Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

2-(3-Bromo-4-methoxyphenyl)acetic acid

Ilia A. Guzei,* Alan R. Gunderson and Nicholas J. Hill

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
Correspondence e-mail: iguzei@chem.wisc.edu

Received 14 May 2010; accepted 27 May 2010
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.026 ; w R$ factor $=0.073$; data-to-parameter ratio $=14.4$.

The title compound $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$, was synthesized by the regioselective bromination of 4-methoxyphenylacetic acid using bromine in acetic acid in a 84% yield. In the molecular structure, the methoxy group is almost coplanar with the phenyl ring within $0.06 \AA$; the acetic acid substituent is tilted by $78.15(7)^{\circ}$ relative to the ring. The $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles at the OMe , acetyl and Br substituents are 118.2 (2), 118.4 (2) and $121.5(2)^{\circ}$, respectively, indicating that the Br atom is electronwithdrawing, whereas the other substituents possess electrondonating properties. In the crystal, the molecules form centrosymmetric strongly $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded dimers of the type $R_{2}^{2}(8)$.

Related literature

For the use of the title compound in the synthesis of natural products such as Combretastatin A-4, see: Zou et al. (2008); for Verongamine, see: Wasserman \& Wang (1998) and for model Vancomycin-type systems, see: Ghosh et al. (2009). The iodoanalogue featured in the synthesis of (+)-Phleichrome and (+)Calphostin D, see: Morgan et al. (2010). For the synthesis of the title compound, see: Coutts et al., (1970); Morgan et al., (2007); Zou et al. (2008); Ghosh et al. (2009). For background for our program to introduce natural product synthesis, crystal growing techniques and single crystal X-ray diffraction data analysis into the undergraduate curriculum, see: Findlater et al., (2010); Guzei et al., (2010a). For a discussion of hydrogenbonding motif assignment, see: Guzei et al. (2010b). Outlier reflections were omitted based on the statistics test described by Prince \& Nicholson (1983) and Rollett (1988), and implemented in $F C F_{-}$filter (Guzei, 2007).

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$
$V=930.67(5) \AA^{3}$
$M_{r}=245.06$
Monoclinic, $P 2_{1} / c$
$a=12.5022$ (4) \AA
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$b=8.2690$ (2) \AA
$\mu=5.81 \mathrm{~mm}^{-1}$
$c=9.0199$ (3) A
$T=120 \mathrm{~K}$
$\beta=93.573(1)^{\circ}$
$0.46 \times 0.37 \times 0.19 \mathrm{~mm}$

Data collection

Bruker SMART APEXII areadetector diffractometer
Absorption correction: analytical (SADABS; Bruker, 2007)
$T_{\text {min }}=0.177, T_{\text {max }}=0.398$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026 \quad 120$ parameters
$w R\left(F^{2}\right)=0.073 \quad$ H-atom parameters constrained
$S=1.08$
1725 reflections
$\Delta \rho_{\max }=0.86 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.47 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.84	1.82	$2.661(2)$	179

Symmetry code: (i) $-x+1,-y-1,-z$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2206).

References

Bruker (2007). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Coutts, I. G. C., Durbin, A. K. \& Schofield, K. (1970). Aust. J. Chem. 23, 791800.

Findlater, M., Hill, N. J. \& Cowley, A. H. (2010). J. Chem. Crystallogr. 40, 6466.

organic compounds

Ghosh, S., Kumar, A. S., Mehta, G. N. \& Soundararajan, R. (2009). Synthesis, pp. 3322-3326.
Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of WisconsinMadison, Madison, Wisconsin, USA.
Guzei, I. A., Hill, N. J. \& Van Hout, M. R. (2010a). Acta Cryst. E66, o40-o41. Guzei, I. A., Spencer, L. C., Ainooson, M. K. \& Darkwa, J. (2010b). Acta Cryst. C66, m89-m96.
Morgan, B. J., Mulrooney, C. A., O’Brien, E. M. \& Kozlowski, M. C. (2010). J. Org. Chem. 75, 30-43.

