3)	0.0396 (2)	0.0078 (2)	0.0138 (2)	0.0003 (2)
I2BA	0.0522 (3)	0.0498 (3)	0.0435 (2)	0.0144 (2)	0.01566 (19)	0.0142 (2)
O2BA	0.030 (2)	0.039 (2)	0.036 (2)	0.0099 (18)	0.0113 (18)	0.0087 (18)
O1BA	0.030(2)	0.037 (2)	0.037 (2)	0.0072 (18)	0.0116 (17)	0.0099 (18)
C7BA	0.036 (3)	0.034 (4)	0.039 (3)	0.007 (2)	0.014 (3)	0.005 (3)
C1BA	0.028 (3)	0.037 (3)	0.030 (2)	-0.005 (3)	0.011 (2)	-0.001 (3)
C18A	0.030 (3)	0.028 (3)	0.035 (3)	0.005 (2)	0.011 (2)	0.007 (2)
C9BA	0.024 (3)	0.036 (3)	0.032 (3)	-0.001 (2)	0.011 (2)	0.001 (3)
C8BA	0.024 (3)	0.033 (3)	0.027 (3)	-0.003 (2)	0.009 (2)	-0.001 (2)
C3BA	0.030 (3)	0.027 (3)	0.039 (3)	0.000(2)	0.011 (2)	-0.003(2)
C12A	0.029 (3)	0.037 (3)	0.029 (3)	0.003 (2)	0.013 (2)	-0.006(2)
C16A	0.039 (3)	0.045 (4)	0.036 (3)	0.013 (3)	0.011 (3)	-0.003 (3)
C24A	0.021 (3)	0.040 (3)	0.032 (3)	0.001 (2)	0.009 (2)	0.000(2)
C10A	0.039 (3)	0.042 (4)	0.036 (3)	0.001 (3)	0.018 (3)	0.002 (3)

supporting information

C20A	0.041 (3)	0.034 (4)	0.041 (3)	0.000 (3)	0.017 (3)	-0.005 (3)
C5BA	0.036 (3)	0.053 (4)	0.044 (3)	0.008 (3)	0.014 (3)	0.003 (3)
C23A	0.046 (4)	0.048 (4)	0.044 (3)	0.014 (3)	0.018 (3)	0.000 (3)
C17A	0.038 (3)	0.034 (3)	0.030 (3)	-0.002(3)	0.013 (3)	0.000(2)
C21A	0.033 (3)	0.046 (4)	0.043 (3)	-0.002 (3)	0.012 (3)	-0.002(3)
C19A	0.033 (3)	0.038 (3)	0.030 (3)	0.007 (3)	0.015 (2)	0.006 (3)
C4BA	0.031 (3)	0.035 (3)	0.041 (3)	0.008 (3)	0.017 (3)	-0.003 (3)
C14A	0.035 (3)	0.047 (4)	0.043 (3)	0.006 (3)	0.018 (3)	0.017 (3)
C22A	0.031 (3)	0.039 (4)	0.036 (3)	0.009 (3)	0.012 (3)	0.007 (3)
C6BA	0.036 (3)	0.047 (4)	0.033 (3)	0.002 (3)	0.015 (3)	0.005 (3)
C2BA	0.030 (3)	0.035 (3)	0.035 (3)	0.001 (2)	0.016 (3)	0.003 (3)
C11A	0.034 (3)	0.037 (3)	0.031 (2)	0.003 (3)	0.015 (2)	0.006 (3)
C15A	0.040 (4)	0.050 (4)	0.043 (3)	0.013 (3)	0.014 (3)	0.002 (3)
C13A	0.046 (3)	0.046 (4)	0.044 (3)	0.024 (3)	0.017 (3)	0.014 (3)

Geometric parameters (Å, °)

