

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

p-Tolyl bis(o-tolylamido)phosphinate

Fahimeh Sabbaghi,^a* Teresa Mancilla Percino,^b Mehrdad Pourayoubi^c and Marco A. Leyva^b

^aDepartment of Chemistry, Islamic Azad University-Zanjan Branch, PO Box 49195-467, Zanjan, Iran, ^bDepartamento de Química, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, D.F., México, and ^cDepartment of Chemistry, Ferdowsi University of Mashhad, 91779, Mashhad, Iran

Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

Received 21 May 2010; accepted 17 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.128; data-to-parameter ratio = 17.1.

In the title compound, C₂₁H₂₃N₂O₂P, the P atom has a distorted tetrahedral configuration. The O atom of the OC_6H_4 -4-CH₃ group and the N atoms show sp^2 character. In the crystal, adjacent molecules are linked by N-H···O hydrogen bonds into helical chains parallel to the b axis.

Related literature

For a related structure, see: Pourayoubi et al. (2009).

Experimental

Crystal data $C_{21}H_{23}N_2O_2P$

 $M_r = 366.38$

Z = 4

Mo $K\alpha$ radiation

 $0.6 \times 0.54 \times 0.47 \ \text{mm}$

 $\mu = 0.16 \text{ mm}^-$

T = 2.93 K

Monoclinic, $P2_1/c$ a = 12.157 (3) Å b = 8.978 (2) Å c = 18.080(5) Å $\beta = 101.569 \ (1)^{\circ}$ V = 1933.3 (8) Å³

Data collection ...

.

Nonius KappaCCD diffractometer	23372 measured reflections
Absorption correction: multi-scan	4402 independent reflections
(Blessing, 1995)	3097 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.860, \ T_{\max} = 0.968$	$R_{\rm int} = 0.048$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	
$vR(F^2) = 0.128$	
S = 1.06	
402 reflections	
257 parameters	
restraints	

0.00

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $H \cdot \cdot \cdot A$ $D - \mathbf{H} \cdot \cdot \cdot A$ D-H $D - H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $N1 - H1 \cdots O1^i$ 0.91(2)2.02(2)2.8963 (19) 161 (2) Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: COLLECT (Nonius, 2001); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Support of this investigation by Islamic Azad University-Zanjan Branch is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2779).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Pourayoubi, M., Ghadimi, S., Ebrahimi Valmoozi, A. A. & Banan, A. R. (2009). Acta Cryst. E65, 01973.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o1755 [doi:10.1107/S1600536810023512]

p-Tolyl bis(o-tolylamido)phosphinate

Fahimeh Sabbaghi, Teresa Mancilla Percino, Mehrdad Pourayoubi and Marco A. Leyva

S1. Comment

In the previous work, the structure determination of *p*-tolyl bis(*p*-tolylamido)phosphate (Pourayoubi *et al.*, 2009) has been investigated; we report here on the crystal structure of title compound (Fig. 1). The title compound was synthesized from the reaction of (4-tolyl)-dichlorophosphate with an excess amount of *ortho*-toluidine (1:4 mole ratio). Single crystals were obtained from CHCl₃/n-C₆H₁₄ at room temperature. Molecular structure of [4-H₃C—C₆H₄O]P(O) [NHC₆H₄-2-CH₃]₂ is shown in Fig. 1. The phosphorus atom has a distorted tetrahedral configuration. The bond angles around P atom are in the range of 96.87 (7)° to 118.95 (8)°. The oxygen atom of OC₆H₄-4-CH₃ moiety and the nitrogen atoms show *sp*² character (the C15—O2—P1 angle is 124.67 (11)°, the C1—N1—P1 and C8—N2—P1 are 123.77 (12)° and 127.71 (12)°, respectively. In the crystal structure, molecules are linked *via* N—H…O hydrogen bonds (N1…O1 = 2.8963 (19) Å) into an extended chain (Fig. 2) parallel to the *b* axis.

S2. Experimental

To a solution of (4-tolyl)-dichlorophosphate (2.250 g, 10 mmol) in 15 ml dry acetonitrile, a solution of *ortho*-toluidine (4.286 g, 40 mmol) in 30 ml acetonitrile was added at 0°C. After 4 h stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals of the product were obtained from a solution of $CHCl_3/n-C_6H_{14}$ at room temperature.

