organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(2-Aminoethyl)-2-[4-(trifluoromethoxy)anilino]quinazolin-4(3H)-one

Zhao-Hui Cai,^a Xiao-Bao Chen,^b Xu-Hong Yang^{a*} and Xiang Wang^c

^aDepartment of Chemistry and Life Science, Xianning College, Xianning 4371000, Hubei, People's Republic of China, ^bDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, Hubei, People's Republic of China, and ^cCollege of Life and Environmental Science, Kaili University, Kaili 556000, Guizhou, People's Republic of China

Correspondence e-mail: chenxiaobao@vahoo.com.cn

Received 18 June 2010; accepted 23 June 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.061; wR factor = 0.164; data-to-parameter ratio = 9.9.

In the title compound, $C_{17}H_{15}F_3N_4O_2$, the dihedral angle between the trifluoromethoxy-substituted benzene ring and the pyrimidinone ring is $45.1 (5)^\circ$, while that between the fused benzene ring and the pyrimidinone ring is $0.67 (1)^{\circ}$. Part of one of the benzene rings and its trifluoromethoxy substituent are disordered over two positions of approximately equal occupancy (0.51:0.49). Intermolecular $N-H \cdots O$ and $N-H \cdots N$ hydrogen bonds contribute to the stability of the crystal structure. A weak intramolecular $C-H \cdots F$ contact is also found. In addition, $\pi - \pi$ stacking interactions, with centroid-centroid distances in the range 3.673 (6)-3.780 (8) Å, and weak $C-H \cdots \pi$ interactions are also observed.

Related literature

For the biological activity of quinazoline-4(3H)-one derivatives, see: Pandeya et al. (1999); Shiba et al. (1997), Malamas & Millen (1991); Mannschreck et al. (1984); Kung et al. (1999); Bartroli et al. (1998); Palmer et al. (1997); Tsou et al. (2001); Matsuno et al. (2002). For the synthesis of the title compound, see: Yang et al. (2008).

Experimental

Crystal data

$C_{17}H_{15}F_{3}N_{4}O_{2}$	V = 3300.0 (6) Å ³
$M_r = 364.33$	Z = 8
Orthorhombic, Pbcn	Mo $K\alpha$ radiation
a = 11.9675 (13) Å	$\mu = 0.12 \text{ mm}^{-1}$
b = 12.9579 (13) Å	T = 298 K
c = 21.280 (2) Å	$0.23 \times 0.15 \times 0.11 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\rm min} = 0.973, T_{\rm max} = 0.987$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	H atoms treated by a mixture of
$wR(F^2) = 0.164$	independent and constrained
S = 1.12	refinement
3076 reflections	$\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$
311 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
19 restraints	

15599 measured reflections 3076 independent reflections

 $R_{\rm int} = 0.083$

2573 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C7/C1/C2/N2/C8 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
12 LI2D NO ⁱ	0.96 (1)	2 40 (2)	2 150 (2)	145 (2)
$N3 - H3A \cdots O1^{ii}$	0.86(1) 0.86(1)	2.40(2) 2.46(2)	3.147 (3)	143 (3)
$C15 - H15 \cdots F2$	0.93	2.40	2.93 (3)	116
$C12 - H12 \cdots Cg1^{i}$	0.93	2.88	3.560 (3)	131
		1 1 (**)	3 1	

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Natural Science Foundation of Guizhou Educational Committee (grant No.20090079) for financial support, and acknowledge the Sophisticated Analytical Instrument Facility, Central China Normal University, Whuhan, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5026).

References

- Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem. 41, 1869-1882.
- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705-4713.
- Malamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492-1503.
- Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381-383.

- Matsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem. 45, 3057–3066.
- Palmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519–1529.
- Pandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). *Pharm. Acta Helv.* **74**, 11–17.
- Sheldrick, G. M. (2001). SADABS. University of Goöttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). *Pharmazie*, 52, 189–194.
- Tsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F. G., uber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719–2734.
- Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365–1369.

supporting information

Acta Cryst. (2010). E66, o1854-o1855 [doi:10.1107/S1600536810024645]

3-(2-Aminoethyl)-2-[4-(trifluoromethoxy)anilino]quinazolin-4(3H)-one

Zhao-Hui Cai, Xiao-Bao Chen, Xu-Hong Yang and Xiang Wang

S1. Comment

Quinazoline-4(*3H*)-one derivatives have numerous biological properties. Some of these activities include antimicrobial (Pandeya *et al.*, 1999 and Shiba *et al.*, 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck *et al.*, 1984), antibacterial (Kung *et al.*, 1999), antifungal (Bartroli *et al.*, 1998), protein tyrosine kinase inhibitors (Palmer *et al.*, 1997), EGFR inhibitors (Tsou *et al.*,2001) and PDGFR phosphorylation inhibitors (Matsuno *et al.*, 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. We have reported the synthesis of the title compound (Yang *et al.*, 2008). We present here the crystal structure of the title compound, (I) (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In the crystal structure, the fused benzene ring and the pyrimidinone ring are not completely co-planar, but are inclined at 0.67 (1) °. Significant and intermolecular N—H···O and N—H···N hydrogen bonds contribute strongly to the stability of the structure (Fig. 2). An intramolecular C—H···F hydrogen bond is also found. (Table 1). The crystal structure (Fig. 2) is also stabilized by weak intermolecular C—H···F hydrogen bonds (Table 1) and π — π stacking interactions with centroid-centroid separations of 3.673 (6), 3.779 (8), 3.674 (6) and 3.780 (8) Å for Cg1··· $Cg3^i$, Cg1··· $Cg4^i$, Cg3··· $Cg1^{ii}$ and Cg4··· $Cg1^{ii}$, respectively, where Cg1, Cg3 and Cg4 are the centroids of the N1/C7/C1—C2/N2/C8, C11—C16 and C11—C13/C14'-C16' rings, respectively [symmetry code: (i) 3/2-X, 1/2+Y, Z, (ii) 3/2-X, -1/2+Y, Z,].

S2. Experimental

The title compound was prepared by a literature method (Yang *et al.*, 2008). Single crystals suitable for X-ray diffraction were obtained from a methanol-dichloromethane (1:1 v/v) solution at room temperature.

S3. Refinement

H atoms bonded to C were placed in calculated positions, with C—H distances of 0.97 and 0.93Å for H atoms bonded to sp^3 and sp^2 C atoms, respectively. They were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$, or $1.5U_{eq}(methyl C)$. The H atoms bound to N were refined with distance restraints N—H = 0.86 (2)Å and with $U_{iso}(H) = 1.2U_{eq}(N)$. The C14…C16 atoms of the trifluoromethoxy-substituted benzene ring and all atoms of the trifluoromethoxy substituent were disordered over two sites. The site occupancies refined to 0.51 and 0.49 and were fixed at these values in the final refinement cycles.

Figure 1

View of the molecular structure of (I), showing the atom labelling schemeand with displacement ellipsoids drawn at the 50% probability level. Both disorder components are shown with bonds involving the minor disorder component drawn as dashed lines.

Figure 2

A partial view of the crystal packing of (I), showing the formation of N—H \cdots N and N—H \cdots O hydrogen-bonds as dashed lines.

3-(2-Aminoethyl)-2-[4-(trifluoromethoxy)anilino]quinazolin-4(3H)-one

Crystal data

 $C_{17}H_{15}F_{3}N_{4}O_{2}$ $M_{r} = 364.33$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 11.9675 (13) Å b = 12.9579 (13) Å c = 21.280 (2) Å V = 3300.0 (6) Å³ Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) $T_{\min} = 0.973, T_{\max} = 0.987$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from
$wR(F^2) = 0.164$	neighbouring sites
S = 1.12	H atoms treated by a mixture of independent
3076 reflections	and constrained refinement
311 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0809P)^2 + 0.8235P]$
19 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.39 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