Morgan, B. J., Xie, X., Phuan, P.-W. \& Kozlowski, M. C. (2007). J. Org. Chem. 72, 6171-6182.
Prince, E. \& Nicholson, W. L. (1983). Acta Cryst. A39, 407-410.
Rollett, J. S. (1988). Crystallographic Computing, edited by N. W. Isaacs \& M. R. Taylor, Vol. 4, pp. 149-166. Oxford University Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wasserman, H. H. \& Wang, J. (1998). J. Org. Chem. 63, 5581-5586.
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.
Zou, Y., Xiao, C.-F., Zhong, R.-Q., Wei, W., Hunag, W.-M. \& He, S.-J. (2008). J. Chem. Res. pp. 354-356.

supporting information

Acta Cryst. (2010). E66, o1555-o1556 [doi:10.1107/S1600536810020143]

2-(3-Bromo-4-methoxyphenyl)acetic acid

Ilia A. Guzei, Alan R. Gunderson and Nicholas J. Hill

S1. Comment

Recently, we have been pursuing simple organic and organometallic compounds as candidates for the introduction of (a) natural product synthesis into the undergraduate teaching laboratory and (b) crystal growing techniques and single crystal X-ray diffraction data analysis into the undergraduate curriculum (Findlater et al., 2010; Guzei at al., 2010a). The 3-bromo-4-methoxyphenylacetic acid I has been employed in the synthesis of natural products such as Combretastatin A-4, (Zou et al., 2008), Verongamine (Wasserman \& Wang, 1998) and model Vancomycin-type systems (Ghosh et al., 2009). The iodo-analogue features in the synthesis of the perylenequinones $(+)$-Phleichrome and $(+)$-Calphostin D, (Morgan et al., 2010). Our interest in I stems from its role in the synthesis of the antimitotic compound Combretastatin A-4 via a simple Perkin condensation/decarboxylation sequence (Zou et al., 2008). This concise route, employing commercially available starting materials, followed by the facile purification of \mathbf{I} to furnish high quality crystals makes it ideal in both regards. Compound I is readily synthesized by the regioselective bromination of 4-methoxyphenylacetic acid using bromine in acetic acid (Coutts et al., 1970; Morgan et al., 2007; Zou et al., 2008; Ghosh et al., 2009). Compound I was isolated and characterized by NMR, mp, and single-crystal X-ray analysis. There are three main structural aspects students should identify. First, the positions of the alkyl substituents on the phenyl ring. The methoxy-group is almost coplanar with the ring, torsion angle $\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$ is $1.2(3)^{\circ}$, whereas the acetic acid terminus is nearly perpendicular to the ring with the dihedral angle between the planes defined by atoms $\mathrm{C} 1-\mathrm{C} 6$ and atoms $\mathrm{C} 4, \mathrm{C} 8, \mathrm{C} 9, O 2, O 3$ spanning $78.15(7)^{\circ}$. Secondly, the distortions of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles from 120° at the substituents of the phenyl ring reflect their electronic properties. The stronger the electron-withdrawing power of a substituent, the larger the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle. The angles at $\mathrm{OMe}, A c$ and Br are 118.2 (2), 118.4 (2), and 121.5 (2) ${ }^{\circ}$, respectively, indicating that the Br atom is electron-withdrawing, whereas the other substituents possess electron-donating properties. Of course, the magnitude of the values is affected by the neighbouring substituents. Thirdly, the molecules of I form centrosymmetric strongly hydrogen-bonded dimers in the lattice. The hydrogen bonding motif is $R_{2}{ }^{2}(8)$. A topical discussion of hydrogen bonding motif assignment was published by Guzei et al., 2010b.

S2. Experimental

To a stirred solution of 4-methoxyphenylacetic acid ($10 \mathrm{~g}, 60.2 \mathrm{mmol}$) in acetic acid $(60 \mathrm{ml})$ was added a solution of bromine ($9.62 \mathrm{~g}, 3.1 \mathrm{ml}, 60.2 \mathrm{mmol}$) in acetic acid (30 ml) slowly dropwise over 30 min . The mixture was stirred at room temperature (60 min) and then poured into 500 ml ice-water. The resultant pale yellow, turbid mixture was stirred (10 min), filtered, rinsed with ice-water ($3 \times 10 \mathrm{ml}$), air-dried (20 min) and recrystallized from hot xylene to give a white crystalline powder. Yield $12.41 \mathrm{~g}, 84 \%$. M.p. $386.3-387.2 \mathrm{~K}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.56\left(2 H, \mathrm{~s}, \mathrm{CH}_{2}\right) ; 3.89\left(3 H, \mathrm{~s}, \mathrm{OCH}_{3}\right), 6.86(1 \mathrm{H}, \mathrm{d}), 7.19(1 \mathrm{H}, \mathrm{dd}), 7.48(1 \mathrm{H}, \mathrm{d}) .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 39.9 ; 56.5 ; 111.9 ; 112.2 ; 127.0 ; 129.6 ; 134.6 ; 155.5 ; 178.0$.

