organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-4-Hydroxy-2-[(2-hydroxyphenyl)iminiomethyl]phenolate

Naser Eltaher Eltayeb,^a‡ Siang Guan Teoh,^a Hoong-Kun Fun^b*§ and Suchada Chantrapromma^c¶

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Received 17 May 2010; accepted 28 May 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.054; *wR* factor = 0.173; data-to-parameter ratio = 15.0.

The title compound, $C_{13}H_{11}NO_3$, crystallizes in a zwitterionic form and has a *trans* configuration about the C==N bond. The molecule is almost planar, the dihedral angle between the two benzene rings being 4.32 (8)°. The two hydroxy substituents are coplanar with each of their attached benzene rings [r.m.s. deviations of 0.0053 (2) and 0.0052 (2) Å]. An intramolecular N-H···O hydrogen bond formed between the iminium N and the phenolate O atom generates an *S*(6) ring motif. In the crystal, the molecules are linked through O-H···O hydrogen bonds into chains along [110]. Two neighbouring chains are further connected through O-H···O hydrogen bonds in an antiparallel manner. π - π interactions are also observed, with centroid–centroid distances of 3.7115 (19) and 3.743 (2) Å.

Related literature

For background to Schiff bases and their applications, see: Dao *et al.* (2000); Kagkelari *et al.* (2009); Karthikeyan *et al.* (2006); Sriram *et al.* (2006). For related structures, see: Eltayeb *et al.* (2009, 2010*a,b*); Tan & Liu (2009). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986). For bond-length data, see: Allen *et al.* (1987). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

‡ On study leave from Department of Chemistry International University of Africa, Khartoum, Sudan; e-mail: nasertaha90@hotmail.com. § Thomson Reuters ResearcherID: A-3561-2009.

¶ Thomson Reuters ResearcherID: A-5085-2009.

Crystal data

 $C_{13}H_{11}NO_3$ $V = 2020.5 (15) Å^3$
 $M_r = 229.23$ Z = 8

 Monoclinic, C2/c Mo $K\alpha$ radiation

 a = 11.048 (5) Å $\mu = 0.11 \text{ mm}^{-1}$

 b = 8.187 (3) Å T = 100 K

 c = 22.858 (10) Å $0.35 \times 0.12 \times 0.04 \text{ mm}$
 $\beta = 102.242 (13)^{\circ}$ $0.35 \times 0.12 \times 0.04 \text{ mm}$

Data collection

Bruker APEXII DUO CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009) T_{min} = 0.963, T_{max} = 0.996

Refinement

ł

v S

2

$R[F^2 > 2\sigma(F^2)] = 0.054$	198 parameters
VR(P') = 0.173 V = 1.06	All H-atom parameters refined $\Delta \rho_{\text{max}} = 0.48 \text{ e} \text{ Å}^{-3}$
967 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

15107 measured reflections

 $R_{\rm int} = 0.087$

2967 independent reflections

2122 reflections with $I > 2\sigma(I)$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1 O1 \cdots O2^{i}$ $O3 - H1 O3 \cdots O2^{ii}$ $N1 - H1 N1 \cdots O2$ $C13 - H13 \cdots O1^{ii}$	0.90 (3) 0.95 (3) 0.89 (3) 1.00 (2)	1.74 (3) 1.69 (3) 1.83 (3) 2.60 (2)	2.625 (2) 2.633 (2) 2.581 (2) 3.411 (3)	166 (3) 173 (2) 141 (2) 137.8 (18)

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $x - \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (PKIMIA/815002). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the International University of Africa (Sudan) for providing study leave. The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/ PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2453).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.

- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2010a). Acta Cryst. E66, 0934–0935.
- Eltayeb, N. E., Teoh, S. G., Fun, H.-K. & Chantrapromma, S. (2010b). Acta Cryst. E66, o1262–o1263.
- Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065–o2066.
- Kagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279–3283.
- Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). *Bioorg. Med. Chem.* 14, 7482–7489.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). *Bioorg. Med. Chem. Lett.* 16, 2127–2129.
- Tan, G.-X. & Liu, X.-C. (2009). Acta Cryst. E65, 0559.

supporting information

Acta Cryst. (2010). E66, o1536-o1537 [doi:10.1107/S1600536810020295]

(E)-4-Hydroxy-2-[(2-hydroxyphenyl)iminiomethyl]phenolate

Naser Eltaher Eltayeb, Siang Guan Teoh, Hoong-Kun Fun and Suchada Chantrapromma

S1. Comment

Schiff base ligands and their complexes have varieties of biological activities and applications such as antibacterial and antifungal (Karthikeyan *et al.*, 2006), anticancer (Dao *et al.*, 2000), anti-HIV (Sriram *et al.*, 2006) properties as well as being used in coordination chemistry (Kagkelari *et al.*, 2009). Our on going research on Schiff base ligands and their complexes (Eltayeb *et al.*, 2009; 2010*a*,*b*) has lead us to synthesize the title Schiff base ligand (I) and its crystal structure is reported herein.

The molecule of (I) (Fig. 1), $C_{13}H_{11}NO_3$, crystallizes in a zwitterionic form with cationic iminium and anionic enolate. The molecule exists in a *trans* configuration about the C=N bond [1.302 (2)Å] as indicated by the torsion angle C1–N1–C7–C8 of 178.69 (15)°. The molecule is essentially planar with the dihedral angle of 4.32 (8)° between the two benzene rings. The two hydroxy groups are co-planar with each of their attached benzene rings with the r.m.s. of 0.0053 (2) and 0.0052 (2) Å for the seven non hydrogen atoms of C1–C6/O1 and C8–C13/O3, respectively. An intramolecular N–H…O hydrogen bond (Fig. 1; Table 1) between the NH⁺ with the phenolate O⁻ atom generate an S(6) ring motif (Bernstein *et al.*, 1995) which stabilizes the planarity of the molecule. The bond distances are in normal ranges (Allen *et al.*, 1987) and comparable with those of related structures (Eltayeb *et al.*, 2009; 2010*a,b*; Tan & Liu, 2009).

In the crystal packing (Fig. 2), the zwitterionic molecules are linked through O3—H1O3···O2 hydrogen bonds into chains along the [110] direction and two neighboring chains are further connected to each other by O1—H1O1···O2 hydrogen bonds in an antiparallel manner (Table 1). The crystal is stabilized by intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). π - π interactions with centroid···centroid distances of Cg₁···Cg₂ⁱⁱⁱ = 3.7115 (19) Å and Cg₁···Cg₂^{iv} = 3.743 (2) Å were observed (symmetry codes (iii) = -x, 1-y, 1-z and (iv) = 1/2-x, 1/2-y, 1-z); Cg₁ and Cg₂ are the centroids of C1–C6 and C8–C13 benzene rings, respectively.

S2. Experimental

The title compound was synthesized by adding 2,5-dihydroxybenzaldehyde (0.276 g, 2 mmol) to a solution of 2-aminophenol (0.218 g, 2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant red solution was filtered and the filtrate was evaporated to give a red powder product. Red plate-shaped single crystals of the title compound suitable for *x*-ray structure determination were obtained from acetone by slow evaporation in the refrigerator after a few days.

S3. Refinement

All H atoms were located from the difference map and isotropically refined. The highest residual electron density peak is located at 0.76 Å from C8 and the deepest hole is located at 1.46 Å from H1O1.

Figure 1

The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as dashed line.

Figure 2

The crystal packing of the title compound viewed down the c axis. Hydrogen bonds are shown as dashed lines.

