metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[μ_6 -pyridine-2,4-dicarboxylatobarium1

Qi Shuai,^a* Xiao-Nong Zhao,^a Li Zhao^b and Fan Hu^c

^aCollege of Science, Northwest A&F University, Yangling 712100, Shanxi Province, People's Republic of China, ^bHospital, Northwest A&F University, Yangling 712100, Shanxi Province, People's Republic of China, and ^cStudents Service, Northwest A&F University, Yangling 712100, Shanxi Province, People's Republic of China Correspondence e-mail: shuaiqi@nwsuaf.edu.cn

Received 10 May 2010; accepted 17 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.018; wR factor = 0.048; data-to-parameter ratio = 14.0.

In the title complex, $[Ba(C_7H_3NO_4)]_n$, the coordination geometry around the Ba^{II} ion can be described as a distorted bicapped trigonal-prismatic BaNO7 arrangement. The pyridine-2,4-dicarboxylic acid ligands exhibit a new coordination mode. Adjacent metal centers are linked by the O atoms of the pyridine-2,4-dicarboxylic acid ligands, and then form a threedimensional supramolecular polymeric framework.

Related literature

For related structures, see: Frisch & Cahill (2006); Huang et al. (2007); Li et al. (2008); Liang et al. (2002); Noro et al. (2002); Soleimannejad et al. (2009); Zhang (2005).

Experimental

Crystal data

$[Ba(C_7H_3NO_4)]$	V = 1477.3 (2) Å ³
$M_r = 302.44$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 11.7570 (11) Å	$\mu = 5.35 \text{ mm}^{-1}$
b = 7.2121 (7) Å	T = 296 K
c = 17.4547 (16) Å	$0.37 \times 0.34 \times 0.07 \text{ mm}$
$\beta = 93.471 \ (1)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.325, T_{\max} = 0.783$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.048$ S = 1.031662 reflections

4192 measured reflections 1662 independent reflections 1547 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.018$

119 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.70 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.45$ e Å⁻³

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Scientific Research Foundation of Northwest A&F University (grant No. Z111020828).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2031).

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Frisch, M. & Cahill, C. L. (2006). Dalton Trans. pp. 4679-4690.
- Huang, Y. G., Zhou, Y., Yuan, D. Q., Wu, B. L., Jiang, F. L. & Hong, M. C. (2007). J. Mol. Struct. 830, 85-93.
- Li, Z. G., Wang, G. H., Jia, H. Q., Hu, N. H. & Xu, J. W. (2008). CrystEngComm, 10, 173-176.
- Liang, Y. C., Cao Hong, M. C., Sun, D. F., Zhao, Y. J., Weng, J. B. & Wang, R. H. (2002). Inorg. Chem. Commun. 5, 366-368.
- Noro, S., Kitagawa, S., Yamashita, M. & Wada, T. (2002). CrystEngComm, 4, 162 - 164
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soleimannejad, J., Mohammadzadeh, Y., Aghabozorg, H. & Derikvand, Z. (2009). Acta Cryst. E65, m922.
- Zhang, X. M. (2005). Inorg. Chim. Acta, 358, 1865-1872.

supporting information

Acta Cryst. (2010). E66, m832 [doi:10.1107/S1600536810023457]

Poly[µ₆-pyridine-2,4-dicarboxylato-barium]

Qi Shuai, Xiao-Nong Zhao, Li Zhao and Fan Hu

S1. Comment

Complex of Sr^{II} ion with pyridine-2,4-dicarboxylic acid, $[Sr(C_7H_3NO_4)(H_2O)_2]_n$, has been previously studied (Soleimannejad *et al.*, 2009), which is a two-dimensional polymer.

Here we report a complex (I) assembled by alkaline earth metal Ba^{II} ion with pyridine-2,4-dicarboxylic acid ligand. The formula for the complex is $[Ba(C_7H_3NO_4)]_n$, X-ray crystal analyse reveals that the pyridine-2,4-dicarboxylic acid ligands in the complex are completely deprotonated, which is the same with the complex of $[Sr(C_7H_3NO_4)(H_2O_2)]_n$.