S3. Refinement

H atoms of both nitrogen were found by Fourier differences, it was necessary to restrain distances setting the NH as 1.01 Å instead of 0.86 Å as the ideal would be, but under this proposal to refine, both distances are obtained, 0.9119 (152) Å for N1—H1 and 0.8982 (153) Å for N2—H21, respectively, which are more realistic. The difference can be due to the effect of hydrogen bond generates by N1—H1—O1. All other hydrogen atoms were placed geometrically.

Figure 1

A general view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view of N—H…O hydrogen bond.

p-Tolyl bis(o-tolylamido)phosphinate

Crystal data

 $C_{21}H_{23}N_2O_2P$ $M_r = 366.38$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.157 (3) Å b = 8.978 (2) Å c = 18.080 (5) Å $\beta = 101.569$ (1)° V = 1933.3 (8) Å³ Z = 4

Data collection

Nonius KappaCCD	23372 measured reflections
diffractometer	4402 independent reflections
Radiation source: Enraf Nonius FR590	3097 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.048$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
CCD rotation images, thick slices scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan	$k = -10 \rightarrow 11$
(Blessing, 1995)	$l = -19 \rightarrow 23$
$T_{\min} = 0.860, \ T_{\max} = 0.968$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent

F(000) = 776

 $\theta = 1 - 14^{\circ}$

T = 293 K

 $\mu = 0.16 \text{ mm}^{-1}$

Priem, colourless

 $0.6 \times 0.54 \times 0.47 \text{ mm}$

 $D_{\rm x} = 1.259 {\rm ~Mg} {\rm ~m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 600 reflections

4402 reflectionsand constrained refinement257 parameters $w = 1/[\sigma^2(F_o^2) + (0.0666P)^2 + 0.2653P]$ 2 restraintswhere $P = (F_o^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant
direct methods $(\Delta/\sigma)_{max} = 0.015$ $\Delta \rho_{max} = 0.18$ e Å⁻³
 $\Delta \rho_{min} = -0.36$ e Å⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.28763 (13)	0.18689 (18)	0.26516 (10)	0.0359 (4)	
C2	0.25191 (16)	0.3029 (2)	0.21582 (11)	0.0464 (4)	
H2	0.3036	0.3535	0.1936	0.056*	

C3	0.14023 (18)	0.3444 (3)	0.19930 (13)	0.0606 (6)
Н3	0.1171	0.4232	0.1665	0.073*
C4	0.06346 (18)	0.2691 (3)	0.23138 (15)	0.0693 (7)
H4	-0.0121	0.2951	0.2197	0.083*
C5	0.09918 (17)	0.1546 (3)	0.28107 (14)	0.0620 (6)
Н5	0.0466	0.1044	0.3027	0.074*
C6	0.21099 (15)	0.1116 (2)	0.29999 (11)	0.0446 (4)
C7	0.24895 (19)	-0.0078 (2)	0.35748 (13)	0.0628 (6)
H7A	0.1847	-0.0521	0.3722	0.094*
H7B	0.2969	0.0351	0.401	0.094*
H7C	0.2896	-0.0827	0.3361	0.094*
C8	0.43487 (15)	0.36933 (19)	0.41804 (9)	0.0395 (4)
C9	0.47389 (18)	0.2563 (2)	0.46833 (11)	0.0518 (5)
Н9	0.5289	0.1915	0.4585	0.062*
C10	0.4311 (2)	0.2392 (3)	0.53349 (12)	0.0656 (6)
H10	0.4559	0.1615	0.5666	0.079*
C11	0.3524 (2)	0.3374 (3)	0.54873 (13)	0.0687 (7)
H11	0.3252	0.3283	0.5931	0.082*
C12	0.31363 (18)	0.4494 (3)	0.49840 (12)	0.0614 (6)
H12	0.2603	0.5155	0.5095	0.074*
C13	0.35181 (15)	0.4668 (2)	0.43141 (10)	0.0464 (5)
C14	0.3050 (2)	0.5866 (3)	0.37677 (16)	0.0643 (6)
C15	0.71094 (14)	0.1945 (2)	0.36813 (10)	0.0399 (4)
C16	0.76182 (16)	0.1141 (2)	0.43050 (12)	0.0530 (5)
H16	0.7234	0.0378	0.4492	0.064*
C17	0.87118 (17)	0.1486 (3)	0.46506 (13)	0.0607 (6)
H17	0.9056	0.0944	0.5072	0.073*
C18	0.93031 (17)	0.2605 (3)	0.43883 (13)	0.0575 (5)
C19	0.87634 (17)	0.3392 (3)	0.37669 (13)	0.0633 (6)
H19	0.9143	0.4163	0.3583	0.076*
C20	0.76747 (16)	0.3071 (2)	0.34082 (12)	0.0539 (5)
H20	0.7331	0.3613	0.2987	0.065*
C21	1.0505 (2)	0.2947 (4)	0.47617 (17)	0.0897 (9)
H21A	1.0534	0.3242	0.5276	0.135*
H21B	1.0784	0.3741	0.4495	0.135*
H21C	1.0959	0.2075	0.4751	0.135*
N1	0.40296 (12)	0.14475 (16)	0.28185 (9)	0.0387 (3)
N2	0.48102 (13)	0.38993 (16)	0.35183 (8)	0.0393 (3)
01	0.53434 (10)	0.33484 (13)	0.22624 (7)	0.0420 (3)
O2	0.60148 (10)	0.15191 (13)	0.33463 (7)	0.0444 (3)
P1	0.50634 (4)	0.26305 (4)	0.29312 (2)	0.03385 (15)
H1	0.4230 (17)	0.0477 (18)	0.2912 (12)	0.062 (6)*
H21	0.4928 (17)	0.4862 (18)	0.3421 (12)	0.061 (6)*
H14C	0.267 (3)	0.548 (3)	0.3309 (19)	0.104 (10)*
H14B	0.249 (3)	0.645 (4)	0.3955 (18)	0.123 (11)*
H14A	0.363 (3)	0.660 (3)	0.3641 (17)	0.105 (10)*

