

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (*E*)-2,3-Dimethyl-*N*-(2-nitrobenzylidene)aniline

### M. Nawaz Tahir,<sup>a</sup>\* Muhammad Ilyas Tariq,<sup>b</sup> Shahbaz Ahmad,<sup>b</sup> Muhammad Sarfraz<sup>b</sup> and Abdul Qayyum Ather<sup>c</sup>

<sup>a</sup>Department of Physics, University of Sargodha, Sargodha, Pakistan, <sup>b</sup>Department of Chemistry, University of Sargodha, Sargodha, Pakistan, and <sup>c</sup>Applied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan Correspondence e-mail: dmntahir\_uos@yahoo.com

Received 9 June 2010; accepted 21 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.111; data-to-parameter ratio = 13.8.

In the title compound,  $C_{15}H_{14}N_2O_2$ , the 2,3-dimethylanilinic and benzaldehyde groups are planar, with r.m.s. deviations of 0.0101 and 0.0241 Å, respectively, and are oriented at a dihedral angle of 11.69 (3)°. The nitro group is inclined to the benzaldehyde group by 34.02 (9)°. The molecule adopts an *E* configuration about the C=N bond. In the crystal, molecules are linked *via* C-H···O interactions, giving rise to the formation of zigzag polymeric chains extending along [010]. They are also linked by C-H··· $\pi$ , and  $\pi$ - $\pi$  interactions [centroid-centroid distance of 3.7185 (11) Å] involving symmetry-related aniline and benzene rings. The H atoms of the *ortho*-methyl group are disordered over two sites with a refined occupancy ratio of 0.69 (2):0.31 (2).

### **Related literature**

For the crystal structures of similar compounds, see: Tahir *et al.* (2010); Tariq *et al.* (2010).



### **Experimental**

Crystal data C<sub>15</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>

 $M_r = 254.28$ 

| Monoclinic, $P2_1/c$            |
|---------------------------------|
| a = 12.2910 (6) Å               |
| b = 15.1422 (9) Å               |
| c = 7.3384 (3) Å                |
| $\beta = 107.091 \ (2)^{\circ}$ |
| V = 1305.46 (11) Å <sup>3</sup> |

#### Data collection

| Bruker Kappa APEXII CCD                | 10220 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 2362 independent reflections           |
| Absorption correction: multi-scan      | 1705 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2005)                 | $R_{\rm int} = 0.029$                  |
| $T_{\min} = 0.985, \ T_{\max} = 0.987$ |                                        |
|                                        |                                        |

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.041$ | 171 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.111$               | H-atom parameters constrained                              |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$    |
| 2362 reflections                | $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

| $D - H \cdots A$                                                                                          | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |  |
|-----------------------------------------------------------------------------------------------------------|--------------|-------------------------|------------------------|--------------------------------------|--|
| $C8 - H8A \cdots O2^{i}$ $C8 - H8B \cdots Cg1^{ii}$                                                       | 0.96<br>0.96 | 2.51<br>2.89            | 3.438 (2)<br>3.680 (2) | 162.00<br>141                        |  |
| Symmetry codes: (i) $-x + 2$ , $y - \frac{1}{2}$ , $-z + \frac{3}{2}$ ; (ii) $-x + 2$ , $-y$ , $-z + 1$ . |              |                         |                        |                                      |  |

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2187).

#### References

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

- Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010). Acta Cryst. E66, 01562.
- Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, 01561.

Z = 4

Mo  $K\alpha$  radiation

 $0.32 \times 0.15 \times 0.15 \text{ mm}$ 

 $\mu = 0.09 \text{ mm}^{-1}$ 

T = 296 K

# supporting information

Acta Cryst. (2010). E66, o1817 [doi:10.1107/S1600536810024165]

# (E)-2,3-Dimethyl-N-(2-nitrobenzylidene)aniline

# M. Nawaz Tahir, Muhammad Ilyas Tariq, Shahbaz Ahmad, Muhammad Sarfraz and Abdul Qayyum Ather

### S1. Comment

In continuation of our research on the synthesis and crystal structure analysis of various Schiff bases of 2,3-dimethylaniline (Tariq *et al.*, 2010; Tahir *et al.*, 2010), we report herein on the crystal structure of the title compound, where the nitro group is in the ortho position. This structure differs from that reported earlier (Tariq *et al.*, 2010) for 2,3-dimethyl-N-[(*E*)-4-nitrobenzylidene]aniline, where the nitro group is in the *para*-position.