In the title complex, the asymmetric unit consists of one Ba^{II} ion and one pyridine-2,4-dicarboxylate. The coordination geometry around Ba^{II} ion (Fig. 1) could be described as a distorted bicapped trigonal prism arrangement with coordination number of 8, where N1, O2B and O4D form the top plane of the trigonal prism, and the bottom plane is completed by O3A, O4E, and O1C, while O1 and O3E capped two quadrilateral faces formed by N1, O3A, O1C, O4D and O2B, O4E, O1C, O4D, respectively. All the coordinated atoms in the title complex are oxygen atoms and nitrogen atoms of pyridine-2,4-dicarboxylic acid ligands, which is different from the complex of $[Sr(C_7H_3NO_4)(H_2O_2)]_n$, oxygen atoms of water molecules also take part in the coordination with metal centers. The bond length of Ba-Ocarboxylate bonds range from 2.706 (2) to 2.8941 (19) Å, which compare well with the mean value determined from the CSD [2.798 (7) Å for Ba—O_{carboxylate} bond](Table 1). The coordination mode (Fig. 2) of pyridine-2,4-dicarboxylic acid ligands can be classified as μ_6 -($\kappa^8 N$, O¹: O¹: O²: O³: O³: O⁴: O⁴), that is, two 4-position carboxylate oxygen atoms (O3 and O4) coordinate to three Ba^{II} ions, one of the 2-position carboxylate oxygen atoms (O1) coordinates to two Ba^{II} ions, at the same time, this oxygen atom chelate a Ba^{II} ion with the pyridyl nitrogen (N1). The other 2-position oxygen atom (O2) coordinates to one Ba^{II} ion. This coordination mode is not observed in previous reports (Soleimannejad *et al.*, 2009; Huang et al., 2007; Zhang, 2005; Liang et al., 2002; Li et al., 2008; Frisch et al., 2006; Noro et al., 2002). The adjacent metal centers are linked by the oxygen and nitrogen atoms of pyridine-2,4-dicarboxylic acid ligands, and then form a three-dimensional supramolecular polymeric framework (Fig. 3), while in the complex of $Sr(C_7H_3NO_4)(H_2O)_2$ (Soleimannejad et al., 2009), the three-dimensional structure is constructed by non-covalent interactions consisting of O —H···O hydrogen bonds and π - π stacking interactions.

S2. Experimental

A mixture of barium chloride dihydrate (0.0244 g, 0.1 mmol), sodium hydroxide (0.0080 g, 0.2 mmol), pyridine-2,4-dicarboxylic acid (0.0167 g, 0.1 mmol), and H_2O (3 mL) was placed in a Parr Teflon-lined stainless stell vessel (25 ml), and then the vessel was sealed and heated at 443.15 K for 4 days. Then the vessel was cooled to 373.15 K at a rate of 5 K h⁻¹ and slowly cooled to room temperature. Colorless, rectangular single crystals suitable for X-ray diffraction were obtained.

Figure 1

Coordination environment of Ba^{II} ion in the title complex. Non-hydrogen atoms are shown as 30% probability ellipsoids. Hydrogen atoms are omitted for clarity. Symmetry codes: (A) -x + 1, -y, -z + 1; (B) x - 1/2, y + 1/2, z; (C) -x + 1, y, -z + 1/2; (D) -x + 1, -y + 1, -z + 1; (E) x - 1/2, -y + 1/2, z - 1/2.

Figure 2

Coordination mode of pyridine-2,4-dicarboxylic acid ligands in the title complex. Non-hydrogen atoms are shown as 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure 3

View of three-dimensional framework along b axis in the title complex.