supporting information

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0343 (9)	0.0320 (9)	0.0410 (9)	-0.0007 (7)	0.0063 (7)	-0.0066 (7)
C2	0.0451 (11)	0.0446 (10)	0.0496 (11)	0.0036 (8)	0.0099 (9)	0.0016 (8)
C3	0.0508 (12)	0.0606 (13)	0.0673 (13)	0.0155 (10)	0.0046 (10)	0.0094 (11)
C4	0.0381 (11)	0.0708 (15)	0.0969 (19)	0.0124 (10)	0.0085 (12)	0.0035 (13)
C5	0.0429 (12)	0.0608 (13)	0.0875 (16)	-0.0049 (10)	0.0255 (11)	-0.0025 (12)
C6	0.0434 (10)	0.0400 (10)	0.0524 (11)	-0.0032 (8)	0.0142 (8)	-0.0028 (8)
C7	0.0634 (13)	0.0583 (13)	0.0724 (14)	-0.0046 (11)	0.0272 (11)	0.0159 (11)
C8	0.0440 (10)	0.0391 (9)	0.0351 (9)	-0.0131 (7)	0.0074 (7)	-0.0069 (7)
C9	0.0580 (12)	0.0516 (12)	0.0446 (11)	-0.0084 (9)	0.0072 (9)	0.0031 (9)
C10	0.0774 (16)	0.0723 (15)	0.0447 (12)	-0.0274 (13)	0.0066 (11)	0.0083 (10)
C11	0.0781 (16)	0.0866 (17)	0.0469 (12)	-0.0379 (14)	0.0255 (11)	-0.0122 (12)
C12	0.0569 (12)	0.0702 (15)	0.0627 (13)	-0.0206 (11)	0.0254 (10)	-0.0215 (12)
C13	0.0456 (10)	0.0465 (11)	0.0488 (10)	-0.0140 (8)	0.0137 (8)	-0.0136 (8)
C14	0.0639 (15)	0.0566 (14)	0.0739 (16)	0.0124 (12)	0.0176 (13)	-0.0040 (12)
C15	0.0335 (9)	0.0392 (10)	0.0470 (10)	0.0002 (7)	0.0080 (8)	-0.0031 (8)
C16	0.0428 (11)	0.0542 (12)	0.0610 (12)	0.0002 (9)	0.0085 (9)	0.0113 (10)
C17	0.0464 (12)	0.0712 (14)	0.0597 (13)	0.0073 (10)	-0.0009 (10)	0.0060 (11)
C18	0.0394 (11)	0.0678 (14)	0.0626 (13)	-0.0017 (9)	0.0039 (10)	-0.0080 (11)
C19	0.0461 (12)	0.0682 (14)	0.0757 (15)	-0.0163 (10)	0.0125 (11)	0.0062 (12)
C20	0.0420 (11)	0.0583 (12)	0.0592 (12)	-0.0062 (9)	0.0052 (9)	0.0133 (10)
C21	0.0464 (14)	0.108 (2)	0.105 (2)	-0.0113 (14)	-0.0079 (14)	-0.0065 (18)
N1	0.0352 (8)	0.0277 (7)	0.0527 (9)	0.0005 (6)	0.0075 (6)	-0.0013 (6)
N2	0.0519 (9)	0.0282 (8)	0.0399 (8)	-0.0047 (6)	0.0144 (7)	-0.0016 (6)
O1	0.0477 (7)	0.0385 (7)	0.0428 (7)	-0.0021 (5)	0.0159 (5)	0.0007 (5)
O2	0.0335 (6)	0.0342 (6)	0.0627 (8)	-0.0016 (5)	0.0025 (6)	0.0045 (6)
P1	0.0341 (2)	0.0287 (2)	0.0391 (3)	-0.00105 (17)	0.00834 (18)	-0.00115 (17)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.383 (3)	C13—C14	1.494 (3)
C1—C6	1.399 (2)	C14—H14C	0.93 (3)
C1—N1	1.425 (2)	C14—H14B	0.97 (3)
С2—С3	1.381 (3)	C14—H14A	1.02 (3)
С2—Н2	0.93	C15—C20	1.369 (3)
С3—С4	1.372 (3)	C15—C16	1.377 (3)
С3—Н3	0.93	C15—O2	1.400 (2)
C4—C5	1.377 (3)	C16—C17	1.386 (3)
C4—H4	0.93	C16—H16	0.93
С5—С6	1.388 (3)	C17—C18	1.374 (3)
С5—Н5	0.93	C17—H17	0.93
С6—С7	1.500 (3)	C18—C19	1.377 (3)
С7—Н7А	0.96	C18—C21	1.513 (3)
С7—Н7В	0.96	C19—C20	1.382 (3)
С7—Н7С	0.96	C19—H19	0.93
С8—С9	1.382 (3)	C20—H20	0.93