F(000) = 1504

 $\theta = 2.5 - 23.5^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$

Block, colorless $0.23 \times 0.15 \times 0.11 \text{ mm}$

T = 298 K

 $R_{\rm int} = 0.083$

 $h = -10 \rightarrow 14$

 $k = -15 \rightarrow 14$

 $l = -25 \rightarrow 25$

 $D_{\rm x} = 1.467 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 4600 reflections

15599 measured reflections 3076 independent reflections

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$

2573 reflections with $I > 2\sigma(I)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.9187 (2)	1.31297 (18)	0.55231 (11)	0.0445 (6)	
C2	0.9408 (2)	1.24194 (18)	0.60015 (11)	0.0443 (6)	
C3	0.9930 (2)	1.2767 (2)	0.65508 (12)	0.0556 (7)	
Н3	1.0093	1.2304	0.6871	0.067*	

C4	1.0200 (2)	1.3792 (2)	0.66172 (14)	0.0623 (7)	
H4	1.0546	1.4014	0.6984	0.075*	
C5	0.9967 (2)	1.4498 (2)	0.61481 (14)	0.0631 (8)	
H5	1.0156	1.5189	0.6199	0.076*	
C6	0.9457 (2)	1.41721 (19)	0.56101 (14)	0.0549 (7)	
H6	0.9286	1.4648	0.5297	0.066*	
C7	0.8649 (2)	1.27789 (18)	0.49482 (11)	0.0453 (6)	
C8	0.8673 (2)	1.10775 (18)	0.54329 (10)	0.0425 (6)	
C9	0.7649 (2)	1.1385 (2)	0.44173 (12)	0.0522 (6)	
H9A	0.7257	1.1979	0.4249	0.063*	
H9B	0.7092	1.0915	0.4585	0.063*	
C10	0.8258 (2)	1.0850 (2)	0.38838 (11)	0.0555 (7)	
H10A	0.7795	1.0861	0.3510	0.067*	
H10B	0.8943	1.1220	0.3791	0.067*	
C11	0.8519 (2)	0.92710 (18)	0.57795 (12)	0.0463 (6)	
C12	0.8785 (2)	0.82950 (18)	0.55666 (12)	0.0463 (6)	
H12	0.8970	0.8200	0.5146	0.056*	
C13	0.8781 (2)	0.74562 (19)	0.59680 (13)	0.0523 (7)	
H13	0.8987	0.6808	0.5821	0.063*	
C14	0.8473 (13)	0.7581 (8)	0.6583 (5)	0.065 (5)	0.51
C15	0.812 (2)	0.855 (2)	0.6764 (13)	0.071 (6)	0.51
H15	0.7805	0.8616	0.7161	0.085*	0.51
C16	0.8208 (17)	0.9417 (9)	0.6397 (8)	0.050 (3)	0.51
H16	0.8065	1.0072	0.6558	0.060*	0.51