I1BA—C3BA	2.124 (6)	C24A—C23A	1.397 (8)	
I2BA—C6BA	2.092 (6)	C24A—H24A	0.9300	
O2BA—C8BA	1.361 (6)	C10A—C4BA	1.421 (8)	
O2BA—C18A	1.458 (6)	C10A—C5BA	1.425 (8)	
O1BA—C1BA	1.369 (7)	C20A—C21A	1.368 (9)	
O1BA—C11A	1.434 (6)	C20A—C19A	1.387 (8)	
C7BA—C8BA	1.371 (8)	C20A—H20A	0.9300	
C7BA—C6BA	1.414 (8)	C5BA—C6BA	1.342 (9)	
С7ВА—Н7АА	0.9300	C5BA—H5AA	0.9300	
C1BA—C2BA	1.387 (8)	C23A—C22A	1.354 (9)	
C1BA—C9BA	1.439 (7)	C23A—H23A	0.9300	
C18A—C19A	1.499 (7)	C17A—H17A	0.9300	
C18A—H18A	0.9700	C21A—C22A	1.382 (9)	
C18A—H18B	0.9700	C21A—H21A	0.9300	
C9BA—C10A	1.430 (8)	C4BA—H4AA	0.9300	
C9BA—C8BA	1.433 (8)	C14A—C15A	1.376 (9)	
C3BA—C4BA	1.338 (8)	C14A—C13A	1.381 (9)	
C3BA—C2BA	1.379 (8)	C14A—H14A	0.9300	
C12A—C17A	1.361 (8)	C22A—H22A	0.9300	
C12A—C13A	1.410 (8)	C2BA—H2AA	0.9300	
C12A—C11A	1.489 (8)	C11A—H11A	0.9700	
C16A—C15A	1.345 (9)	C11A—H11B	0.9700	
C16A—C17A	1.381 (8)	C15A—H15A	0.9300	
C16A—H16A	0.9300	C13A—H13A	0.9300	
C24A—C19A	1.380 (8)			
C8BA—O2BA—C18A	115.2 (4)	С10А—С5ВА—Н5АА	119.9	
C1BA—O1BA—C11A	116.2 (4)	C22A—C23A—C24A	120.9 (6)	
C8BA—C7BA—C6BA	120.7 (5)	C22A—C23A—H23A	119.6	
С8ВА—С7ВА—Н7АА	119.6	C24A—C23A—H23A	119.6	
С6ВА—С7ВА—Н7АА	119.6	C12A—C17A—C16A	121.5 (6)	

O1BA—C1BA—C2BA	122.2 (5)	C12A—C17A—H17A	119.2
O1BA—C1BA—C9BA	116.8 (5)	C16A—C17A—H17A	119.2
C2BA—C1BA—C9BA	121.0 (5)	C20A—C21A—C22A	120.2 (6)
O2BA—C18A—C19A	109.6 (4)	C20A—C21A—H21A	119.9
O2BA—C18A—H18A	109.7	C22A—C21A—H21A	119.9
C19A—C18A—H18A	109.7	C24A—C19A—C20A	118.5 (5)
O2BA—C18A—H18B	109.7	C24A—C19A—C18A	120.4 (5)
C19A—C18A—H18B	109.7	C20A—C19A—C18A	121.0 (5)
H18A—C18A—H18B	108.2	C3BA—C4BA—C10A	119.3 (5)
C10A—C9BA—C8BA	117.7 (5)	СЗВА—С4ВА—Н4АА	120.4
C10A—C9BA—C1BA	116.1 (5)	C10A—C4BA—H4AA	120.4
C8BA—C9BA—C1BA	126.2 (5)	C15A—C14A—C13A	119.8 (6)
O2BA—C8BA—C7BA	123.0 (5)	C15A—C14A—H14A	120.1
O2BA—C8BA—C9BA	116.9 (5)	C13A - C14A - H14A	120.1
C7BA—C8BA—C9BA	120.2 (5)	C_{23A} — C_{22A} — C_{21A}	119.5 (6)
C4BA—C3BA—C2BA	122.9 (5)	C_{23A} — C_{22A} — H_{22A}	120.2
C4BA—C3BA—IIBA	1187(4)	C21A - C22A - H22A	120.2
C2BA—C3BA—IIBA	118.4 (4)	C5BA—C6BA—C7BA	121.1 (6)
C17A - C12A - C13A	117.9 (5)	C5BA—C6BA—I2BA	119.3 (5)
C17A - C12A - C11A	125.6 (5)	C7BA—C6BA—I2BA	119.6 (4)
C13A - C12A - C11A	116.5 (5)	C3BA—C2BA—C1BA	119.7 (5)
C15A—C16A—C17A	120.3 (6)	C3BA—C2BA—H2AA	120.1
C15A—C16A—H16A	119.9	C1BA—C2BA—H2AA	120.1
C17A—C16A—H16A	119.9	O1BA—C11A—C12A	108.6 (5)
C19A—C24A—C23A	119.9 (6)	O1BA—C11A—H11A	110.0
C19A—C24A—H24A	120.1	C12A—C11A—H11A	110.0
C23A—C24A—H24A	120.1	O1BA—C11A—H11B	110.0
C4BA—C10A—C5BA	119.0 (6)	C12A—C11A—H11B	110.0
C4BA—C10A—C9BA	121.0 (5)	H11A—C11A—H11B	108.4
C5BA—C10A—C9BA	120.0 (6)	C16A—C15A—C14A	120.5 (6)
C21A-C20A-C19A	121.1 (6)	C16A—C15A—H15A	119.8
C21A—C20A—H20A	119.5	C14A—C15A—H15A	119.8
C19A—C20A—H20A	119.5	C14A—C13A—C12A	120.0 (6)
C6BA—C5BA—C10A	120.2 (6)	C14A—C13A—H13A	120.0
С6ВА—С5ВА—Н5АА	119.9	C12A—C13A—H13A	120.0
C11A—O1BA—C1BA—C2BA	-2.1 (8)	C23A—C24A—C19A—C18A	176.4 (5)
C11A—O1BA—C1BA—C9BA	179.4 (5)	C21A—C20A—C19A—C24A	1.1 (9)
C8BA—O2BA—C18A—C19A	174.0 (5)	C21A—C20A—C19A—C18A	-175.3 (5)
O1BA—C1BA—C9BA—C10A	177.3 (5)	O2BA—C18A—C19A—C24A	111.8 (6)
C2BA—C1BA—C9BA—C10A	-1.2 (8)	O2BA—C18A—C19A—C20A	-71.8 (6)
O1BA—C1BA—C9BA—C8BA	-2.7(8)	C2BA—C3BA—C4BA—C10A	-1.2 (9)
C2BA—C1BA—C9BA—C8BA	178.8 (6)	I1BA—C3BA—C4BA—C10A	-179.0 (4)
C18A—O2BA—C8BA—C7BA	-0.1 (8)	C5BA—C10A—C4BA—C3BA	178.5 (6)
C18A—O2BA—C8BA—C9BA	-179.1 (5)	C9BA—C10A—C4BA—C3BA	1.5 (9)
C6BA—C7BA—C8BA—O2BA	-175.7 (5)	C24A—C23A—C22A—C21A	-1.2 (9)
C6BA—C7BA—C8BA—C9BA	3.3 (9)	C20A—C21A—C22A—C23A	2.2 (9)
C10A—C9BA—C8BA—O2BA	174.3 (5)	C10A—C5BA—C6BA—C7BA	-2.3 (10)