In the title molecule (Fig. 1) the 2,3-dimethylaniline group A (C1—C8/N1) is planar, to within 0.0101 Å, and the benzylidene group B (C9—C15) is also planar, to within 0.0241 Å. The dihedral angle between mean planes A and B is 11.69 (3)°. The nitro group (O1/N2/O2) is oriented at 34.02 (9)° with respect to the mean plane of the parent group B. The molecule adopts an E configuration about the C1=N9 bond, whose bond length is 1.263 (2) Å. The bond lengths are comparable with those in the structures cited above.

In the crystal structure the molecules are linked by C—H···O interactions to form zigzag polymeric chains extending along [010] (Table 1, Fig. 2). There also exist C-H··· $\pi$  interactions, and  $\pi$ - $\pi$  interactions [centroid-to-centroid distance = 3.7185 (11) Å] between symmetry related aniline benzene rings (Table 1).

Footnote for Table 1: Cg1 is the centroid of benzene ring (C1-C6).

### **S2. Experimental**

Equimolar quantities of 2,3-dimethylaniline and 2-nitrobenzaldehyde were refluxed in methanol for 45 min resulting in an orange solution. The solution was kept at RT and affoarded palepink rod-like crystals, suitable for X-ray diffraction analysis, after 24 h.

### **S3. Refinement**

The H-atoms of the methyl group in the *ortho* position are disordered over two sites with a refined occupancy ratio of 0.69 (2):0.31 (2). All the H-atoms were positioned geometrically (C–H = 0.93, 0.96 Å) and refined as riding with  $U_{iso}(H) = k \times U_{eq}(C)$ , where k = 1.2 for aryl H-atoms and k = 1.5 for methyl H-atoms.



## Figure 1

View of the molecular structuite of the title molecule, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radii.



### Figure 2

A partial crystal packing which shows that molecules form polymeric chains extending along [010].

### (E)-2,3-Dimethyl-N-(2-nitrobenzylidene)aniline

Crystal data

C<sub>15</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>  $M_r = 254.28$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 12.2910 (6) Å b = 15.1422 (9) Å c = 7.3384 (3) Å  $\beta = 107.091$  (2)° V = 1305.46 (11) Å<sup>3</sup> Z = 4

Data collection Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube F(000) = 536  $D_x = 1.294 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1705 reflections  $\theta = 2.2-25.3^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 296 KRod, pale pink  $0.32 \times 0.15 \times 0.15 \text{ mm}$ 

Graphite monochromator Detector resolution: 8.10 pixels mm<sup>-1</sup>  $\omega$  scans

| Absorption correction: multi-scan      | $R_{\rm int} = 0.029$                                           |
|----------------------------------------|-----------------------------------------------------------------|
| (SADABS; Bruker, 2005)                 | $\theta_{\rm max} = 25.3^\circ, \ \theta_{\rm min} = 2.2^\circ$ |
| $T_{\min} = 0.985, T_{\max} = 0.987$   | $h = -14 \rightarrow 14$                                        |
| 10220 measured reflections             | $k = -18 \rightarrow 18$                                        |
| 2362 independent reflections           | $l = -5 \rightarrow 8$                                          |
| 1705 reflections with $I > 2\sigma(I)$ |                                                                 |
| Refinement                             |                                                                 |
| Refinement on $F^2$                    | Secondary atom site location: difference Fourier                |
| Least-squares matrix: full             | map                                                             |
| $P[F^2 > 2\sigma(F^2)] = 0.041$        | Hydrogen site location: inferred from                           |

Hydrogen site location: inferred from  $R|F^2 > 2\sigma(F^2)| = 0.041$  $wR(F^2) = 0.111$ neighbouring sites S = 1.03H-atom parameters constrained 2362 reflections  $w = 1/[\sigma^2(F_0^2) + (0.0511P)^2 + 0.2309P]$ where  $P = (F_0^2 + 2F_c^2)/3$ 171 parameters 0 restraints  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant  $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$ direct methods

### Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     |              |              | _            | II */II                  | $O_{22}$ (<1) |
|-----|--------------|--------------|--------------|--------------------------|---------------|
|     | X            | У            | Z            | $U_{\rm iso} V_{\rm eq}$ | 000. (<1)     |
| 01  | 0.57216 (14) | 0.48517 (10) | 0.7186 (2)   | 0.0898 (6)               |               |
| O2  | 0.66972 (12) | 0.41328 (10) | 0.5671 (3)   | 0.0865 (7)               |               |
| N1  | 0.72326 (11) | 0.16848 (9)  | 0.60756 (19) | 0.0440 (4)               |               |
| N2  | 0.59423 (13) | 0.41809 (10) | 0.6438 (2)   | 0.0602 (6)               |               |
| C1  | 0.84205 (12) | 0.15240 (10) | 0.6480 (2)   | 0.0411 (5)               |               |
| C2  | 0.88063 (13) | 0.06562 (10) | 0.6889 (2)   | 0.0432 (5)               |               |
| C3  | 0.99754 (14) | 0.04808 (12) | 0.7314 (2)   | 0.0508 (6)               |               |
| C4  | 1.07104 (15) | 0.11659 (15) | 0.7281 (3)   | 0.0629 (7)               |               |
| C5  | 1.03219 (15) | 0.20131 (14) | 0.6825 (3)   | 0.0670 (8)               |               |
| C6  | 0.91756 (14) | 0.21936 (12) | 0.6413 (3)   | 0.0541 (6)               |               |
| C7  | 0.79775 (11) | -0.00684 (9) | 0.6917 (3)   | 0.0630(7)                |               |
| C8  | 1.04291 (11) | -0.04434 (9) | 0.7794 (3)   | 0.0704 (7)               |               |
| C9  | 0.69105 (12) | 0.23778 (11) | 0.6723 (2)   | 0.0423 (5)               |               |
| C10 | 0.56911 (12) | 0.25563 (10) | 0.6417 (2)   | 0.0398 (5)               |               |
| C11 | 0.52334 (13) | 0.34016 (11) | 0.6387 (2)   | 0.0444 (5)               |               |
| C12 | 0.41029 (14) | 0.35494 (13) | 0.6243 (3)   | 0.0556 (6)               |               |
| C13 | 0.33943 (15) | 0.28376 (14) | 0.6115 (3)   | 0.0609 (7)               |               |
| C14 | 0.38193 (15) | 0.19944 (13) | 0.6158 (3)   | 0.0596 (7)               |               |
| C15 | 0.49477 (14) | 0.18559 (11) | 0.6304 (2)   | 0.0501 (6)               |               |
| H4  | 1.14863      | 0.10520      | 0.75744      | 0.0755*                  |               |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| Ц5  | 1 09212 | 0.24621  | 0.67051 | 0.0804* |          |  |
|-----|---------|----------|---------|---------|----------|--|
| пз  | 1.06512 | 0.24031  | 0.07931 | 0.0804  |          |  |
| H6  | 0.89095 | 0.27645  | 0.60905 | 0.0649* |          |  |
| H7A | 0.79909 | -0.01850 | 0.82093 | 0.0945* | 0.69 (2) |  |
| H7B | 0.81863 | -0.05936 | 0.63677 | 0.0945* | 0.69 (2) |  |