Poly[µ₆-pyridine-2,4-dicarboxylato-barium]

Crystal data

 $\begin{bmatrix} \text{Ba}(\text{C}_7\text{H}_3\text{NO}_4) \end{bmatrix} \\ M_r = 302.44 \\ \text{Monoclinic, } C2/c \\ \text{Hall symbol: -C 2yc} \\ a = 11.7570 (11) \text{ Å} \\ b = 7.2121 (7) \text{ Å} \\ c = 17.4547 (16) \text{ Å} \\ \beta = 93.471 (1)^\circ \\ V = 1477.3 (2) \text{ Å}^3 \\ Z = 8 \\ \end{bmatrix}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.325, \ T_{\max} = 0.783$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.018$ H-atom parameters constrained $wR(F^2) = 0.048$ $w = 1/[\sigma^2(F_o^2) + (0.0287P)^2 + 1.379P]$ S = 1.03where $P = (F_0^2 + 2F_c^2)/3$ 1662 reflections $(\Delta/\sigma)_{\rm max} = 0.002$ 119 parameters $\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL, Primary atom site location: structure-invariant direct methods $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Secondary atom site location: difference Fourier Extinction coefficient: 0.00237 (13) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.332689 (13)	0.35356 (2)	0.305017 (8)	0.01561 (9)	
0.44887 (19)	0.2899 (3)	0.45739 (13)	0.0175 (5)	
0.55983 (18)	0.2658 (3)	0.32482 (11)	0.0282 (5)	
	<i>x</i> 0.332689 (13) 0.44887 (19) 0.55983 (18)	x y 0.332689 (13) 0.35356 (2) 0.44887 (19) 0.2899 (3) 0.55983 (18) 0.2658 (3)	x y z 0.332689 (13) 0.35356 (2) 0.305017 (8) 0.44887 (19) 0.2899 (3) 0.45739 (13) 0.55983 (18) 0.2658 (3) 0.32482 (11)	xyz U_{iso}^*/U_{eq} 0.332689 (13)0.35356 (2)0.305017 (8)0.01561 (9)0.44887 (19)0.2899 (3)0.45739 (13)0.0175 (5)0.55983 (18)0.2658 (3)0.32482 (11)0.0282 (5)

F(000) = 1120 $D_x = 2.720 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2902 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 5.35 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.37 \times 0.34 \times 0.07 \text{ mm}$

4192 measured reflections 1662 independent reflections 1547 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -15 \rightarrow 13$ $k = -9 \rightarrow 9$ $l = -16 \rightarrow 22$

O2	0.68945 (17)	0.0756 (3)	0.38112 (12)	0.0260 (4)
03	0.69395 (18)	0.0151 (3)	0.67349 (12)	0.0255 (4)
O4	0.63043 (17)	0.2757 (3)	0.72435 (11)	0.0214 (4)
C3	0.5531 (2)	0.2109 (4)	0.45821 (15)	0.0151 (5)
C4	0.6129 (2)	0.1626 (3)	0.52576 (17)	0.0179 (6)
H4	0.6828	0.1027	0.5245	0.021*
C5	0.5685 (2)	0.2036 (4)	0.59553 (15)	0.0162 (5)
C6	0.4620 (2)	0.2887 (4)	0.59501 (16)	0.0188 (5)
H6	0.4299	0.3208	0.6406	0.023*
C7	0.4053 (2)	0.3242 (4)	0.52447 (17)	0.0196 (6)
H7	0.3326	0.3749	0.5241	0.023*
C1	0.6053 (2)	0.1797 (4)	0.38175 (17)	0.0190 (6)
C2	0.6353 (2)	0.1607 (3)	0.67076 (16)	0.0169 (6)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.01808 (12)	0.01548 (11)	0.01308 (12)	0.00230 (5)	-0.00070 (7)	-0.00040 (5)
N1	0.0179 (11)	0.0184 (11)	0.0159 (11)	0.0011 (9)	-0.0007 (9)	-0.0004 (9)
01	0.0256 (11)	0.0458 (13)	0.0133 (10)	0.0028 (10)	0.0015 (8)	0.0056 (9)
O2	0.0215 (10)	0.0315 (11)	0.0258 (11)	0.0039 (9)	0.0080 (8)	-0.0055 (9)
O3	0.0332 (11)	0.0187 (10)	0.0231 (11)	0.0011 (9)	-0.0093 (9)	0.0031 (8)
O4	0.0263 (10)	0.0228 (10)	0.0148 (10)	-0.0029 (8)	-0.0006 (8)	-0.0009 (8)
C3	0.0169 (12)	0.0139 (12)	0.0146 (13)	-0.0013 (10)	0.0007 (10)	0.0002 (10)
C4	0.0175 (13)	0.0161 (12)	0.0200 (14)	0.0007 (9)	0.0012 (11)	-0.0003 (10)
C5	0.0187 (13)	0.0135 (11)	0.0160 (13)	-0.0029 (10)	-0.0014 (10)	0.0026 (10)
C6	0.0234 (14)	0.0173 (12)	0.0162 (13)	-0.0002 (11)	0.0037 (10)	-0.0026 (11)
C7	0.0156 (13)	0.0212 (13)	0.0220 (15)	0.0030 (10)	0.0019 (11)	-0.0008 (11)
C1	0.0163 (13)	0.0226 (13)	0.0183 (14)	-0.0041 (11)	0.0027 (10)	-0.0019 (11)
C2	0.0204 (14)	0.0165 (13)	0.0137 (13)	-0.0066 (10)	-0.0003 (11)	0.0039 (10)

