Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Aminobenzoic acid-1,2-bis(4-pyridyl)ethane (2/1)

Fwu Ming Shen^a and Shie Fu Lush^b*

^aDepartment of Biotechnology, Yuanpei University, HsinChu, Taiwan 30015, and ^bDepartment of Medical Laboratory Science Biotechnology, Yuanpei University, HsinChu, Taiwan 30015

Correspondence e-mail: lush@mail.ypu.edu.tw

Received 29 April 2010; accepted 28 May 2010

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.165; data-to-parameter ratio = 14.9.

In the title compound, C₁₂H₁₂N₂·2C₇H₇NO₂, the 4-aminobenzoic acid molecules are linked by O-H···N hydrogen bonds to 1,2-bis(4-pyridyl)ethane, forming linear hydrogen bonded chains parallel to $[2\overline{1}1]$. The structure exhibits a hydrogen-bonding network involving $COOH \cdot \cdot \cdot N(pyridyl)$ and amine and carboxylic $N-H \cdots O$ interactions. In addition, $\pi - \pi$ stacking interactions [centroid–centroid distance = 3.8622 (14) Å] are also present.

Related literature

For linear hydrogen bonding associations involving 4-aminobenzoic acid, see: Smith et al. (1997). For related structures, see: Smith et al. (2000, 2005); Lynch & McClenaghan (2001). For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental

Crystal data $C_{12}H_{12}N_2{\cdot}2C_7H_7NO_2$

 $M_r = 458.51$

Monoclinic, $P2_1/c$	Z = 2
a = 7.3556 (10) Å	Mo $K\alpha$ radiation
b = 23.230 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 7.9373 (11) Å	T = 297 K
$\beta = 115.579 \ (2)^{\circ}$	$0.76 \times 0.34 \times 0.22 \text{ mm}$
V = 1223.3 (3) Å ³	

Data collection

Bruker SMART CCD area-detector	6871 measured reflections
diffractometer	2406 independent reflections
Absorption correction: multi-scan	1530 reflections with $I > 2\sigma(I)$
(SMART; Bruker, 2000)	$R_{\rm int} = 0.032$
$T_{\min} = 0.674, \ T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of
$vR(F^2) = 0.165$	independent and constrained
S = 1.03	refinement
2406 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
62 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O1^{i}$ $N1 - H1B \cdots O1^{ii}$ $O2 - H2A \cdots N2^{iii}$	0.90 (3)	2.14 (3)	3.030 (3)	171 (3)
	0.93 (3)	2.16 (3)	3.081 (3)	172 (2)
	0.90	1.72	2.613 (2)	173

Symmetry codes: (i) x + 1, y, z + 1; (ii) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) x - 1, y, z.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

This work was supported financially by Yuanpei University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2029).

References

Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. C57, 830-832.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Smith, G., Baldry, K. E., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 727-736.

Smith, G., Wermuth, U. D. & White, J. M. (2005). Acta Cryst. E61, 0313-0316. Smith, G.,Bott, R. C. & Lynch, D. E. (2000). Acta Cryst. C56, 1155-1156. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o1551 [doi:10.1107/S1600536810020337]

4-Aminobenzoic acid-1,2-bis(4-pyridyl)ethane (2/1)

Fwu Ming Shen and Shie Fu Lush

S1. Comment

4-Aminobenzoic acid is a useful ligand for structure extension through both the carboxylic acid and amine functional groups, forming linear hydrogen bonding associations (Smith *et al.*, 2005). Other related reports with 4-aminobenzoic acid and Lewis base such as 4-(4-nitrobenzyl)pyridine (Smith, 1997), 4-aminobenzonitrile (Smith *et al.*, 2000) and 2-amino-4-(4-pyridyl)pyrimidine (Lynch & McClenaghan, 2001).

We present here the crystal structure analysis of the 2:1 4-aminobenzoic acid and 1,2-bis(4-pyridyl)ethane adduct (Fig 1). The structure of the title compound comprises two 4-aminobenzoic acid molecules and one 1,2-bis(4-pyridyl)ethane molecule, with no proton transfer. In the structure, the molecules associate 4-aminobenzoic acid and 1,2-bis(4-pyridyl)-ethane via carboxylic and pyridine group O—H…N [O…N 2.613 (2) Å] D₂²12(Etter *et al.*, 1990), forming linear hydrogen bonding parallel to [2 $\overline{1}$ 1], further connect into a three dimensional network via amine and carboxylic N—H… O [N…O 3.030 (3) and 3.081 (3) Å], respectively.