C1BA—C9BA—C8BA—O2BA	-5.7 (8)	C10A—C5BA—C6BA—I2BA	179.0 (5)
C10A—C9BA—C8BA—C7BA	-4.7 (8)	С8ВА—С7ВА—С6ВА—С5ВА	0.3 (10)
С1ВА—С9ВА—С8ВА—С7ВА	175.3 (5)	C8BA—C7BA—C6BA—I2BA	179.0 (4)
C8BA—C9BA—C10A—C4BA	179.6 (5)	C4BA—C3BA—C2BA—C1BA	-0.4 (9)
C1BA—C9BA—C10A—C4BA	-0.3 (8)	I1BA—C3BA—C2BA—C1BA	177.4 (4)
C8BA—C9BA—C10A—C5BA	2.7 (8)	O1BA—C1BA—C2BA—C3BA	-176.8 (5)
C1BA—C9BA—C10A—C5BA	-177.3 (5)	C9BA—C1BA—C2BA—C3BA	1.7 (8)
C4BA—C10A—C5BA—C6BA	-176.2 (6)	C1BA—O1BA—C11A—C12A	-179.6 (4)
C9BA—C10A—C5BA—C6BA	0.8 (9)	C17A—C12A—C11A—O1BA	-6.4 (8)
C19A—C24A—C23A—C22A	0.2 (9)	C13A—C12A—C11A—O1BA	174.3 (5)
C13A—C12A—C17A—C16A	-0.8 (9)	C17A—C16A—C15A—C14A	1.2 (10)
C11A—C12A—C17A—C16A	180.0 (6)	C13A—C14A—C15A—C16A	-0.8 (10)
C15A—C16A—C17A—C12A	-0.3 (9)	C15A—C14A—C13A—C12A	-0.3 (10)
C19A—C20A—C21A—C22A	-2.2 (9)	C17A—C12A—C13A—C14A	1.1 (9)
C23A—C24A—C19A—C20A	-0.1 (8)	C11A—C12A—C13A—C14A	-179.6 (6)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C19A–C24A ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
$C24A$ —H24 A ···O1 BA^{i}	0.93	2.49	3.348 (8)	154
C18 A —H18 A ···· Cg^{ii}	0.97	2.77	3.513 (5)	134

Symmetry codes: (i) x, y+1, z; (ii) -x+1/2, -y+3/2, -z.