Geometric parameters (Å, °)

Ba1—O3 ⁱ	2.706 (2)	O3—Bal ⁱ	2.706 (2)
Ba1—O2 ⁱⁱ	2.727 (2)	O3—Ba1 ^{vii}	2.8941 (19)
Ba1—O1 ⁱⁱⁱ	2.735 (2)	O4—C2	1.254 (3)
Ba1—O1	2.746 (2)	O4—Ba1 ^{iv}	2.762 (2)
Ba1—O4 ^{iv}	2.762 (2)	O4—Ba1 ^{vii}	2.8463 (19)
Ba1—O4 ^v	2.8463 (19)	C3—C4	1.380 (4)
Ba1—O3 ^v	2.8941 (19)	C3—C1	1.519 (4)
Ba1—N1	2.951 (2)	C4—C5	1.385 (4)
Ba1—C2 ^v	3.199 (3)	C4—H4	0.9300
N1—C7	1.329 (4)	C5—C6	1.394 (4)
N1—C3	1.351 (3)	C5—C2	1.520 (4)
O1—C1	1.263 (3)	C6—C7	1.388 (4)
O1—Ba1 ⁱⁱⁱ	2.735 (2)	С6—Н6	0.9300
O2—C1	1.242 (3)	С7—Н7	0.9300
O2—Ba1 ^{vi}	2.727 (2)	C2—Ba1 ^{vii}	3.199 (3)