The title compound's supramolecular structure can be readily analyzed in terms of pyridyl atom N2 acts as hydrogenbond donor to carboxyl atom O2. Similarly, O1 acts as hydrogen-bond donor to amino group N1, respectively (Table 1 and Fig. 2). Furthermore, p -p ring stacking interaction is between neighboring heteraromatic ring in the structure. The distance between Cg1 (N2/C8—C12)···Cg1ⁱ is 3.8622 (14) Å[symmetry code: (i) = 2-X,1-Y,1-Z].

S2. Experimental

The 4-aminobenzoic acid (0.137 mg, 1.0 mmol) and 1,2-bis(4-pyridyl)ethane (184 mg, 1.0 mmol) were dissolved in 20 ml 50% methanol-water, the solution was refluxed for 30 min. The filtered solution was transferred to a 25 ml tube after one week at room temperature, and colorless transparent crystals formed (yield 60.48%).

S3. Refinement

N and O-bound H atoms were located in a difference Fourier map and were refined isotropically. Other H atoms were positioned geometrically with C—H=0.93 (aromatic) and 0.97 Å(methylene), and refined using a riding model with Uiso(H)=1.2Ueq(C).

Figure 1

View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The molecular packing for the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

4-Aminobenzoic acid-1,2-bis(4-pyridyl)ethane (2/1)

Crystal data	
$C_{12}H_{12}N_2 \cdot 2C_7H_7NO_2$	F(000) = 484
$M_r = 458.51$	$D_{\rm x} = 1.239 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2347 reflections
a = 7.3556 (10) Å	$\theta = 3.0-23.7^{\circ}$
b = 23.230 (3) Å	$\mu = 0.09 \mathrm{~mm^{-1}}$
c = 7.9373 (11) Å	T = 297 K
$\beta = 115.579 (2)^{\circ}$	Parallelepiped, colorless
V = 1223.3 (3) Å ³	$0.76 \times 0.34 \times 0.22 \text{ mm}$
Z = 2	

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (<i>SMART</i> ; Bruker, 2000) $T_{\min} = 0.674$, $T_{\max} = 1.000$	6871 measured reflections 2406 independent reflections 1530 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 26.1^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -9 \rightarrow 5$ $k = -27 \rightarrow 28$ $l = -9 \rightarrow 9$
	~
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.165$	neighbouring sites
<i>S</i> = 1.03	H atoms treated by a mixture of independent
2406 reflections	and constrained refinement
162 parameters	$w = 1/[\sigma^2(F_0^2) + (0.0959P)^2 + 0.0431P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
0 constraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
Special details	

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors wR and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N2	1.1453 (2)	0.43421 (8)	0.3904 (2)	0.0738 (7)	
C8	1.0950 (3)	0.48682 (10)	0.3233 (3)	0.0783 (8)	
C9	0.8987 (3)	0.50396 (11)	0.2231 (4)	0.0864 (9)	
C10	0.7437 (3)	0.46541 (11)	0.1882 (3)	0.0739 (8)	
C11	0.7978 (3)	0.41122 (10)	0.2571 (3)	0.0806 (8)	
C12	0.9970 (3)	0.39735 (10)	0.3566 (3)	0.0826 (9)	
C13	0.5251 (3)	0.48182 (15)	0.0801 (4)	0.1066 (13)	
01	0.4674 (2)	0.33090 (7)	0.4157 (2)	0.0841 (5)	
O2	0.51671 (19)	0.40480 (7)	0.6066 (2)	0.0837 (6)	
N1	1.3716 (3)	0.28863 (10)	1.0252 (3)	0.0824 (8)	
C1	0.5750 (3)	0.35702 (8)	0.5572 (3)	0.0624 (6)	
C2	0.7798 (3)	0.33843 (8)	0.6832 (2)	0.0560 (6)	
C3	0.8914 (3)	0.36554 (8)	0.8520 (3)	0.0621 (6)	
C4	1.0858 (3)	0.34892 (8)	0.9655 (3)	0.0649 (6)	
C5	1.1749 (3)	0.30406 (8)	0.9143 (3)	0.0601 (6)	
C6	1.0617 (3)	0.27578 (9)	0.7479 (3)	0.0722 (7)	