C17	0.8238 (9)	0.6670 (8)	0.7538 (5)	0.0637 (12)	0.51
O2	0.8387 (12)	0.6644 (9)	0.6922 (5)	0.089 (4)	0.51
F1	0.8935 (8)	0.7216 (9)	0.7869 (6)	0.119 (4)	0.51
F2	0.7234 (6)	0.7043 (7)	0.7658 (5)	0.122 (4)	0.51
F3	0.8159 (10)	0.5681 (5)	0.7691 (4)	0.082 (2)	0.51
C14′	0.8582 (12)	0.7631 (9)	0.6591 (6)	0.063 (5)	0.49
C15′	0.842 (3)	0.8590 (19)	0.6855 (14)	0.071 (6)	0.49
H15′	0.8374	0.8700	0.7286	0.085*	0.49
C16′	0.834 (3)	0.9368 (16)	0.6418 (13)	0.101 (8)	0.49
H16′	0.8148	1.0020	0.6566	0.121*	0.49
C17′	0.8114 (10)	0.6564 (9)	0.7475 (6)	0.0637 (12)	0.49
O2′	0.8747 (11)	0.6749 (8)	0.6976 (5)	0.070 (3)	0.49
F1′	0.8435 (10)	0.7198 (6)	0.7928 (4)	0.105 (4)	0.49
F2′	0.7057 (9)	0.6717 (8)	0.7373 (5)	0.122 (4)	0.49
F3′	0.8383 (15)	0.5654 (9)	0.7708 (7)	0.145 (6)	0.49
N1	0.83729 (16)	1.17338 (14)	0.49385 (9)	0.0428 (5)	
N2	0.91631 (18)	1.13823 (14)	0.59417 (9)	0.0469 (5)	
N3	0.8525 (2)	0.97796 (19)	0.40455 (11)	0.0605 (6)	
H3A	0.7992 (19)	0.936 (2)	0.3949 (14)	0.073*	
H3B	0.9115 (17)	0.952 (2)	0.3871 (14)	0.073*	
N4	0.8435 (2)	1.00667 (16)	0.53333 (9)	0.0510 (6)	
H4A	0.843 (2)	0.988 (2)	0.4945 (6)	0.061*	
01	0.84285 (17)	1.33377 (14)	0.45034 (9)	0.0620 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0419 (13)	0.0403 (12)	0.0513 (13)	0.0033 (10)	0.0089 (11)	0.0027 (10)
C2	0.0470 (13)	0.0410 (13)	0.0449 (13)	-0.0008 (10)	0.0068 (10)	0.0003 (10)
C3	0.0640 (17)	0.0577 (16)	0.0452 (13)	-0.0084 (13)	0.0010 (12)	-0.0015 (11)
C4	0.0643 (18)	0.0622 (18)	0.0604 (16)	-0.0108 (14)	0.0069 (14)	-0.0154 (14)
C5	0.0644 (18)	0.0428 (14)	0.082 (2)	-0.0098 (12)	0.0113 (16)	-0.0141 (13)
C6	0.0550 (15)	0.0397 (13)	0.0702 (17)	0.0013 (11)	0.0113 (13)	0.0066 (12)
C7	0.0455 (13)	0.0415 (13)	0.0490 (13)	0.0078 (10)	0.0076 (11)	0.0077 (10)
C8	0.0465 (13)	0.0402 (12)	0.0410 (12)	0.0001 (10)	0.0031 (10)	0.0038 (10)