| H7C | 0.72254 | 0.01102  | 0.61921 | 0.0945* | 0.69 (2) |  |
| H8A | 1.12430 | -0.04385 | 0.80782 | 0.1056* |          |  |
| H8B | 1.01086 | -0.08255 | 0.67275 | 0.1056* |          |  |
| H8C | 1.02244 | -0.06541 | 0.88832 | 0.1056* |          |  |
| H9  | 0.74495 | 0.27808  | 0.74006 | 0.0507* |          |  |
| H12 | 0.38266 | 0.41218  | 0.62325 | 0.0667* |          |  |
| H13 | 0.26279 | 0.29245  | 0.59991 | 0.0730* |          |  |
| H14 | 0.33385 | 0.15133  | 0.60884 | 0.0714* |          |  |
| H15 | 0.52174 | 0.12810  | 0.63275 | 0.0601* |          |  |
| H7D | 0.74650 | 0.01276  | 0.75999 | 0.0945* | 0.31 (2) |  |
| H7E | 0.83851 | -0.05791 | 0.75358 | 0.0945* | 0.31 (2) |  |
| H7F | 0.75525 | -0.02168 | 0.56333 | 0.0945* | 0.31 (2) |  |
|     |         |          |         |         |          |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 01  | 0.0974 (12) | 0.0457 (8)  | 0.1170 (13) | 0.0068 (8)   | 0.0169 (9)  | -0.0163 (8)  |
| O2  | 0.0608 (9)  | 0.0664 (10) | 0.1409 (15) | -0.0066 (7)  | 0.0428 (9)  | 0.0129 (9)   |
| N1  | 0.0396 (7)  | 0.0394 (8)  | 0.0527 (8)  | 0.0020 (6)   | 0.0129 (6)  | -0.0001 (6)  |
| N2  | 0.0526 (9)  | 0.0436 (9)  | 0.0793 (11) | 0.0034 (7)   | 0.0114 (8)  | 0.0045 (8)   |
| C1  | 0.0369 (8)  | 0.0433 (9)  | 0.0425 (8)  | 0.0001 (7)   | 0.0109 (7)  | -0.0041 (7)  |
| C2  | 0.0447 (9)  | 0.0447 (10) | 0.0398 (8)  | 0.0039 (7)   | 0.0117 (7)  | -0.0027 (7)  |
| C3  | 0.0464 (9)  | 0.0624 (11) | 0.0427 (9)  | 0.0125 (8)   | 0.0119 (7)  | -0.0040 (8)  |
| C4  | 0.0397 (9)  | 0.0864 (15) | 0.0628 (12) | 0.0059 (10)  | 0.0152 (8)  | -0.0087 (10) |
| C5  | 0.0492 (11) | 0.0747 (14) | 0.0821 (14) | -0.0164 (10) | 0.0270 (9)  | -0.0100 (11) |
| C6  | 0.0517 (10) | 0.0456 (10) | 0.0680 (11) | -0.0040 (8)  | 0.0222 (8)  | -0.0034 (8)  |
| C7  | 0.0612 (11) | 0.0442 (11) | 0.0811 (13) | -0.0018 (9)  | 0.0170 (10) | 0.0018 (9)   |
| C8  | 0.0676 (12) | 0.0758 (14) | 0.0636 (12) | 0.0317 (11)  | 0.0127 (9)  | 0.0010 (10)  |
| C9  | 0.0399 (9)  | 0.0414 (9)  | 0.0434 (9)  | -0.0004 (7)  | 0.0088 (7)  | -0.0006 (7)  |
| C10 | 0.0394 (8)  | 0.0431 (9)  | 0.0367 (8)  | 0.0030 (7)   | 0.0108 (6)  | -0.0007 (7)  |
| C11 | 0.0425 (9)  | 0.0448 (9)  | 0.0463 (9)  | -0.0001 (7)  | 0.0137 (7)  | -0.0002 (7)  |
| C12 | 0.0480 (10) | 0.0585 (11) | 0.0634 (11) | 0.0117 (9)   | 0.0213 (8)  | -0.0006 (9)  |
| C13 | 0.0405 (9)  | 0.0798 (15) | 0.0660 (12) | 0.0026 (9)   | 0.0215 (8)  | 0.0020 (10)  |
| C14 | 0.0493 (10) | 0.0675 (13) | 0.0632 (12) | -0.0134 (9)  | 0.0186 (9)  | 0.0005 (10)  |
| C15 | 0.0505 (10) | 0.0440 (10) | 0.0547 (10) | -0.0020(8)   | 0.0138 (8)  | -0.0002(8)   |