S3. Refinement

All H -atoms were placed in idealized locations. The $\mathrm{C}-\mathrm{H}$ distances were $0.98 \AA$ for the methyl group, $0.99 \AA$ the methylene group, $0.95 \AA$ for the $s p^{2}$-hybridized atoms; the $\mathrm{O}-\mathrm{H}$ distance was fixed at $0.84 \AA$. All H atoms were refined as riding with thermal displacement coefficients $U_{\mathrm{iso}}(\mathrm{H})$ set to $1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$ for the methyl- and hydroxyl-groups and to to $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the CH - and CH_{2}-groups.
The outlier reflections were omitted based on the statistics test described by Prince \& Nicholson, (1983) and Rollett, (1988), and implemented in program FCF_filter (Guzei, 2007). The number of omitted outliers is 4.

Figure 1

Molecular structure of I with the atom numbering scheme. The displacement ellipsoids are shown at 50% probability level.

2-(3-Bromo-4-methoxyphenyl)acetic acid

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$

$M_{r}=245.06$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=12.5022$ (4) \AA
$b=8.2690$ (2) \AA
$c=9.0199$ (3) \AA
$\beta=93.573(1)^{\circ}$
$V=930.67(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=488 \\
& D_{\mathrm{x}}=1.749 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point }=386.3-387.2 \mathrm{~K} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54178 \AA \\
& \text { Cell parameters from } 9563 \text { reflections } \\
& \theta=3.5-69.5^{\circ} \\
& \mu=5.81 \mathrm{~mm}^{-1} \\
& T=120 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.46 \times 0.37 \times 0.19 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEXII area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$0.5^{\circ} \omega$ and $0.5^{\circ} \varphi$ scans
Absorption correction: analytical
(SADABS; Bruker, 2007)
$T_{\min }=0.177, T_{\max }=0.398$

> 12598 measured reflections
> 1725 independent reflections
> 1708 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.030$
> $\theta_{\max }=69.5^{\circ}, \theta_{\min }=3.5^{\circ}$
> $h=-14 \rightarrow 15$
> $k=-9 \rightarrow 10$
> $l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.073$
$S=1.08$
1725 reflections
120 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $\mathrm{w} R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * U_{\mathrm{eq}}$
Br1	$0.253622(18)$	$0.20274(3)$	$0.38506(3)$	$0.02281(12)$
O1	$0.05071(12)$	$0.0202(2)$	$0.32075(17)$	$0.0186(3)$
O2	$0.40281(14)$	$-0.3902(2)$	$0.05910(19)$	$0.0234(4)$
O3	$0.50409(14)$	$-0.3283(2)$	$-0.12886(19)$	$0.0229(4)$