C9	0.0521 (15)	0.0527 (15)	0.0519 (13)	0.0026 (11)	-0.0113 (12)	0.0054 (11)
C10	0.0634 (16)	0.0601 (16)	0.0431 (13)	-0.0049 (13)	-0.0077 (12)	0.0038 (12)
C11	0.0535 (14)	0.0399 (13)	0.0455 (13)	-0.0049 (10)	-0.0006 (11)	0.0033 (10)
C12	0.0491 (14)	0.0431 (13)	0.0466 (13)	-0.0014 (10)	-0.0007 (11)	-0.0015 (10)
C13	0.0601 (16)	0.0386 (13)	0.0583 (16)	0.0076 (11)	-0.0039 (13)	-0.0029 (11)
C14	0.121 (10)	0.032 (7)	0.043 (7)	-0.017 (6)	-0.026 (6)	-0.002 (4)
C15	0.118 (13)	0.063 (7)	0.033 (7)	-0.014 (7)	0.003 (6)	-0.004 (4)
C16	0.097 (7)	0.014 (4)	0.040 (6)	-0.001 (4)	0.011 (5)	0.001 (4)
C17	0.084 (3)	0.054 (2)	0.053 (2)	0.002 (2)	-0.004(2)	0.0146 (19)
O2	0.167 (12)	0.046 (3)	0.055 (3)	-0.033 (5)	-0.014 (5)	0.013 (2)
F1	0.111 (6)	0.144 (6)	0.101 (6)	0.025 (4)	-0.036 (4)	-0.008 (4)
F2	0.084 (5)	0.107 (6)	0.177 (9)	0.021 (4)	0.060 (6)	0.059 (6)
F3	0.132 (5)	0.045 (3)	0.070 (4)	0.001 (3)	0.018 (3)	0.038 (3)
C14′	0.071 (6)	0.050 (9)	0.069 (9)	0.024 (5)	0.032 (6)	0.027 (6)
C15′	0.139 (17)	0.036 (6)	0.037 (8)	0.003 (8)	0.006 (9)	0.006 (5)
C16′	0.164 (19)	0.075 (11)	0.064 (12)	0.026 (9)	0.035 (11)	0.001 (8)
C17′	0.084 (3)	0.054 (2)	0.053 (2)	0.002 (2)	-0.004(2)	0.0146 (19)
O2′	0.098 (6)	0.038 (4)	0.076 (5)	0.016 (4)	0.022 (5)	0.011 (3)
F1′	0.197 (12)	0.074 (4)	0.045 (3)	0.000 (5)	-0.031 (5)	-0.014 (2)
F2′	0.107 (5)	0.116 (7)	0.144 (7)	-0.005 (4)	-0.023 (5)	0.038 (5)
F3′	0.186 (11)	0.112 (8)	0.137 (9)	0.059 (6)	-0.005 (7)	0.054 (6)
N1	0.0465 (11)	0.0404 (11)	0.0416 (10)	0.0029 (8)	-0.0018 (8)	0.0038 (8)
N2	0.0591 (13)	0.0395 (11)	0.0421 (11)	-0.0024 (9)	-0.0030 (9)	0.0057 (8)
N3	0.0730 (17)	0.0565 (15)	0.0518 (13)	0.0004 (12)	-0.0036 (12)	-0.0049 (11)
N4	0.0754 (15)	0.0385 (11)	0.0389 (11)	-0.0060 (10)	-0.0015 (10)	0.0022 (9)
01	0.0760 (13)	0.0527 (11)	0.0573 (11)	0.0087 (9)	-0.0023 (9)	0.0205 (9)

