

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(4-Ferrocenylphenyl)benzamide

Ataf Ali Altaf,^a Amin Badshah,^a Nasir Khan^a and M. Nawaz Tahir^b*

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 16 May 2010; accepted 17 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.043; wR factor = 0.099; data-to-parameter ratio = 12.5.

In the title compound, $[Fe(C_5H_5)(C_{18}H_{14}NO)]$, the unsubstituted cyclopentadienyl ring is disordered over two sets of sites with occupancy ratio of 0.55 (1):0.45 (1). One conformation has the rings eclipsed and the other staggered. An intramolecular C-H···O hydrogen bond forms an *S*(6) ring motif. In the crystal, intermolecular C-H···O and N-H···O hydrogen bonds lead to $R_2^1(7)$ ring motifs. The molecules are linked into polymeric chains extending along the *b* axis.

Related literature

For similar structures, see: Fukuzumi *et al.* (2002); Shah *et al.* (2007). For graph-set notation, see: Bernstein *et al.* (1995).

Experiment

Crystal data [Fe(C₅H₅)(C₁₈H₁₄NO)] $M_r = 381.24$ Monoclinic, $P2_1/c$ a = 20.4467 (16) Å b = 10.3592 (8) Å c = 8.2933 (6) Å $\beta = 91.996$ (3)°

 $V = 1755.6 (2) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.87 mm^{-1}\) T = 296 K 0.32 \times 0.14 \times 0.08 mm $R_{\rm int} = 0.074$

13450 measured reflections

3257 independent reflections

1703 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.865, T_{\max} = 0.931$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	60 restraints
$wR(F^2) = 0.099$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
3257 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
260 parameters	

Table 1

Selected geometric parameters (Å, °).

Fe1-C6	2.034 (3)	Fe1-C9	2.039 (4)
Fe1-C7	2.030 (4)	Fe1-C10	2.059 (3)
Fe1-C8	2.028 (4)		
C6-Fe1-C7	40.81 (15)	C7-Fe1-C10	68.72 (15)
C6-Fe1-C8	68.11 (17)	C8-Fe1-C9	40.79 (16)
C6-Fe1-C9	68.32 (16)	C8-Fe1-C10	68.55 (15)
C6-Fe1-C10	40.66 (14)	C9-Fe1-C10	40.80 (14)
C7-Fe1-C8	40.32 (18)	C1B-Fe1-C9	122.2 (3)
C7-Fe1-C9	68.47 (17)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^{i}$	0.86	2.26	3.110 (4)	172
$C13 - H13 \cdots O1$	0.93	2.48	2.926 (4)	109
$C23 - H23 \cdots O1^{i}$	0.93	2.50	3.180 (4)	130

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the Higher Education Commission, Pakistan, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2774).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fukuzumi, S., Yoshida, Y., Okamoto, K., Imahori, H., Araki, Y. & Ito, O. (2002). J. Am. Chem. Soc. 124, 6794–6795.
- Shah, F. U., Akhter, Z., Siddiqi, H. M. & Parvez, M. (2007). Appl. Organomet. Chem. 21, 758–762.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, m831 [doi:10.1107/S1600536810023470]

N-(4-Ferrocenylphenyl)benzamide

Ataf Ali Altaf, Amin Badshah, Nasir Khan and M. Nawaz Tahir

S1. Comment

The crystal structure of (II) *i.e. N*-(benzylidene)-4-ferrocenylaniline (Shah *et al.*, 2007) and (III) *i.e.* 1-(4-((1,4-Benzoquinonyl)carbonylamino)phenyl)ferrocene (Fukuzumi *et al.*, 2002) have been published. The title compound (I) differs from these due to substituants at the N-atom.

In (I) the cyclopentadienyl ring A (C6–C10), phenyl rings B (C11–C16) and C (C18–C23) are planar with r. m. s. deviations of 0.0024, 0.0020 and 0.0030 Å, respectively. The dihedral angle between A/B is 2.31 (23)° which shows that central phenyl ring is almost planar with attached cyclopentadienyl. The dihedral angle between B/C is 69.05 (8)°. The Fe-atom is at a distance of 1.6435 (17) Å from the centroid of ring A. The important bond distances [Fe–C] and bond angles [C–Fe–C] are given in Table 1. Cyclopentadienyl ring of ferrocene not attached with 4-(benzoylamino)phenyl is disordered over two set of sites with occupancy ratio of 0.548 (14):0.452 (14). There exist intramolecular H-bonding of C —H···O type forming S(6) ring motif (Bernstein *et al.*, 1995). The intermolecular H-bondings of C—H···O and N—H···O type complete $R_2^1(7)$ ring motif (Table 2, Fig. 2). The molecules are stabilized in the form of polymeric chains extending along the crystallographic *b* axis (Fig. 2). In these chains molecules are connected in helical way due to screw symmetry.

S2. Experimental

Solution of benzoyl chloride (0.5 ml, 4.296 mmol) in 50 ml anhydrous CHCl₃ added to the solution of ferrocenyl aniline (1.19 g, 4.296 mmol) and triethylamine (0.71 ml, 5.155 mmol) in 50 ml anhydrous CHCl₃, at 273 K and stirred for 24 h. The completion of reaction monitored through TLC. To remove extra triethylamine and un-reacted acid chloride and the formed ammonium chloride, the mixture was extracted with distilled water (6×100 ml). The solution was evaporated under reduced pressure to give orange solid and re-crystallized form CH₂Cl₂. (yield: 84%)

S3. Refinement

The disordered cyclopentadienyl was refined in two groups as regular pentagons of 1.42 Å. The anisotropic temperature factors of the disordered C atoms were restrained to be nearly isotropic.