O3—C2	1.256 (3)		
$O3^{i}$ —Ba1— $O2^{ii}$	115.43 (7)	N1—Ba1—Ba1 ^{IX}	132.65 (4)
$O3^{1}$ —Ba1—O1 ¹¹¹	87.17 (7)	C2 ^v —Ba1—Ba1 ^{1x}	55.55 (4)
O2 ⁱⁱ —Ba1—O1 ⁱⁱⁱ	150.40 (7)	Ba1 ^{viii} —Ba1—Ba1 ^{ix}	107.398 (9)
O3 ⁱ —Ba1—O1	82.87 (7)	O3 ⁱ —Ba1—Ba1 ⁱⁱⁱ	99.87 (5)
O2 ⁱⁱ —Ba1—O1	134.32 (6)	O2 ⁱⁱ —Ba1—Ba1 ⁱⁱⁱ	142.45 (5)
O1 ⁱⁱⁱ —Ba1—O1	63.66 (7)	O1 ⁱⁱⁱ —Ba1—Ba1 ⁱⁱⁱ	35.23 (4)
O3 ⁱ —Ba1—O4 ^{iv}	176.22 (6)	O1—Ba1—Ba1 ⁱⁱⁱ	35.07 (4)
O2 ⁱⁱ —Ba1—O4 ^{iv}	68.31 (6)	O4 ^{iv} —Ba1—Ba1 ⁱⁱⁱ	76.62 (4)
O1 ⁱⁱⁱ —Ba1—O4 ^{iv}	89.12 (7)	O4 ^v —Ba1—Ba1 ⁱⁱⁱ	121.12 (4)
O1—Ba1—O4 ^{iv}	94.82 (7)	O3 ^v —Ba1—Ba1 ⁱⁱⁱ	97.31 (5)
O3 ⁱ —Ba1—O4 ^v	69.30 (6)	N1—Ba1—Ba1 ⁱⁱⁱ	90.91 (5)
O2 ⁱⁱ —Ba1—O4 ^v	84.91 (6)	C2 ^v —Ba1—Ba1 ⁱⁱⁱ	107.64 (5)
O1 ⁱⁱⁱ —Ba1—O4 ^v	85.89 (6)	Ba1 ^{viii} —Ba1—Ba1 ⁱⁱⁱ	100.719 (6)
O1—Ba1—O4 ^v	139.80 (6)	Ba1 ^{ix} —Ba1—Ba1 ⁱⁱⁱ	100.719 (6)
O4 ^{iv} —Ba1—O4 ^v	111.18 (5)	C7—N1—C3	117.8 (2)
O3 ⁱ —Ba1—O3 ^v	111.55 (5)	C7—N1—Ba1	125.67 (17)
O2 ⁱⁱ —Ba1—O3 ^v	81.90 (6)	C3—N1—Ba1	116.43 (17)
O1 ⁱⁱⁱ —Ba1—O3 ^v	71.64 (6)	C1—O1—Ba1 ⁱⁱⁱ	124.82 (18)
O1—Ba1—O3 ^v	132.26 (6)	C1—O1—Ba1	125.07 (18)
$O4^{iv}$ —Ba1—O3 ^v	67.86 (5)	Ba1 ⁱⁱⁱ —O1—Ba1	109.69 (7)
$O4^{v}$ —Ba1—O3 ^v	45.65 (6)	C1—O2—Ba1 ^{vi}	151.01 (19)
$O3^{i}$ —Ba1—N1	76.91 (6)	$C2-O3-Ba1^{i}$	139.38 (19)
$O2^{ii}$ —Ba1—N1	85.30 (6)	$C2 - O3 - Ba1^{vii}$	92.19 (16)
$O1^{iii}$ —Ba1—N1	119.93 (6)	$Ba1^{i}$ O3 $Ba1^{vii}$	106.03 (6)
O1—Ba1—N1	57 12 (6)	$C2 - O4 - Ba1^{iv}$	119 16 (17)
$O4^{iv}$ Ba1 N1	104 39 (6)	$C^2 - O^4 - Ba1^{vii}$	94 48 (17)
$O4^{v}$ —Ba1—N1	136 23 (6)	$Ba1^{iv} - O4 - Ba1^{vii}$	105 85 (6)
$O_{3^{v}}$ Bal N1	166 82 (6)	N1-C3-C4	122.02(0)
$O3^{i}$ Bal $C2^{v}$	89 14 (6)	N1 - C3 - C1	117.9(2)
Ω^{2i} Bal Ω^{2v}	86 19 (6)	C4-C3-C1	1201(2)
$O1^{\text{iii}}$ Ba1 $O2^{\text{v}}$	74 73 (7)	$C_{3} - C_{4} - C_{5}$	120.1(2) 119.8(3)
$\Omega_1 = Ba_1 = C_2^v$	137 89 (7)	$C_3 - C_4 - H_4$	120.1
O_{1}^{iv} Ba1 C_{2}^{v}	90.59(6)	C_{5} C_{4} H_{4}	120.1
$O4^{v}$ Ba1 $C2^{v}$	23.01(7)	C4 - C5 - C6	120.1 118 3 (2)