Geometric parameters (Å, °)

| 01—N2  | 1.222 (2) | C14—C15 | 1.375 (3) |  |
|--------|-----------|---------|-----------|--|
| O2—N2  | 1.221 (2) | C4—H4   | 0.9300    |  |
| N1-C1  | 1.423 (2) | С5—Н5   | 0.9300    |  |
| N1—C9  | 1.263 (2) | C6—H6   | 0.9300    |  |
| N2-C11 | 1.461 (2) | C7—H7A  | 0.9600    |  |
| C1—C2  | 1.399 (2) | C7—H7B  | 0.9600    |  |
|        |           |         |           |  |

| C1—C6                                     | 1.385 (2)           | C7—H7C                    | 0.9600 |
|-------------------------------------------|---------------------|---------------------------|--------|
| C2—C3                                     | 1.403 (2)           | C7—H7D                    | 0.9600 |
| C2—C7                                     | 1.501 (2)           | С7—Н7Е                    | 0.9600 |
| C3—C4                                     | 1.381 (3)           | C7—H7F                    | 0.9600 |
| C3—C8                                     | 1.509 (2)           | C8—H8A                    | 0.9600 |
| C4—C5                                     | 1.375 (3)           | C8—H8B                    | 0.9600 |
| C5—C6                                     | 1.379 (3)           | C8—H8C                    | 0.9600 |
| C9—C10                                    | 1.474 (2)           | С9—Н9                     | 0.9300 |
| C10—C11                                   | 1.396 (2)           | C12—H12                   | 0.9300 |
| C10—C15                                   | 1.386 (2)           | C13—H13                   | 0.9300 |
| C11-C12                                   | 1 381 (2)           | C14—H14                   | 0.9300 |
| C12-C13                                   | 1 372 (3)           | C15—H15                   | 0.9300 |
| C12 - C14                                 | 1.376 (3)           |                           | 0.9500 |
| 015 011                                   | 1.570 (5)           |                           |        |
| O1…C15 <sup>i</sup>                       | 3.413 (2)           | H6…C8 <sup>iv</sup>       | 2.8800 |
| O1…N2 <sup>ii</sup>                       | 3.194 (2)           | H7B…C8                    | 2.6600 |
| 01…01 <sup>ii</sup>                       | 3.209 (2)           | H7B…H8B                   | 2.3300 |
| O2…C9                                     | 2.758 (2)           | H7B····H14 <sup>xi</sup>  | 2.5900 |
| O1…H15 <sup>i</sup>                       | 2.8200              | H7C…N1                    | 2.3900 |
| O1…H14 <sup>i</sup>                       | 2.9000              | H7D····O2 <sup>iii</sup>  | 2.9100 |
| O1…H7F <sup>iii</sup>                     | 2.9000              | H7D…N1                    | 2.5900 |
| O1…H12                                    | 2.4900              | H7D…H12 <sup>vi</sup>     | 2.5200 |
| O2…H9                                     | 2.4400              | H7E···H8C                 | 2.1900 |
| O2…H8A <sup>iv</sup>                      | 2.5100              | H7E…H8B                   | 2.3900 |
| $O2 \cdots H7D^{v}$                       | 2.9100              | H7E···C8                  | 2.4700 |
| N1C9 <sup>v</sup>                         | 3410(2)             | $H7F\cdots H14^{xi}$      | 2 4200 |
| N2…01 <sup>ii</sup>                       | 3 194 (2)           | H7F····O1 <sup>v</sup>    | 2,9000 |
| N1···H7D                                  | 2 5900              | H7F···N1                  | 2.9400 |
| N1···H7F                                  | 2.9400              | H8A…H4                    | 2.3200 |
| N1…H15                                    | 2.5100              | H8AO2 <sup>ix</sup>       | 2.5200 |
| N1H9 <sup>v</sup>                         | 2 9000              | H8B····C7                 | 2.9100 |
| N1···H7C                                  | 2.3000              | H8B····C3 <sup>viii</sup> | 2.9000 |
| N2HQ                                      | 2.3900              | H8B····C4 <sup>viii</sup> | 2.9600 |
| $C9N1^{iii}$                              | 2.7700<br>3 410 (2) | H8B····C5 <sup>viii</sup> | 3 0800 |
| C902                                      | 2.758(2)            | H8BH7B                    | 2 3300 |
| $C^{13}$ $C^{14^{iii}}$                   | 3 591 (3)           | H8B…H7E                   | 2.3300 |
| $C13^{\circ}$ $C14^{\circ}$ $C14^{\circ}$ | 3.591(3)            |                           | 2.3900 |
| $C14^{\circ} C15^{\circ}$                 | 3 413 (2)           |                           | 2.8000 |
|                                           | 3.413 (2)           |                           | 2.8800 |
|                                           | 2 0800              |                           | 2.1900 |
| C2H8Cvii                                  | 2.9800              | H0N2                      | 2.9800 |
|                                           | 2.8800              |                           | 2.7700 |
|                                           | 2.9800              |                           | 2.3900 |
|                                           | 2.0000              |                           | 2.2700 |
|                                           | 2.0000              |                           | 2.9000 |
|                                           | 2.5000              |                           | 3.0700 |
| Со…ну                                     | 2.3900              |                           | 3.0800 |
|                                           | 2.9000              |                           | 2.4400 |
| U/H&U                                     | 2.8600              | $H12\cdots H/D'$          | 2.5200 |