Geometric parameters (Å, °)

C1—C2	1.398 (3)	C11—N4	1.405 (3)
C1—C6	1.401 (3)	C12—C13	1.382 (3)
C1—C7	1.455 (4)	C12—H12	0.9300
C2—N2	1.381 (3)	C13—C14′	1.366 (14)
С2—С3	1.399 (3)	C13—C14	1.369 (13)
C3—C4	1.374 (4)	C13—H13	0.9300
С3—Н3	0.9300	C14—C15	1.38 (3)
C4—C5	1.382 (4)	C14—O2	1.416 (9)

C4—H4	0.9300	C15—C16	1.38 (4)
C5—C6	1.364 (4)	С15—Н15	0.9300
С5—Н5	0.9300	C16—H16	0.9300
С6—Н6	0.9300	C17—F1	1.302 (9)
C7—O1	1 221 (3)	C17—F2	1 321 (9)
C7 N1	1.221(3) 1.301(3)	C_{17} C_{17} C_{17}	1.321(9) 1.324(9)
C^{2} N2	1.307(3)	$C_{17} = C_{2}$	1.324(9)
$C_0 = N_2$	1.293(3)	$C1/-r_5$	1.320(6)
Co-N4	1.357 (3)		1.38 (3)
C8—NI	1.400 (3)	C14'—O2'	1.421 (8)
C9—N1	1.478 (3)	C15'—C16'	1.37 (4)
C9—C10	1.517 (4)	С15'—Н15'	0.9300
С9—Н9А	0.9700	C16'—H16'	0.9300
С9—Н9В	0.9700	C17′—F2′	1.299 (9)
C10—N3	1.464 (4)	C17'—F3'	1.320 (9)
C10—H10A	0.9700	C17'—F1'	1.325 (9)
C10—H10B	0 9700	C17'	1 325 (9)
C_{11}	1 379 (18)	N3_H3A	0.862(11)
C_{11} C_{12}	1.377(10) 1.381(3)	N2 H2D	0.862(11)
	1.301(3)		0.804(11)
	1.38 (3)	N4—H4A	0.863 (11)
$C_{2}-C_{1}-C_{6}$	1197(2)	C14 - C13 - C12	1199(5)
$C_2 C_1 C_7$	119.7(2) 119.4(2)	C14' $C13$ $H13$	121.6
$C_2 - C_1 - C_7$	119.4(2)	$C_{14} - C_{12} - U_{12}$	121.0
	120.9 (2)		120.1
N2—C2—C1	122.2 (2)	C12—C13—H13	120.1
N2—C2—C3	119.0 (2)	C13—C14—C15	117.3 (15)
C1—C2—C3	118.7 (2)	C13—C14—O2	113.9 (9)
C4—C3—C2	120.1 (3)	C15—C14—O2	127.9 (17)
С4—С3—Н3	119.9	C14—C15—C16	124 (2)
С2—С3—Н3	119.9	C14—C15—H15	117.9
C3—C4—C5	121.2 (3)	C16—C15—H15	117.9
C3—C4—H4	119.4	C15—C16—C11	116.7 (16)
C5-C4-H4	119.4	C15-C16-H16	121.7
C6-C5-C4	119.1	C_{11} C_{16} H_{16}	121.7
C6 C5 H5	120.3	E1 C17 E2	121.7
C0-C5-H5	120.3	F1 = C17 = F2	100.2(9)
C4—C5—H5	120.3	F1 = C17 = O2	117.7 (11)
C5—C6—C1	120.8 (3)	F2—C17—O2	108.9 (11)
С5—С6—Н6	119.6	F1—C17—F3	116.0 (10)
С1—С6—Н6	119.6	F2—C17—F3	104.0 (9)
O1—C7—N1	120.9 (2)	O2—C17—F3	103.2 (9)
O1—C7—C1	124.2 (2)	C17—O2—C14	119.5 (11)
N1—C7—C1	114.88 (19)	C13—C14′—C15′	124.8 (15)
N2—C8—N4	121.4 (2)	C13—C14′—O2′	113.7 (10)
N2—C8—N1	124.1 (2)	C15'—C14'—O2'	120.6 (16)
N4—C8—N1	114 5 (2)	C16'-C15'-C14'	113 (2)
N1 C9 C10	11.1.3(2) 114.8(2)	C_{16}^{\prime} C_{15}^{\prime} H_{15}^{\prime}	173.3
N1 = C0 = H0A	109.6	$C_{10} - C_{13} - C_{113}$	123.3
$\begin{array}{ccc} \mathbf{N} \mathbf{I} & \mathbf{C} \mathbf{J} & \mathbf{D} \mathbf{A} \end{array}$	100.0	$C_{14} = C_{13} = m_{13}$	123.3
	100.0		120 (2)
NI-C9-H9B	108.6	C15'—C16'—H16'	117.0