supporting information

C9 C12	1 202 (2)	C21 U21A	0.07
	1.393 (3)	C2I—H2IA	0.96
C8—N2	1.432 (2)	C21—H21B	0.96
C9—C10	1.388 (3)	C21—H21C	0.96
С9—Н9	0.93	N1—P1	1.6268 (15)
C10—C11	1.369 (4)	N1—H1	0.911 (15)
C10—H10	0.93	N2—P1	1.6279 (15)
C11—C12	1.375 (3)	N2—H21	0.899 (15)
C11—H11	0.93	01—P1	1 4692 (12)
C12-C13	1 390 (3)	02—P1	1.5964(12)
C12 H12	0.03	02-11	1.5904 (15)
C12—III2	0.95		
C_{2} C_{1} C_{6}	120 10 (16)	C13 C14 H14P	111.0 (10)
$C_2 = C_1 = C_0$	120.19(10) 120.22(15)		111.0(19)
C2-CI-NI	120.32 (15)	H14C - C14 - H14B	105 (3)
C6—C1—N1	119.48 (16)	C13—C14—H14A	114.9 (17)
C3—C2—C1	120.67 (18)	H14C—C14—H14A	106 (2)
С3—С2—Н2	119.7	H14B—C14—H14A	107 (2)
C1—C2—H2	119.7	C20—C15—C16	120.46 (17)
C4—C3—C2	119.9 (2)	C20—C15—O2	123.22 (17)
С4—С3—Н3	120.1	C16—C15—O2	116.30 (16)
С2—С3—Н3	120.1	C15—C16—C17	119.01 (19)
C3—C4—C5	119.4 (2)	C15—C16—H16	120.5
C3—C4—H4	120.3	С17—С16—Н16	120.5
C5-C4-H4	120.3	C_{18} C_{17} C_{16}	121.9(2)
C_{4} C_{5} C_{6}	120.5 122.25(10)	C_{18}^{18} C_{17}^{17} H_{17}^{17}	121.9 (2)
$C_{4} = C_{5} = C_{0}$	122.23 (19)	$C_{16} = C_{17} = H_{17}$	119
С4—С5—Н5	118.9		119
C6—C5—H5	118.9		117.39 (19)
C5—C6—C1	117.52 (18)	C17—C18—C21	121.3 (2)
C5—C6—C7	121.31 (18)	C19—C18—C21	121.3 (2)
C1—C6—C7	121.15 (17)	C18—C19—C20	122.0 (2)
С6—С7—Н7А	109.5	С18—С19—Н19	119
С6—С7—Н7В	109.5	С20—С19—Н19	119
H7A—C7—H7B	109.5	C15—C20—C19	119.2 (2)
С6—С7—Н7С	109.5	C15—C20—H20	120.4
H7A—C7—H7C	109.5	C19—C20—H20	120.4
H7B—C7—H7C	109.5	C18—C21—H21A	109.5
C9-C8-C13	120.81 (18)	C18—C21—H21B	109.5
C9-C8-N2	120.30(17)	H_{21A} C_{21} H_{21B}	109.5
C_{13} C_{8} N_{2}	118 87 (16)	C_{18} C_{21} H_{21C}	109.5
$C_{13}^{0} = C_{0}^{0} = C_{10}^{10}$	110.07(10)	1210 - 221 - 11210	109.5
$C_{0} = C_{0} = C_{10}$	120.1 (2)	$H_2IA = C_2I = H_2IC$	109.5
C8—C9—H9	119.9	H2IB—C2I—H2IC	109.5
С10—С9—Н9	119.9	CI—NI—PI	123.77 (12)
C11—C10—C9	119.7 (2)	C1—N1—H1	120.6 (13)
C11—C10—H10	120.1	P1—N1—H1	115.4 (13)
C9—C10—H10	120.1	C8—N2—P1	127.71 (12)
C10-C11-C12	119.9 (2)	C8—N2—H21	113.0 (14)
C10-C11-H11	120.1	P1—N2—H21	119.2 (14)
C12—C11—H11	120.1	C15—O2—P1	124.67 (11)
C11—C12—C13	121.9 (2)	O1—P1—O2	113.30 (7)