| C8H7B                                                | 2 6600                   | H12…O1                              | 2 4900      |
|------------------------------------------------------|--------------------------|-------------------------------------|-------------|
| C8····H6 <sup>ix</sup>                               | 2.8800                   | H12H5 <sup>xii</sup>                | 2.4900      |
| C8H7E                                                | 2.4700                   | H14H7B <sup>xi</sup>                | 2.5400      |
| C0H6                                                 | 2.4700                   |                                     | 2.5900      |
|                                                      | 2.7000                   |                                     | 2.9000      |
| П4 <sup></sup> П6А                                   | 2.5200                   |                                     | 2.4200      |
| H5H13 <sup>*</sup>                                   | 2.5400                   |                                     | 2.8200      |
| H6C9                                                 | 2.7000                   | H15N1                               | 2.6100      |
| Нотня                                                | 2.2700                   |                                     |             |
| C1 N1 C0                                             | 119 67 (14)              | C1 C6 H6                            | 120.00      |
| CI = NI = C3                                         | 110.07(14)<br>122.76(17) | $C_1 = C_0 = H_0$                   | 120.00      |
| OI = N2 = O2                                         | 123.70(17)               | $C_{2}$ $C_{2}$ $U_{2}$             | 120.00      |
| OI = N2 = CII                                        | 118.25 (10)              | $C_2 = C_1 = H/A$                   | 109.00      |
| U2—N2—CII                                            | 117.94 (15)              | $C_2 - C_1 - H_1 B$                 | 109.00      |
| NI—CI—C2                                             | 117.89 (14)              | C2—C/—H/C                           | 109.00      |
|                                                      | 121.64 (14)              | C2—C7—H7D                           | 109.00      |
| C2-C1-C6                                             | 120.44 (15)              | С2—С7—Н7Е                           | 109.00      |
| C1—C2—C3                                             | 119.06 (15)              | C2—C7—H7F                           | 109.00      |
| C1—C2—C7                                             | 120.05 (14)              | H7A—C7—H7B                          | 109.00      |
| C3—C2—C7                                             | 120.88 (14)              | H7A—C7—H7C                          | 109.00      |
| C2—C3—C4                                             | 119.11 (17)              | H7B—C7—H7C                          | 109.00      |
| C2—C3—C8                                             | 120.75 (15)              | H7D—C7—H7E                          | 109.00      |
| C4—C3—C8                                             | 120.14 (16)              | H7D—C7—H7F                          | 109.00      |
| C3—C4—C5                                             | 121.53 (18)              | H7E—C7—H7F                          | 109.00      |
| C4—C5—C6                                             | 119.84 (19)              | С3—С8—Н8А                           | 109.00      |
| C1—C6—C5                                             | 119.95 (17)              | C3—C8—H8B                           | 109.00      |
| N1—C9—C10                                            | 120.82 (14)              | C3—C8—H8C                           | 109.00      |
| C9—C10—C11                                           | 123.90 (14)              | H8A—C8—H8B                          | 109.00      |
| C9—C10—C15                                           | 119.45 (14)              | H8A—C8—H8C                          | 109.00      |
| C11—C10—C15                                          | 116.43 (15)              | H8B—C8—H8C                          | 109.00      |
| N2-C11-C10                                           | 120.39 (15)              | N1—C9—H9                            | 120.00      |
| $N_2 - C_{11} - C_{12}$                              | 116 77 (15)              | C10—C9—H9                           | 120.00      |
| C10-C11-C12                                          | 122.81 (16)              | C11—C12—H12                         | 121.00      |
| $C_{11} - C_{12} - C_{13}$                           | 118 85 (18)              | C13 - C12 - H12                     | 121.00      |
| $C_{12}$ $C_{13}$ $C_{14}$                           | 110.89 (18)              | $C_{12}$ $C_{12}$ $C_{13}$ $H_{13}$ | 121.00      |
| $C_{12} = C_{13} = C_{14}$                           | 120.70(18)               | $C_{12} = C_{13} = H_{13}$          | 120.00      |
| $C_{13} = C_{14} = C_{13}$                           | 120.70(16)<br>121.32(16) | $C_{14} = C_{13} = H_{14}$          | 120.00      |
| $C_{10}$ $C_{13}$ $C_{14}$ $C_{14}$                  | 121.32 (10)              | $C_{15} = C_{14} = H_{14}$          | 120.00      |
| $C_5 = C_4 = 114$                                    | 119.00                   | $C_{10} = C_{14} = 1114$            | 120.00      |
| $C_3 = C_4 = H_4$                                    | 119.00                   | С14 С15 Н15                         | 119.00      |
| C4—C5—H5                                             | 120.00                   | C14—C15—H15                         | 119.00      |
| С6—С5—Н5                                             | 120.00                   |                                     |             |
| C0 N1 C1 C2                                          | 140.61 (15)              | $C^2$ $C^3$ $C^4$ $C^5$             | -0.6(3)     |
| $C_{2} = N_{1} = C_{1} = C_{2}$                      | -41.5(2)                 | $C_{2} - C_{3} - C_{4} - C_{5}$     | 170 15 (18) |
| $C_{1} = V_{1} = C_{1} = C_{1}$                      | -177 30 (12)             | $C_{3} = C_{4} = C_{5}$             | 1/9.13(10)  |
| $C_1 = 101 = C_2 = C_10$                             | -140.96(15)              | $C_{4} = C_{5} = C_{6} = C_{1}$     | 0.7(3)      |
| $O_1 = N_2 = C_{11} = C_{12}$                        | 149.00(13)               | $C_{+} = C_{0} = C_{10} = C_{11}$   | 0.7(3)      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 32.3(2)                  | NI = C0 = C10 = C15                 | -155.88(15) |
| $U_2$ — $N_2$ — $U_11$ — $U_10$                      | 32.0 (2)<br>145-21 (10)  | N1 - Cy - C10 - C13                 | 51.7(2)     |
| 02—N2—C11—C12                                        | -145.21 (18)             | C9—C10—C11—N2                       | 7.4 (2)     |