C7	0.8687 (3)	0.29233 (9)	0.6355 (3)	0.0690 (7)
H8A	1.19710	0.51350	0.34500	0.0940*
H9A	0.87020	0.54150	0.17880	0.1040*
H11A	0.69910	0.38350	0.23650	0.0970*
H12A	1.02950	0.36010	0.40280	0.0990*
H13A	0.44700	0.44670	0.03900	0.1280*
H13B	0.48190	0.50100	0.16510	0.1280*
H1A	1.413 (4)	0.3021 (12)	1.142 (4)	0.108 (9)*
H1B	1.409 (3)	0.2543 (12)	0.988 (3)	0.095 (8)*
H2A	0.38730	0.41220	0.52780	0.1600*
H3A	0.83380	0.39560	0.88940	0.0750*
H4A	1.15800	0.36800	1.07780	0.0780*
H6A	1.11810	0.24500	0.71210	0.0870*
H7A	0.79550	0.27240	0.52510	0.0830*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N2	0.0497 (10)	0.0777 (12)	0.0824 (12)	0.0081 (8)	0.0176 (9)	0.0039 (9)
C8	0.0490 (11)	0.0770 (14)	0.0935 (16)	-0.0026 (10)	0.0163 (11)	0.0066 (12)
C9	0.0549 (13)	0.0798 (15)	0.1084 (18)	0.0100 (10)	0.0201 (12)	0.0279 (13)
C10	0.0445 (10)	0.0941 (16)	0.0755 (13)	0.0038 (10)	0.0189 (9)	0.0124 (11)
C11	0.0565 (13)	0.0847 (15)	0.0937 (15)	-0.0058 (10)	0.0260 (12)	0.0087 (12)
C12	0.0670 (14)	0.0707 (13)	0.1014 (17)	0.0099 (11)	0.0281 (13)	0.0117 (12)
C13	0.0498 (13)	0.146 (3)	0.110(2)	0.0138 (13)	0.0212 (13)	0.0438 (17)
01	0.0607 (8)	0.0805 (10)	0.0741 (9)	-0.0025 (7)	-0.0058 (7)	-0.0085 (8)
O2	0.0553 (8)	0.0796 (10)	0.0888 (11)	0.0151 (7)	0.0052 (7)	-0.0106 (8)
N1	0.0556 (11)	0.0881 (14)	0.0825 (14)	0.0129 (10)	0.0100 (10)	0.0009 (11)
C1	0.0496 (10)	0.0616 (11)	0.0620(11)	-0.0040 (8)	0.0110 (9)	0.0041 (9)
C2	0.0480 (10)	0.0548 (10)	0.0557 (10)	-0.0022 (8)	0.0134 (8)	0.0004 (8)
C3	0.0574 (11)	0.0591 (11)	0.0592 (11)	0.0088 (8)	0.0152 (9)	-0.0038 (9)
C4	0.0570 (11)	0.0638 (11)	0.0546 (10)	0.0021 (9)	0.0060 (9)	-0.0047 (9)
C5	0.0483 (10)	0.0596 (11)	0.0627 (11)	0.0042 (8)	0.0147 (9)	0.0075 (9)
C6	0.0662 (12)	0.0703 (12)	0.0705 (12)	0.0141 (10)	0.0206 (10)	-0.0085 (10)
C7	0.0628 (12)	0.0690 (12)	0.0593 (11)	0.0029 (9)	0.0114 (9)	-0.0099 (9)

Geometric parameters (Å, °)

01—C1	1.220 (3)	C11—H11A	0.9300	
O2—C1	1.310 (3)	C12—H12A	0.9300	
O2—H2A	0.9000	C13—H13B	0.9700	
N2-C12	1.320 (3)	C13—H13A	0.9700	
N2—C8	1.321 (3)	C1—C2	1.468 (3)	
N1—C5	1.377 (3)	C2—C7	1.390 (3)	
N1—H1A	0.90 (3)	C2—C3	1.384 (3)	
N1—H1B	0.93 (3)	C3—C4	1.376 (3)	
С8—С9	1.373 (4)	C4—C5	1.382 (3)	
C9—C10	1.381 (4)	C5—C6	1.386 (3)	