(E)-4-Hydroxy-2-[(2-hydroxyphenyl)iminiomethyl]phenolate

Crystal data

C₁₃H₁₁NO₃ $M_r = 229.23$ Monoclinic, C2/c Hall symbol: -C 2yc a = 11.048 (5) Å b = 8.187 (3) Å c = 22.858 (10) Å $\beta = 102.242$ (13)° V = 2020.5 (15) Å³ Z = 8

Data collection

Bruker APEXII DUO CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.963, T_{\max} = 0.996$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
All H-atom parameters refined
$w = 1/[\sigma^2(F_o^2) + (0.1024P)^2 + 0.2914P]$
where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

F(000) = 960

 $\theta = 1.8 - 30.1^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$

T = 100 K

Plate, red

 $R_{\rm int} = 0.087$

 $h = -15 \rightarrow 15$

 $k = -11 \rightarrow 11$

 $l = -32 \rightarrow 32$

 $D_{\rm x} = 1.507 {\rm Mg} {\rm m}^{-3}$

 $0.35 \times 0.12 \times 0.04 \text{ mm}$

 $\theta_{\rm max} = 30.1^\circ, \, \theta_{\rm min} = 1.8^\circ$

15107 measured reflections 2967 independent reflections

2122 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 2967 reflections

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.33647 (12)	0.68246 (15)	0.56400 (5)	0.0181 (3)
H1O1	0.339 (3)	0.792 (4)	0.5686 (14)	0.049 (8)*

O2	0.19184 (11)	0.49929 (14)	0.43502 (5)	0.0172 (3)
O3	-0.15299 (12)	0.01393 (15)	0.36222 (6)	0.0195 (3)
H1O3	-0.212 (3)	0.001 (3)	0.3867 (14)	0.045 (8)*
N1	0.18126 (13)	0.43402 (17)	0.54431 (6)	0.0136 (3)
H1N1	0.213 (2)	0.484 (3)	0.5165 (12)	0.034 (7)*
C1	0.22799 (14)	0.47819 (19)	0.60450 (7)	0.0137 (3)
C2	0.30862 (15)	0.6115 (2)	0.61334 (7)	0.0147 (3)
C3	0.35926 (16)	0.6624 (2)	0.67122 (8)	0.0167 (3)
Н3	0.413 (2)	0.755 (3)	0.6766 (10)	0.024 (6)*
C4	0.32876 (16)	0.5824 (2)	0.71942 (8)	0.0177 (3)
H4	0.363 (2)	0.614 (3)	0.7600 (11)	0.026 (6)*
C5	0.24766 (16)	0.4510(2)	0.71042 (8)	0.0178 (3)
Н5	0.227 (2)	0.393 (3)	0.7447 (11)	0.028 (6)*