С10—С9—Н9В	108.6	C11—C16'—H16'	117.0
H9A—C9—H9B	107.5	F2'—C17'—F3'	115.9 (11)
N3—C10—C9	111.2 (2)	F2'—C17'—F1'	108.1 (9)
N3—C10—H10A	109.4	F3'—C17'—F1'	102.1 (10)
С9—С10—Н10А	109.4	F2'—C17'—O2'	113.3 (11)
N3—C10—H10B	109.4	F3'—C17'—O2'	108.8 (11)
C9—C10—H10B	109.4	F1'—C17'—O2'	107.8 (10)
H10A—C10—H10B	108.0	C17'—O2'—C14'	121.8 (11)
C16—C11—C12	120.0 (6)	C7—N1—C8	121.2 (2)
C16—C11—C16′	7 (2)	C7—N1—C9	116.56 (19)
C12—C11—C16′	116.2 (10)	C8—N1—C9	121.9 (2)
C16—C11—N4	121.6 (6)	C8—N2—C2	118.07 (19)
C12—C11—N4	117.8 (2)	C10—N3—H3A	112 (2)
C16′—C11—N4	125.9 (10)	C10—N3—H3B	116 (2)
C11—C12—C13	121.1 (2)	H3A—N3—H3B	105 (3)
C11—C12—H12	119.4	C8—N4—C11	126.0 (2)
C13—C12—H12	119.4	C8—N4—H4A	115.3 (19)
C14′—C13—C14	6.1 (12)	C11—N4—H4A	115.9 (19)
C14′—C13—C12	118.0 (5)		
C6—C1—C2—N2	-179.8 (2)	C15—C14—O2—C17	-20 (2)
C7—C1—C2—N2	1.9 (3)	C14—C13—C14′—C15′	-112 (10)
C6—C1—C2—C3	-2.0(3)	C12—C13—C14′—C15′	-2 (2)
C7—C1—C2—C3	179.8 (2)	C14—C13—C14′—O2′	79 (9)
N2—C2—C3—C4	178.9 (2)	C12—C13—C14′—O2′	-171.7 (9)
C1—C2—C3—C4	1.0 (4)	C13—C14′—C15′—C16′	8 (3)
C2—C3—C4—C5	0.0 (4)	O2'—C14'—C15'—C16'	176 (2)
C3—C4—C5—C6	0.2 (4)	C14′—C15′—C16′—C11	-7 (4)
C4—C5—C6—C1	-1.2 (4)	C16—C11—C16'—C15'	124 (12)
C2-C1-C6-C5	2.2 (4)	C12—C11—C16'—C15'	1 (3)
C7—C1—C6—C5	-179.6 (2)	N4—C11—C16′—C15′	180 (2)
C2-C1-C7-01	-179.5 (2)	F2'—C17'—O2'—C14'	43.8 (16)
C6-C1-C7-O1	2.3 (4)	F3'—C17'—O2'—C14'	174.2 (14)
C2-C1-C7-N1	1.6 (3)	F1'-C17'-O2'-C14'	-75.8 (15)
C6-C1-C7-N1	-176.6 (2)	C13—C14′—O2′—C17′	-144.6 (11)
N1-C9-C10-N3	78.7 (3)	C15'—C14'—O2'—C17'	45 (2)
C16—C11—C12—C13	-2.0 (10)	O1—C7—N1—C8	176.8 (2)
C16'—C11—C12—C13	5.1 (15)	C1—C7—N1—C8	-4.3 (3)
N4—C11—C12—C13	-173.9 (2)	O1—C7—N1—C9	-9.6 (3)
C11—C12—C13—C14′	-4.5 (8)	C1—C7—N1—C9	169.3 (2)
C11—C12—C13—C14	2.2 (8)	N2-C8-N1-C7	3.8 (4)
C14′—C13—C14—C15	77 (9)	N4C8N1C7	-174.5 (2)
C12—C13—C14—C15	3.3 (19)	N2-C8-N1-C9	-169.5 (2)
C14′—C13—C14—O2	-113 (9)	N4—C8—N1—C9	12.2 (3)
C12—C13—C14—O2	173.4 (8)	C10—C9—N1—C7	100.9 (3)
C13—C14—C15—C16	-10 (3)	C10—C9—N1—C8	-85.5 (3)
O2-C14-C15-C16	-178.0 (19)	N4—C8—N2—C2	178.1 (2)
C14-C15-C16-C11	10 (3)	N1	-0.1 (4)

supporting information

C12—C11—C16—C15	-4 (2)	C1—C2—N2—C8	-2.7 (3)
C16'—C11—C16—C15	-64 (10)	C3—C2—N2—C8	179.4 (2)
N4—C11—C16—C15	168.0 (16)	N2—C8—N4—C11	10.1 (4)
F1—C17—O2—C14	-52.8 (17)	N1—C8—N4—C11	-171.5 (2)
F2-C17-O2-C14	68.0 (15)	C16—C11—N4—C8	39.3 (10)
F3—C17—O2—C14	178.0 (13)	C12—C11—N4—C8	-148.9 (2)
C13—C14—O2—C17	171.3 (11)	C16'—C11—N4—C8	32.2 (16)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C7/C1/C2/N2/C8 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
N3—H3 <i>B</i> …N2 ⁱ	0.86(1)	2.40 (2)	3.150 (3)	145 (3)
N3—H3A···O1 ⁱⁱ	0.86 (1)	2.46 (2)	3.147 (3)	137 (3)
C15—H15…F2	0.93	2.40	2.93 (3)	116
C12—H12····Cg1 ⁱ	0.93	2.88	3.560 (3)	131

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+1; (ii) -*x*+3/2, *y*-1/2, *z*.