C10 C12	1 500 (4)	C(-C7)	1.2((.2))
	1.509 (4)		1.300 (3)
C10—C11	1.362 (3)	С3—НЗА	0.9300
C11—C12	1.369 (3)	C4—H4A	0.9300
C13—C13 ⁱ	1.436 (4)	С6—Н6А	0.9300
C8—H8A	0.9300	C7—H7A	0.9300
С9—Н9А	0.9300		
O1…N1 ⁱⁱ	3.081 (3)	C12···H4A ^{xi}	3.0000
O1…N1 ⁱⁱⁱ	3.030 (3)	C13···H9A ⁱ	2.7900
O2…N2 ^{iv}	2.613 (2)	H1A····O1 ^{vii}	2.14 (3)
O1…H1A ⁱⁱⁱ	2.14 (3)	H1A…H4A	2.3000
O1…H1B ⁱⁱ	2.16 (3)	H1B…H6A	2.3200
01…H7A	2.5700	H1B…O1 ^{viii}	2.16(3)
01H11A	2.9200	H1B···C1 ^{viii}	2.81 (3)
$01 \cdots H4A^{iii}$	2 8000	H2A····C8 ^{iv}	2 6900
02···H3A	2.0000	$H2A\cdots C12^{iv}$	2.6200
$02 \cdot 115 \times 10^{\circ}$	2.4300	$H_2 \Lambda \dots N_2^{iv}$	1 7200
	2.7400		2 4500
N1O1vii	2.0400		2.4500
	3.030(3)		3.0000
	3.081(3)		2.3000
N2····O2 ^{IX}	2.613(2)		3.0000
N2····C1 ^{ix}	3.368 (3)		2.8000
N1···H6A ^x	2.9500	H6A···H1B	2.3200
N2…H2A ^{ix}	1.7200	H6A····N1 ^{xiii}	2.9500
C1···N2 ^{iv}	3.368 (3)	H6A····C4 ^{xiii}	2.8700
C3…C9 ^v	3.567 (3)	H6A····C5 ^{xiii}	2.8100
C8…C9 ^v	3.587 (4)	H7A…O1	2.5700
C9…C8 ^v	3.587 (4)	$H8A\cdots O2^{v}$	2.7400
C9…C3 ^v	3.567 (3)	H9A····C4 ^v	2.8700
C1…H1B ⁱⁱ	2.81 (3)	H9A···C13 ⁱ	2.7900
С3…Н9А ^v	2.8600	H9A…C3 [∨]	2.8600
C4···H9A ^v	2.8700	H9A…H13A ⁱ	2.2400
C4···H6A ^x	2.8700	H11A…O1	2.9200
C5…H6A ^x	2.8100	H11A…H13A	2.3500
C7…H12A	3.0300	H12A…C7	3.0300
C8···H2A ^{ix}	2.6900	H13A…H11A	2.3500
C9···H13A ⁱ	2,7500	H13A····C9 ⁱ	2,7500
C11····H3A ^{xi}	3,0600		2.7500
$C12H2\Lambda^{ix}$	2 6200		2.2400
C12 112A	2.0200	11150 02	2.0400
C1 O2 H2A	110.00	C12i C12 H12A	108.00
$C_1 = 0_2 = 0_1 A$	117.00 (10)	C12i $C12$ $H12D$	108.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117.08 (19)		108.00
	111 (2)	02 - 01 - 02	114.09 (17)
CO-NI-HIB	113.1 (14)	01 - 01 - 02	122.1 (2)
HIA—NI—HIB	128 (2)	01	123.22 (19)
N2-C8-C9	122.9 (2)	C1—C2—C7	120.41 (16)
C8—C9—C10	119.9 (2)	C3—C2—C7	117.52 (19)
C9—C10—C11	116.5 (2)	C1—C2—C3	122.07 (19)