H3	0.5326	-0.4178	-0.1071	0.034^{*}
C1	$0.12214(17)$	$-0.0244(3)$	$0.2209(2)$	$0.0151(4)$
C2	$0.22340(18)$	$0.0476(3)$	$0.2339(2)$	$0.0148(4)$
C3	$0.30189(17)$	$0.0087(3)$	$0.1381(2)$	$0.0160(4)$
H3A	0.3701	0.0593	0.1493	0.019^{*}
C4	$0.28118(18)$	$-0.1041(3)$	$0.0255(2)$	$0.0172(5)$
C5	$0.1810(2)$	$-0.1765(3)$	$0.0129(3)$	$0.0201(5)$
H5	0.1661	-0.2542	-0.0631	0.024^{*}
C6	$0.10183(18)$	$-0.1383(3)$	$0.1087(3)$	$0.0181(5)$
H6	0.0339	-0.1898	0.0977	0.022^{*}
C7	$-0.05187(18)$	$-0.0591(3)$	$0.3100(3)$	$0.0220(5)$
H7A	-0.0887	-0.0346	0.2135	0.033^{*}
H7C	-0.0952	-0.0204	0.3896	0.033^{*}
H7B	-0.0416	-0.1762	0.3195	0.033^{*}
C8	$0.3654(2)$	$-0.1464(3)$	$-0.0810(3)$	$0.0209(5)$
H8A	0.4175	-0.0564	-0.0831	0.025^{*}
H8B	0.3306	-0.1576	-0.1821	0.025^{*}
C9	$0.42502(19)$	$-0.3007(3)$	$-0.0408(3)$	$0.0170(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.02043(17)$	$0.02308(18)$	$0.02445(17)$	$-0.00116(9)$	$-0.00227(11)$	$-0.00996(9)$
O1	$0.0164(7)$	$0.0206(8)$	$0.0193(8)$	$-0.0018(6)$	$0.0047(6)$	$-0.0044(6)$
O2	$0.0309(9)$	$0.0194(8)$	$0.0214(9)$	$0.0053(7)$	$0.0119(7)$	$0.0032(7)$
O3	$0.0222(9)$	$0.0241(9)$	$0.0236(9)$	$0.0068(7)$	$0.0096(7)$	$0.0059(7)$
C1	$0.0169(10)$	$0.0131(10)$	$0.0152(10)$	$0.0020(8)$	$0.0009(8)$	$0.0024(8)$
C2	$0.0193(10)$	$0.0110(10)$	$0.0137(10)$	$0.0010(8)$	$-0.0029(8)$	$-0.0009(8)$
C3	$0.0163(10)$	$0.0137(10)$	$0.0180(10)$	$0.0004(8)$	$0.0005(8)$	$0.0035(8)$
C4	$0.0210(11)$	$0.0152(11)$	$0.0157(11)$	$0.0040(9)$	$0.0041(8)$	$0.0040(8)$
C5	$0.0252(12)$	$0.0181(11)$	$0.0169(11)$	$0.0004(9)$	$0.0013(9)$	$-0.0035(9)$
C6	$0.0189(11)$	$0.0165(11)$	$0.0188(11)$	$-0.0030(9)$	$0.0005(9)$	$-0.0020(9)$
C7	$0.0160(11)$	$0.0241(12)$	$0.0262(12)$	$-0.0026(9)$	$0.0028(9)$	$-0.0010(10)$
C8	$0.0246(12)$	$0.0211(12)$	$0.0176(11)$	$0.0032(10)$	$0.0072(9)$	$0.0016(9)$
C9	$0.0178(11)$	$0.0188(12)$	$0.0145(11)$	$-0.0014(8)$	$0.0019(9)$	$-0.0039(8)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 2$	$1.893(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.386(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.359(3)$	$\mathrm{C} 4-\mathrm{C} 8$	$1.510(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.438(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.390(3)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.212(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{O} 3-\mathrm{C} 9$	$1.326(3)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{O} 3-\mathrm{H} 3$	0.8400	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9800
$\mathrm{C} 1-\mathrm{C} 6$	$1.394(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9800
$\mathrm{C} 1-\mathrm{C} 2$	$1.397(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9800
$\mathrm{C} 2-\mathrm{C} 3$	$1.385(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.510(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.392(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9900

C3-H3A	0.9500	C8-H8B		0.9900
C1-O1-C7	116.85 (18)	C5-C6-H6		120.0
C9-O3-H3	109.5	C1-C6-H6		120.0
O1-C1-C6	124.6 (2)	O1-C7-H7A		109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.3 (2)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$		109.5
C6-C1-C2	118.2 (2)	H7A-C7-H7C		109.5
C3-C2-C1	121.5 (2)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$		109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 1$	119.28 (17)	H7A-C7-H7B		109.5
C1-C2-Br1	119.23 (17)	H7C-C7-H7B		109.5
C2-C3-C4	120.3 (2)	C4-C8-C9		113.34 (19)
C2-C3-H3A	119.9	C4-C8-H8A		108.9
C4-C3-H3A	119.9	C9-C8-H8A		108.9
C5-C4-C3	118.4 (2)	C4-C8-H8B		108.9
C5-C4-C8	120.7 (2)	C9-C8-H8B		108.9
C3-C4-C8	120.9 (2)	H8A-C8-H8B		107.7
C4-C5-C6	121.7 (2)	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{O} 3$		123.7 (2)
C4-C5-H5	119.2	O2-C9-C8		124.2 (2)
C6-C5-H5	119.2	O3-C9-C8		112.16 (19)
C5-C6-C1	120.0 (2)			
C7-O1-C1-C6	1.2 (3)	C3-C4-C5-C6		0.4 (3)
C7-O1-C1-C2	-177.70 (19)	C8-C4-C5-C6		-179.3 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	179.39 (19)	C4-C5-C6-C1		0.1 (4)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.4 (3)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$		-179.4 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	-1.0 (3)	C2- $21-\mathrm{C} 6-\mathrm{C} 5$		-0.5 (3)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	180.00 (17)	C5-C4-C8-C9		-81.5 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.1 (3)	C3-C4-C8-C9		98.8 (3)
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-179.53 (17)	C4-C8-C9-O2		5.8 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-0.5 (3)	$\mathrm{C} 4-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 3$		-175.0 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 8$	179.2 (2)			
Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)				
$\underline{D-H \cdots A}$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots 2^{\text {i }}$	0.84	1.82	2.661 (2)	179

Symmetry code: (i) $-x+1,-y-1,-z$.