C11—C12—H12	119	O1—P1—N1	118.95 (8)
C13—C12—H12	119	O2—P1—N1	96.87 (7)
C12—C13—C8	117.46 (19)	O1—P1—N2	109.57 (7)
C12—C13—C14	120.5 (2)	O2—P1—N2	110.16 (8)
C8—C13—C14	122.06 (18)	N1—P1—N2	107.23 (7)
C13—C14—H14C	112.0 (18)		
C6—C1—C2—C3	-1.1 (3)	C15—C16—C17—C18	-0.1 (3)
N1—C1—C2—C3	179.94 (17)	C16—C17—C18—C19	0.6 (3)
C1—C2—C3—C4	-0.7 (3)	C16—C17—C18—C21	-178.7 (2)
C2—C3—C4—C5	1.3 (4)	C17—C18—C19—C20	-0.8 (3)
C3—C4—C5—C6	-0.2 (4)	C21—C18—C19—C20	178.5 (2)
C4—C5—C6—C1	-1.5 (3)	C16—C15—C20—C19	0.0 (3)
C4—C5—C6—C7	176.6 (2)	O2—C15—C20—C19	-178.57 (19)
C2-C1-C6-C5	2.1 (3)	C18—C19—C20—C15	0.5 (3)
N1—C1—C6—C5	-178.90 (17)	C2-C1-N1-P1	39.1 (2)
C2-C1-C6-C7	-175.95 (18)	C6—C1—N1—P1	-139.85 (15)
N1—C1—C6—C7	3.0 (3)	C9—C8—N2—P1	45.5 (2)
C13—C8—C9—C10	-0.6 (3)	C13—C8—N2—P1	-135.66 (15)
N2-C8-C9-C10	178.22 (17)	C20—C15—O2—P1	-33.5 (2)
C8—C9—C10—C11	-1.8 (3)	C16—C15—O2—P1	147.94 (14)
C9-C10-C11-C12	2.0 (3)	C15—O2—P1—O1	62.76 (15)
C10-C11-C12-C13	0.2 (3)	C15—O2—P1—N1	-171.60 (13)
C11—C12—C13—C8	-2.4 (3)	C15—O2—P1—N2	-60.38 (15)
C11—C12—C13—C14	177.9 (2)	C1—N1—P1—O1	-75.73 (15)
C9—C8—C13—C12	2.6 (3)	C1—N1—P1—O2	162.81 (14)
N2-C8-C13-C12	-176.18 (16)	C1—N1—P1—N2	49.18 (16)
C9—C8—C13—C14	-177.7 (2)	C8—N2—P1—O1	169.91 (14)
N2-C8-C13-C14	3.5 (3)	C8—N2—P1—O2	-64.80 (17)
C20-C15-C16-C17	-0.2 (3)	C8—N2—P1—N1	39.51 (17)
O2-C15-C16-C17	178.44 (18)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H··· <i>A</i>	D····A	D—H…A
N1—H1···O1 ⁱ	0.91 (2)	2.02 (2)	2.8963 (19)	161 (2)

Symmetry code: (i) -x+1, y-1/2, -z+1/2.