

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2,2,2-Trifluoroethyl)isoindoline-1,3dione

Xian-Shu Fu, Xiao-Ping Yu, Wei-Min Wang* and Fang Lin

College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China Correspondence e-mail: clshangzhou@yahoo.com.cn

Received 12 May 2010; accepted 28 May 2010

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.004 Å; R factor = 0.055; wR factor = 0.126; data-to-parameter ratio = 11.0.

In the title compound, $C_{10}H_6F_3NO_2$, the isoindole ring system is planar, the maximum atomic deviation being 0.012 (2) Å. The C-C bond of the trifluoroethyl group is twisted with respect to the isoindole ring by a dihedral angle of 62.58 (17)°. Weak intermolecular C-H···O and C-H···F hydrogen bonding is present in the crystal structure.

Related literature

The title compound is a key intermediate in the synthesis of organic electro-luminescent materials, see: Han & Kay (2005). For the synthesis, see: Valkonen *et al.* (2007); Barchin *et al.* (2002). For a related structure, see: Valkonen *et al.* (2007).

Experimental

b = 9.5370 (19) Å
c = 19.051 (4) Å
$\beta = 95.20 \ (3)^{\circ}$
V = 913.2 (3) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.16 \text{ mm}^{-1}$

Data collection

Rigaku Saturn CCD area-detector	7732 measured reflections
diffractometer	1608 independent reflections
Absorption correction: multi-scan	1009 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku, 2005)	$R_{\rm int} = 0.083$
$T_{\min} = 0.960, T_{\max} = 0.978$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ 146 parameters $wR(F^2) = 0.126$ H-atom parameters constrainedS = 0.97 $\Delta \rho_{max} = 0.43 \text{ e } \text{\AA}^{-3}$ 1608 reflections $\Delta \rho_{min} = -0.50 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C6-H6···O2 ⁱ	0.95	2.52	3.462 (3)	174
C4−H4···O1 ⁱⁱ	0.95	2.60	3.229 (3)	124
$C9 - H9B \cdots O2^{iii}$	0.99	2.54	3.311 (3)	135
C3-H3···F3 ⁱⁱ	0.95	2.62	3.556 (3)	168
$C3-H3\cdots O1^{ii}$	0.95	2.66	3.247 (3)	120

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x + 1, y, z.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2005).

This work was supported by the Major Research Program of Zhejiang Province (No. 2008 C02007–2) and the Zhejiang Provincial Natural Science Foundation of China (No. Y307128).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5001).

References

Barchin, B. M., Cuadro, A. M. & Alvarez-Builla, J. (2002). Synlett, **2**, 343–345.

- Han, K. J. & Kay, K. Y. (2005). J. Korean Chem. Soc. 49, 233–238.
- Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Valkonen, A., Lahtinen, T. & Rissanen, K. (2007). Acta Cryst. E63, 0472-0473.

 $0.26 \times 0.18 \times 0.14~\mathrm{mm}$

T = 113 K

supporting information

Acta Cryst. (2010). E66, o1745 [doi:10.1107/S1600536810020222]

2-(2,2,2-Trifluoroethyl)isoindoline-1,3-dione

Xian-Shu Fu, Xiao-Ping Yu, Wei-Min Wang and Fang Lin

S1. Comment

The title compound, I, is a key intermediate in the synthesis of organic electro-luminescent materials. The emission of light by organic molecules exposed to an electric field has been widely investigated in both an academic and industrial context. (Han & Kay, 2005).

The molecular structure of the title compound is illustrated in Fig. 1. The isoindole ring system is planar, the maximum atomic deviation being 0.012 (2) Å (for the N1 atom). The C9—C10 bond of the trifluoroethyl group is twisted with respect to the isoindole ring by a dihedral angle of 62.58 (17)°, which is similar to the angle 60.3 (5)° found in the related compound 2-(2-iodoethyl)isoindole-1,3-dione (Valkonen *et al.* 2007). Weak intermolecular C—H···O and and C—H···F hydrogen bonding is present in the crystal structure, Table 1, Fig. 2.

S2. Experimental

An acetic acid solution of phthalic anhydride (14.8 g, 100 mmol) and 2,2,2-trifluoroethylamine (7.99 ml, 100 mmol) was refluxed overnight, and then filtered. The crude product was recrystallized from ethyl acetate.

S3. Refinement

H atoms were positioned geometrically and refined as riding with C—H = 0.95 or 0.99 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecule of I showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Crystal packing of I viewed down the *a* axis with hydrogen bonds drawn as dashed lines.