121.1 (2)	C2—C3—C4	121.4 (2)
122.4 (2)	C3—C4—C5	120.6 (2)
120.2 (2)	N1C5C4	120.6 (2)
123.3 (2)	C4—C5—C6	118.1 (2)
117.1 (2)	N1—C5—C6	121.3 (2)
118.00	C5—C6—C7	121.1 (2)
119.00	C2—C7—C6	121.17 (19)
120.00	С2—С3—НЗА	119.00
120.00	С4—С3—НЗА	119.00
120.00	C3—C4—H4A	120.00
120.00	C5—C4—H4A	120.00
118.00	С5—С6—Н6А	119.00
118.00	С7—С6—Н6А	119.00
108.00	С2—С7—Н7А	119.00
107.00	С6—С7—Н7А	119.00
108.00		
0.3 (3)	O2—C1—C2—C3	7.6 (3)
0.0 (3)	O2—C1—C2—C7	-172.38 (19)
-0.2 (4)	C1—C2—C3—C4	-177.7 (2)
-0.3 (4)	C7—C2—C3—C4	2.3 (3)
179.6 (2)	C1—C2—C7—C6	177.6 (2)
0.6 (3)	C3—C2—C7—C6	-2.3 (3)
-179.3 (2)	C2—C3—C4—C5	-0.5 (3)
40.3 (4)	C3—C4—C5—N1	178.0 (2)
-139.9 (3)	C3—C4—C5—C6	-1.2 (3)
-0.4 (3)	N1—C5—C6—C7	-178.0 (2)
-180.0 (2)	C4—C5—C6—C7	1.2 (3)
-173.5 (2)	C5—C6—C7—C2	0.6 (3)
6.5 (3)		
	121.1 (2) $122.4 (2)$ $120.2 (2)$ $123.3 (2)$ $117.1 (2)$ 118.00 119.00 120.00 120.00 120.00 120.00 120.00 120.00 18.00 108.00 107.00 108.00 $0.3 (3)$ $-0.2 (4)$ $-0.3 (4)$ $179.6 (2)$ $0.6 (3)$ $-179.3 (2)$ $40.3 (4)$ $-139.9 (3)$ $-0.4 (3)$ $-180.0 (2)$ $-173.5 (2)$ $6.5 (3)$	121.1(2) $C2-C3-C4$ $122.4(2)$ $C3-C4-C5$ $120.2(2)$ $N1-C5-C4$ $123.3(2)$ $C4-C5-C6$ $117.1(2)$ $N1-C5-C6$ 118.00 $C5-C6-C7$ 119.00 $C2-C7-C6$ 120.00 $C4-C3-H3A$ 120.00 $C2-C3-H3A$ 120.00 $C3-C4-H4A$ 120.00 $C5-C6-H6A$ 118.00 $C5-C6-H6A$ 118.00 $C5-C6-H6A$ 118.00 $C7-C6-H6A$ 108.00 $C2-C7-H7A$ 107.00 $C6-C7-H7A$ 108.00 $C2-C1-C2-C3$ $0.3(3)$ $02-C1-C2-C3-C4$ $0.3(3)$ $02-C1-C2-C3$ $0.3(3)$ $02-C1-C2-C3$ $0.3(4)$ $C7-C2-C3-C4$ $-0.3(4)$ $C7-C2-C3-C4$ $-0.3(4)$ $C7-C2-C3-C4$ $-179.3(2)$ $C2-C7-C6$ $0.6(3)$ $C3-C4-C5-N1$ $-139.9(3)$ $C3-C4-C5-N1$ $-139.9(3)$ $C3-C4-C5-C6-C7$ $-180.0(2)$ $C4-C5-C6-C7$ $-173.5(2)$

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*-1, -*y*+1/2, *z*-1/2; (iii) *x*-1, *y*, *z*-1; (iv) *x*-1, *y*, *z*; (v) -*x*+2, -*y*+1, -*z*+1; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) *x*+1, *y*, *z*+1; (viii) *x*+1, -*y*+1/2, *z*+1/2; (ix) *x*+1, *y*, *z*; (v) -*x*+2, -*y*+1, -*z*+1; (vii) -*x*+1, -*y*+1, -*z*+1; (vii) *x*+1, *y*, *z*+1; (viii) *x*+1, -*y*+1/2, *z*+1/2; (ix) *x*+1, *y*, *z*; (v) -*x*+2, -*y*+1, -*z*+1; (vii) -*x*+1, -*z*+1; (vii) *x*+1, *y*, *z*+1; (viii) *x*+1, -*y*+1/2, *z*+1/2; (ix) *x*+1, *y*, *z*; (v) -*x*+2, -*y*+1, -*z*+1; (vii) -*x*+1, -*z*+1; (vii) *x*+1, *y*, *z*+1; (viii) *x*+1, -*y*+1/2, *z*+1/2; (ix) *x*+1, *y*, *z*; (v) -*x*+2, -*y*+1, -*z*+1; (vii) -*x*+1, -*z*+1; (vii) -*x*+1, -*z*+1; (viii) -*z*+1; (vii

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D^{\dots}A$	D—H···A
N1—H1A····O1 ^{vii}	0.90 (3)	2.14 (3)	3.030 (3)	171 (3)
N1— $H1B$ ····O1 ^{viii}	0.93 (3)	2.16 (3)	3.081 (3)	172 (2)
O2— $H2A$ ···N2 ^{iv}	0.90	1.72	2.613 (2)	173

Symmetry codes: (iv) *x*-1, *y*, *z*; (vii) *x*+1, *y*, *z*+1; (viii) *x*+1, -*y*+1/2, *z*+1/2.