C6	0.19743 (16)	0.3972 (2)	0.65277 (7)	0.0161 (3)
H6	0.1437 (19)	0.309 (3)	0.6478 (9)	0.016 (5)*
C7	0.09838 (15)	0.32381 (19)	0.52344 (7)	0.0142 (3)
H7	0.0643 (18)	0.254 (2)	0.5512 (9)	0.013 (5)*
C8	0.05807 (15)	0.29461 (19)	0.46077 (7)	0.0139 (3)
C9	0.10800 (15)	0.38498 (19)	0.41820 (7)	0.0139 (3)
C10	0.06509 (16)	0.3443 (2)	0.35726 (7)	0.0160 (3)
H10	0.101 (2)	0.405 (3)	0.3290 (11)	0.027 (6)*
C11	-0.02034 (15)	0.2222 (2)	0.34016 (7)	0.0156 (3)
H11	-0.049(2)	0.192 (3)	0.2956 (11)	0.025 (6)*
C12	-0.06925 (15)	0.1342 (2)	0.38267 (7)	0.0144 (3)
C13	-0.03095 (15)	0.17081 (19)	0.44220 (7)	0.0146 (3)
H13	-0.066 (2)	0.111 (3)	0.4732 (10)	0.024 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0240 (7)	0.0158 (6)	0.0154 (6)	-0.0033 (5)	0.0063 (5)	0.0012 (4)
O2	0.0194 (6)	0.0153 (6)	0.0168 (6)	-0.0061 (5)	0.0040 (5)	-0.0009 (4)
O3	0.0194 (6)	0.0202 (6)	0.0198 (6)	-0.0099 (5)	0.0062 (5)	-0.0055 (5)
N1	0.0137 (6)	0.0136 (6)	0.0131 (6)	-0.0001 (5)	0.0018 (5)	0.0008 (5)
C1	0.0141 (7)	0.0136 (7)	0.0128 (7)	0.0030 (6)	0.0014 (6)	-0.0005 (5)
C2	0.0157 (7)	0.0140 (7)	0.0146 (7)	0.0013 (6)	0.0037 (6)	0.0021 (6)
C3	0.0169 (8)	0.0139 (7)	0.0182 (8)	-0.0009 (6)	0.0014 (6)	-0.0019 (6)
C4	0.0205 (8)	0.0174 (8)	0.0139 (7)	0.0026 (6)	0.0011 (6)	-0.0008 (6)
C5	0.0203 (8)	0.0185 (8)	0.0150 (7)	0.0031 (7)	0.0045 (6)	0.0021 (6)
C6	0.0168 (8)	0.0151 (8)	0.0163 (8)	-0.0005 (6)	0.0036 (6)	0.0016 (6)
C7	0.0134 (7)	0.0131 (7)	0.0164 (7)	0.0011 (6)	0.0037 (6)	0.0015 (6)
C8	0.0133 (7)	0.0130 (7)	0.0152 (7)	-0.0002 (6)	0.0025 (6)	-0.0010 (6)
С9	0.0119 (7)	0.0127 (7)	0.0172 (7)	0.0002 (6)	0.0032 (6)	-0.0001 (6)
C10	0.0176 (8)	0.0159 (7)	0.0153 (7)	-0.0014 (6)	0.0049 (6)	0.0010 (6)
C11	0.0143 (7)	0.0175 (7)	0.0151 (7)	0.0004 (6)	0.0035 (6)	-0.0011 (6)
C12	0.0125 (7)	0.0123 (7)	0.0183 (8)	-0.0021 (6)	0.0031 (6)	-0.0016 (6)
C13	0.0155 (7)	0.0134 (7)	0.0158 (7)	-0.0012 (6)	0.0052 (6)	0.0010 (6)