2-(2,2,2-Trifluoroethyl)isoindoline-1,3-dione

Crystal data	
$C_{10}H_6F_3NO_2$ $\beta = 95.20$ ((3)°
$M_r = 229.16$ $V = 913.2$ ((3) Å ³
Monoclinic, $P2_1/c$ $Z = 4$	
Hall symbol: -P 2ybc $F(000) = 4$	64
$a = 5.047 (1) \text{ Å}$ $D_{\rm x} = 1.667$	Mg m ⁻³
b = 9.5370 (19) Å Melting po	oint: 400 K
$c = 19.051 (4) \text{ Å}$ Mo $K\alpha$ rad	iation, $\lambda = 0.71075$ Å

Cell parameters from 2545 reflections $\theta = 2.1 - 28.0^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$

Data collection

Rigaku Saturn CCD area-detector
diffractometer
Radiation source: rotating anode
Multilayer monochromator
ω and φ scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\min} = 0.960, \ T_{\max} = 0.978$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.055$ H-atom parameters constrained $wR(F^2) = 0.126$ $w = 1/[\sigma^2(F_0^2) + (0.0618P)^2]$ S = 0.97where $P = (F_0^2 + 2F_c^2)/3$ 1608 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$ 146 parameters $\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier Extinction coefficient: 0.301 (15) map

T = 113 KPrism, colorless $0.26 \times 0.18 \times 0.14$ mm

7732 measured reflections 1608 independent reflections 1009 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.083$ $\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$ $h = -6 \rightarrow 5$ $k = -11 \rightarrow 11$ $l = -22 \rightarrow 22$

Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles: correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates ar	d isotropic or	equivalent isotropic	displacement	parameters	$(Å^2)$
----------------------------------	----------------	----------------------	--------------	------------	---------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.3850 (3)	0.94405 (16)	0.09725 (9)	0.0441 (5)	
F2	0.7282 (3)	1.04965 (15)	0.06326 (9)	0.0434 (6)	
F3	0.7509 (3)	0.94503 (15)	0.16352 (8)	0.0424 (5)	
01	1.0018 (3)	0.65493 (18)	0.17852 (9)	0.0311 (5)	
O2	0.2715 (3)	0.63673 (19)	0.01945 (9)	0.0327 (6)	
N1	0.6488 (4)	0.6796 (2)	0.09384 (11)	0.0258 (6)	
C1	0.7960 (5)	0.6112 (3)	0.14966 (14)	0.0259 (7)	
C2	0.6475 (5)	0.4813 (3)	0.16200 (13)	0.0249 (7)	
C3	0.7001 (5)	0.3752 (3)	0.21083 (14)	0.0288 (7)	
H3	0.8508	0.3792	0.2445	0.035*	
C4	0.5253 (5)	0.2632 (3)	0.20895 (14)	0.0306 (7)	

H4	0.5581	0.1884	0.2416	0.037*	
C5	0.3044 (5)	0.2576 (3)	0.16073 (15)	0.0316 (7)	
H5	0.1870	0.1798	0.1611	0.038*	
C6	0.2508 (5)	0.3642 (3)	0.11158 (14)	0.0289 (7)	
H6	0.0992	0.3609	0.0782	0.035*	
C7	0.4270 (5)	0.4746 (3)	0.11336 (13)	0.0258 (7)	
C8	0.4261 (5)	0.6019 (3)	0.06811 (14)	0.0264 (7)	
C9	0.7342 (5)	0.8059 (3)	0.06062 (14)	0.0296 (7)	
H9A	0.6593	0.8074	0.0108	0.036*	
H9B	0.9306	0.8055	0.0613	0.036*	
C10	0.6488 (6)	0.9351 (3)	0.09660 (15)	0.0326 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0356 (11)	0.0349 (10)	0.0619 (13)	0.0086 (8)	0.0059 (8)	-0.0084 (8)
F2	0.0571 (13)	0.0238 (10)	0.0492 (12)	-0.0014 (8)	0.0039 (9)	0.0066 (7)
F3	0.0596 (13)	0.0298 (10)	0.0362 (11)	0.0038 (8)	-0.0051 (9)	-0.0039 (7)
01	0.0285 (12)	0.0274 (11)	0.0361 (11)	0.0003 (9)	-0.0034 (9)	-0.0039 (8)
O2	0.0298 (12)	0.0350 (12)	0.0321 (12)	0.0042 (8)	-0.0040 (9)	0.0001 (9)
N1	0.0227 (13)	0.0211 (12)	0.0329 (13)	0.0022 (10)	-0.0022 (10)	0.0009 (10)
C1	0.0249 (16)	0.0237 (15)	0.0288 (15)	0.0043 (13)	0.0003 (12)	-0.0047 (11)
C2	0.0213 (15)	0.0247 (15)	0.0287 (15)	0.0059 (12)	0.0015 (12)	-0.0037 (11)
C3	0.0277 (17)	0.0281 (16)	0.0305 (16)	0.0069 (13)	0.0012 (12)	-0.0020 (12)
C4	0.0331 (18)	0.0248 (16)	0.0347 (17)	0.0052 (13)	0.0081 (13)	0.0022 (12)
C5	0.0283 (17)	0.0250 (16)	0.0423 (18)	0.0009 (13)	0.0073 (14)	-0.0057 (12)
C6	0.0261 (17)	0.0277 (16)	0.0327 (16)	0.0018 (13)	0.0018 (12)	-0.0072 (12)
C7	0.0245 (16)	0.0232 (15)	0.0303 (16)	0.0038 (12)	0.0053 (12)	-0.0040 (12)
C8	0.0230 (16)	0.0255 (15)	0.0305 (16)	0.0057 (12)	0.0011 (12)	-0.0051 (12)
С9	0.0302 (16)	0.0237 (15)	0.0347 (17)	0.0021 (13)	0.0018 (12)	0.0027 (12)
C10	0.0340 (19)	0.0238 (16)	0.0389 (18)	0.0009 (14)	-0.0022 (13)	0.0032 (12)