$O_{3^{v}}$ Bal $O_{2^{v}}$	23.01 (7)	C4 - C5 - C2	120.9(2)
$N1 B_{2}1 C^{2}$	25.11(0) 158 59 (7)	$C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$	120.9(2) 120.8(3)
$\begin{array}{ccc} \mathbf{\Omega}^{\mathbf{i}} & \mathbf{B}\mathbf{a}1 & \mathbf{B}\mathbf{a}1^{\mathbf{v}\mathbf{i}\mathbf{i}\mathbf{i}} \\ \mathbf{\Omega}^{\mathbf{i}} & \mathbf{B}\mathbf{a}1 & \mathbf{B}\mathbf{a}1^{\mathbf{v}\mathbf{i}\mathbf{i}\mathbf{i}} \end{array}$	38 44 (4)	$C_{0} - C_{2} - C_{2}$	120.8(3)
O^{2ii} Bal Bal ^{viii}	114.66(A)	C7 C6 H6	121.0
$O_2 - Ba_1 - Ba_1$	70.63(5)	$C_{1} = C_{0} = 110$	121.0
$O_1 = Da_1 = Da_1$ $O_1 = Da_1 = Da_1^{\text{viii}}$	105(3)	N1 C7 C6	121.0 122.0(2)
$O_1 - Da_1 - Da_1 = O_1$	103.21(3) 140.32(4)	N1 C7 H7	123.7 (3) 118 1
$O_{4} = Da_{1} = Da_{1}^{m}$	140.32(4)	$\begin{array}{ccc} \mathbf{N} & \mathbf{n} \\ \mathbf{C} & \mathbf{C} & \mathbf{T} \\ \mathbf{T} & \mathbf{T} \\$	110.1
$O_4 - Da_1 - Da_1^{min}$	50.42(4)	$C_0 - C_1 - C_1$	110.1
$V_3 - Bal - Bal$	/ 3.38 (4) 115 27 (5)	02 - 01 - 01	120.1(3)
$NI - BaI - BaI^{m}$	115.27 (5)	02-01-03	11/.5(3)
C_2^{-} -Bal-Bal ^{vin}	51.86 (4)	$\bigcup_{i=1}^{i} \bigcup_{j=1}^{i} \bigcup_{i=1}^{j} \bigcup_{j=1}^{i} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{i} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j=1}^{j} \bigcup_{i=1}^{j} \bigcup_{j=1}^{j} \bigcup_{j$	116.4 (2)
U3 ¹ —Bal—Bal ^{11X}	143.17 (4)	O4—C2—O3	125.1 (3)

O2 ⁱⁱ —Ba1—Ba1 ^{ix}	58.04 (5)	O4—C2—C5	117.7 (2)
Ol ⁱⁱⁱ —Bal—Bal ^{ix}	92.37 (5)	O3—C2—C5	117.2 (2)
O1—Ba1—Ba1 ^{ix}	129.33 (5)	O4—C2—Ba1 ^{vii}	62.52 (14)
O4 ^{iv} —Ba1—Ba1 ^{ix}	37.73 (4)	O3—C2—Ba1 ^{vii}	64.71 (14)
O4 ^v —Ba1—Ba1 ^{ix}	73.94 (4)	C5—C2—Ba1 ^{vii}	162.39 (18)
O3 ^v —Ba1—Ba1 ^{ix}	35.53 (4)		

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*-1/2, *y*+1/2, *z*; (iii) -*x*+1, *y*, -*z*+1/2; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*-1/2, -*y*+1/2, *z*-1/2; (vi) *x*+1/2, *y*-1/2, *z*; (vii) *x*+1/2, -*y*+1/2, *z*+1/2; (viii) -*x*+1/2, *y*-1/2, *z*; (vii)