Geometric parameters (Å, °)

01—C2	1.3608 (19)	C5—C6	1.389 (2)
01—H101	0.91 (3)	С5—Н5	0.98 (2)
O2—C9	1.316 (2)	С6—Н6	0.93 (2)
O3—C12	1.364 (2)	C7—C8	1.427 (2)
O3—H1O3	0.95 (3)	С7—Н7	0.99 (2)
N1—C7	1.302 (2)	C8—C13	1.413 (2)
N1—C1	1.410(2)	C8—C9	1.423 (2)
N1—H1N1	0.89 (3)	C9—C10	1.413 (2)
C1—C6	1.389 (2)	C10—C11	1.373 (2)
C1—C2	1.396 (2)	C10—H10	0.97 (2)
C2—C3	1.387 (2)	C11—C12	1.406 (2)
C3—C4	1.383 (2)	C11—H11	1.03 (2)
С3—Н3	0.96 (2)	C12—C13	1.370 (2)
C4—C5	1.387 (3)	C13—H13	1.00 (2)
C4—H4	0.96 (2)		
C2 01 U101	100.4(10)	C1 C6 116	122 1 (12)
$C_2 = 01 = 0101$	109.4 (19)	C1 - C0 - H0	122.1(13)
C12 - 03 - H103	112.0(17) 128.22(15)	N1 = C7 = H7	121.90(13) 120.0(12)
C/-NI-CI	120.22(13) 114.2(17)	N1 = C / = 11 / C R = C R = 11 / C R = C R = C R = 11 / C R = C R = 11 / C R = C R = 11 / C R = 1	120.0(12)
C = NI = HINI	114.2(17) 117.6(17)	C_{0} C_{0} C_{0}	110.0(12) 120.80(14)
$CI = NI = \Pi I NI$	117.0(17) 120.88(14)	$C_{13} = C_{8} = C_{7}$	120.89(14) 118.07(14)
$C_0 - C_1 - C_2$	120.88(14) 123.52(15)	$C_{13} = C_{3} = C_{7}$	110.07 (14) 121 02 (15)
C_{0} C_{1} N_{1}	125.52(15) 115.60(14)	$C_{2} = C_{3} = C_{1}$	121.02(13) 121.61(14)
$C_2 - C_1 - N_1$	113.00(14) 123.09(15)	02 - 02 - 010	121.01(14) 121.30(14)
$01 - C_2 - C_3$	125.09(15) 117.61(14)	$C_{10} C_{9} C_{8}$	121.39(14) 116.00(15)
C_{3} C_{2} C_{1}	119.28 (15)	$C_{10} - C_{20} - C_{30}$	121 25 (15)
C_{4} C_{2} C_{2} C_{2}	120.03 (16)	$C_{11} = C_{10} = C_{10}$	121.23(13) 122.8(14)
C4—C3—H3	120.03(10) 121.6(14)	C9-C10-H10	1122.0(14)
C_{2} C_{3} H_{3}	121.0(14) 1183(14)	C10-C11-C12	121 19 (15)
$C_2 = C_3 = C_4 = C_5$	120.51(15)	C10-C11-H11	121.19(13) 120.5(12)
$C_3 - C_4 - H_4$	120.01(10)	C12 - C11 - H11	1183(12)
C5-C4-H4	122.0(14) 117 5 (14)	03-C12-C13	122.86 (14)
C4 - C5 - C6	120 17 (16)	03-C12-C11	117 72 (15)
C4C5H5	120.17(10) 120.3(14)	C13 - C12 - C11	119.42 (15)
С1 С5 Н5	120.5(11) 119.5(14)	C12 - C13 - C8	120.25(14)
$C_{5} - C_{6} - C_{1}$	119.12 (16)	C12 - C13 - H13	120.23 (11)
C5-C6-H6	119.12 (10)	C8-C13-H13	1190(13)
C7—N1—C1—C6	5.5 (3)	N1—C7—C8—C9	0.4 (2)
C7—N1—C1—C2	-174.41 (15)	C13—C8—C9—O2	-179.28 (14)
C6-C1-C2-O1	178.56 (15)	C7—C8—C9—O2	-0.7 (2)
N1-C1-C2-01	-1.6 (2)	C13—C8—C9—C10	-0.4 (2)
C6—C1—C2—C3	0.5 (2)	C7—C8—C9—C10	178.20 (15)
N1—C1—C2—C3	-179.68 (14)	O2—C9—C10—C11	178.48 (15)
O1—C2—C3—C4	-178.66 (15)	C8—C9—C10—C11	-0.4 (2)

supporting information

C1—C2—C3—C4	-0.7 (2)	C9—C10—C11—C12	0.6 (3)
C2—C3—C4—C5	0.0 (3)	C10—C11—C12—O3	-179.51 (15)
C3—C4—C5—C6	0.8 (3)	C10—C11—C12—C13	0.0 (2)
C4—C5—C6—C1	-1.0 (3)	O3—C12—C13—C8	178.68 (14)
C2-C1-C6-C5 N1-C1-C6-C5 C1-N1-C7-C8 N1-C7-C8-C13	0.4 (2) -179.48 (15) 178.69 (15) 179.06 (14)	C11—C12—C13—C8 C9—C8—C13—C12 C7—C8—C13—C12	-0.8 (2) 1.0 (2) -177.65 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1 <i>0</i> 1···O2 ⁱ	0.90 (3)	1.74 (3)	2.625 (2)	166 (3)
O3—H1 <i>O</i> 3···O2 ⁱⁱ	0.95 (3)	1.69 (3)	2.633 (2)	173 (2)
N1—H1 <i>N</i> 1···O2	0.89 (3)	1.83 (3)	2.581 (2)	141 (2)
C13—H13…O1 ⁱⁱ	1.00 (2)	2.60 (2)	3.411 (3)	137.8 (18)

Symmetry codes: (i) -x+1/2, -y+3/2, -z+1; (ii) x-1/2, y-1/2, z.