| N1—C1—C2—C3 | -179.29 (13) | C9—C10—C11—C12  | -174.92 (16) |
|-------------|--------------|-----------------|--------------|
| N1—C1—C2—C7 | -0.8 (2)     | C15-C10-C11-N2  | -178.04 (13) |
| C6—C1—C2—C3 | 2.8 (2)      | C15-C10-C11-C12 | -0.4 (2)     |
| C6—C1—C2—C7 | -178.69 (16) | C9-C10-C15-C14  | 175.24 (15)  |
| N1—C1—C6—C5 | 179.62 (17)  | C11—C10—C15—C14 | 0.4 (2)      |
| C2—C1—C6—C5 | -2.6 (3)     | N2-C11-C12-C13  | 177.48 (17)  |
| C1—C2—C3—C4 | -1.2 (2)     | C10-C11-C12-C13 | -0.3 (3)     |
| C1—C2—C3—C8 | 179.01 (15)  | C11—C12—C13—C14 | 0.9 (3)      |
| C7—C2—C3—C4 | -179.72 (16) | C12-C13-C14-C15 | -0.8 (3)     |
| C7—C2—C3—C8 | 0.5 (2)      | C13—C14—C15—C10 | 0.2 (3)      |
|             |              |                 |              |

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x+1, -y+1, -z+1; (iii) x, -y+1/2, z+1/2; (iv) -x+2, y+1/2, -z+3/2; (v) x, -y+1/2, z-1/2; (vi) -x+1, y-1/2, -z+3/2; (vii) -x+2, -y, -z+2; (viii) -x+2, -y, -z+1; (ix) -x+2, y-1/2, -z+3/2; (x) x+1, y, z; (xi) -x+1, -y, -z+1; (xii) x-1, y, z.

### Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

| D—H···A                                        | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|------------------------------------------------|-------------|-------|--------------|---------|
| C8—H8A····O2 <sup>ix</sup>                     | 0.96        | 2.51  | 3.438 (2)    | 162.00  |
| C8—H8 <i>B</i> ··· <i>Cg</i> 1 <sup>viii</sup> | 0.96        | 2.89  | 3.680 (2)    | 141     |

Symmetry codes: (viii) -x+2, -y, -z+1; (ix) -x+2, y-1/2, -z+3/2.