Geometric parameters (Å, °)

F1-C10	1.335 (3)	С3—Н3	0.9500
F2-C10	1.343 (3)	C4—C5	1.380 (3)
F3—C10	1.334 (3)	C4—H4	0.9500
01—C1	1.205 (3)	C5—C6	1.392 (4)
O2—C8	1.203 (3)	С5—Н5	0.9500
N1—C8	1.398 (3)	C6—C7	1.376 (3)
N1-C1	1.402 (3)	С6—Н6	0.9500
N1—C9	1.445 (3)	C7—C8	1.489 (4)
C1—C2	1.478 (4)	C9—C10	1.492 (4)
C2—C3	1.384 (3)	С9—Н9А	0.9900
C2—C7	1.383 (3)	C9—H9B	0.9900
C3—C4	1.384 (4)		
C8—N1—C1	111.9 (2)	С5—С6—Н6	121.4

C8—N1—C9	123.4 (2)	C6—C7—C2	122.0 (2)
C1—N1—C9	124.2 (2)	C6—C7—C8	129.9 (2)
01—C1—N1	124.1 (2)	C2—C7—C8	108.1 (2)
O1—C1—C2	130.3 (2)	O2—C8—N1	124.6 (2)
N1—C1—C2	105.6 (2)	O2—C8—C7	129.7 (2)
C3—C2—C7	120.7 (2)	N1—C8—C7	105.6 (2)
C3—C2—C1	130.6 (2)	N1-C9-C10	112.2 (2)
C7—C2—C1	108.7 (2)	N1—C9—H9A	109.2
C2—C3—C4	117.7 (2)	С10—С9—Н9А	109.2
С2—С3—Н3	121.2	N1—C9—H9B	109.2
С4—С3—Н3	121.2	С10—С9—Н9В	109.2
C5—C4—C3	121.4 (2)	H9A—C9—H9B	107.9
C5—C4—H4	119.3	F3—C10—F1	106.6 (2)
C3—C4—H4	119.3	F3—C10—F2	106.8 (2)
C4—C5—C6	121.1 (2)	F1-C10-F2	107.0 (2)
C4—C5—H5	119.5	F3—C10—C9	113.3 (2)
С6—С5—Н5	119.5	F1—C10—C9	112.8 (2)
C7—C6—C5	117.1 (2)	F2—C10—C9	110.1 (2)
С7—С6—Н6	121.4		
C8—N1—C1—O1	176.9 (2)	C1—C2—C7—C6	179.5 (2)
C9—N1—C1—O1	4.5 (4)	C3—C2—C7—C8	-179.4 (2)
C8—N1—C1—C2	-2.3 (3)	C1—C2—C7—C8	-0.4 (3)
C9—N1—C1—C2	-174.7 (2)	C1—N1—C8—O2	-178.4 (2)
O1—C1—C2—C3	1.4 (5)	C9—N1—C8—O2	-6.0 (4)
N1—C1—C2—C3	-179.5 (3)	C1—N1—C8—C7	2.0 (3)
O1—C1—C2—C7	-177.6 (3)	C9—N1—C8—C7	174.5 (2)
N1—C1—C2—C7	1.6 (3)	C6—C7—C8—O2	-0.4 (5)
C7—C2—C3—C4	0.1 (4)	C2—C7—C8—O2	179.5 (3)
C1—C2—C3—C4	-178.7 (3)	C6—C7—C8—N1	179.1 (3)
C2—C3—C4—C5	-0.7 (4)	C2-C7-C8-N1	-1.0 (3)
C3—C4—C5—C6	0.7 (4)	C8—N1—C9—C10	100.0 (3)
C4—C5—C6—C7	-0.1 (4)	C1—N1—C9—C10	-88.4 (3)
C5—C6—C7—C2	-0.5 (4)	N1-C9-C10-F3	61.7 (3)
C5—C6—C7—C8	179.4 (3)	N1-C9-C10-F1	-59.5 (3)
C3—C2—C7—C6	0.5 (4)	N1	-178.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
C6—H6…O2 ⁱ	0.95	2.52	3.462 (3)	174
C4—H4···O1 ⁱⁱ	0.95	2.60	3.229 (3)	124
C9—H9 <i>B</i> ···O2 ⁱⁱⁱ	0.99	2.54	3.311 (3)	135
C3—H3···F3 ⁱⁱ	0.95	2.62	3.556 (3)	168
С3—Н3…О1 ^{іі}	0.95	2.66	3.247 (3)	120

Symmetry codes: (i) -x, -y+1, -z; (ii) -x+2, y-1/2, -z+1/2; (iii) x+1, y, z.