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.2 for all H-atoms.

Figure 1

View of (I) with the atom numbering scheme having atoms of greater occupancy ratio. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines indicate the intramolecular H-bondings.

Figure 2

View of (I) with atom numbering scheme having atoms of smaller occupancy ratio.. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines indicate the intramolecular H-bondings.

Figure 3

The partial packing (*PLATON*; Spek, 2009) which shows that molecules form polymeric chains extending along the *b* axis.

N-(4-Ferrocenylphenyl)benzamide

Crystal data

[Fe(C₅H₅)(C₁₈H₁₄NO)] $M_r = 381.24$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 20.4467 (16) Å b = 10.3592 (8) Å c = 8.2933 (6) Å $\beta = 91.996$ (3)° V = 1755.6 (2) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD	13450 measured reflections
diffractometer	3257 independent reflections
Radiation source: fine-focus sealed tube	1703 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.074$
Detector resolution: 8.20 pixels mm ⁻¹	$\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$
ω scans	$h = -24 \rightarrow 24$
Absorption correction: multi-scan	$k = -11 \rightarrow 12$
(<i>SADABS</i> ; Bruker, 2005)	$l = -10 \rightarrow 10$
$T_{\min} = 0.865, T_{\max} = 0.931$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.099$	neighbouring sites
S = 1.00	H-atom parameters constrained

F(000) = 792

 $\theta = 2.0 - 25.5^{\circ}$

 $\mu = 0.87 \text{ mm}^{-1}$ T = 296 K

Needle, orange

 $0.32 \times 0.14 \times 0.08 \text{ mm}$

 $D_{\rm x} = 1.442 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1703 reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0304P)^2 + 0.2729P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

direct methods

3257 reflections 260 parameters

Primary atom site location: structure-invariant

60 restraints

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. The disordered cyclopentadienyl was refined in two groups as regular pentagons. All the disordered Catoms were treated anisotropically having equal thermal parameters because refinement anisotropically with individual atoms or rings affoarded large ellipsoids. The sides of regular pentagons after final refinement have naearly 1.392 and 1.436 Å.

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe1	0.37659 (2)	0.49923 (6)	0.17093 (6)	0.0508 (2)	

01	0.00559(11)	0.4359 (2)	0.2493 (3)	0.0591 (10)	
N1	0.03504 (13)	0.6469 (3)	0.2387 (3)	0.0431 (10)	
C1A	0.3578 (5)	0.4675 (8)	0.4134 (8)	0.057 (3)	0.548 (14)
C2A	0.3398 (3)	0.3566 (8)	0.3215 (12)	0.062 (4)	0.548 (14)
C3A	0.3962 (6)	0.3122 (6)	0.2429 (9)	0.071 (4)	0.548 (14)
C4A	0.4490 (3)	0.3957 (11)	0.2861 (14)	0.063 (3)	0.548 (14)
C5A	0.4253 (5)	0.4917 (7)	0.3915 (11)	0.071 (3)	0.548 (14)
C6	0.32793 (17)	0.5137 (4)	-0.0465 (4)	0.0573 (14)	()
C7	0.3954 (2)	0.5401 (4)	-0.0623 (5)	0.0713 (19)	
C8	0.4114 (2)	0.6458 (4)	0.0363 (6)	0.0715 (19)	
C9	0.35447 (19)	0.6862 (4)	0.1150 (5)	0.0602 (17)	
C10	0.30168 (17)	0.6043 (3)	0.0627 (4)	0.0457 (12)	
C11	0.23316 (16)	0.6128 (3)	0.1118 (4)	0.0391(12)	
C12	0.18580 (17)	0.5278 (3)	0.0523 (4)	0.0453 (12)	
C13	0.12123(17)	0.5361(3)	0.0931 (4)	0.0436(12)	
C14	0.10100 (16)	0.6315 (3)	0.1977 (4)	0.0380(11)	
C15	0.14760(17)	0.0319(3) 0.7169(3)	0.1377(1) 0.2587(4)	0.0386(11) 0.0486(14)	
C16	0.21225(17)	0.713 (3) 0.7074 (3)	0.2172(4)	0.0494(14)	
C17	-0.00885(18)	0.5505 (3)	0.2172(1) 0.2620(4)	0.0422(11)	
C18	-0.07618(16)	0.5899(3)	0.2020(1) 0.3012(4)	0.0370(11)	
C19	-0.11146(17)	0.5095(3)	0.3012(1) 0.3993(4)	0.0370(11) 0.0474(12)	
C20	-0.17482(19)	0.5387(4)	0.3335(1) 0.4346(4)	0.0574(12)	
C21	-0.20407(18)	0.6307(1) 0.6490(4)	0.1310(1) 0.3725(4)	0.0571(17)	
C22	-0.16941(18)	0.7288(3)	0.3723(1) 0.2752(4)	0.0505(10) 0.0505(14)	
C23	-0.10566(17)	0.7200(3) 0.7008(3)	0.2752(1) 0.2401(4)	0.0303(11) 0.0440(12)	
C4B	0 3690 (6)	0.3127(5)	0.2407(9)	0.069(4)	0.452(14)
C5B	0.4363(4)	0.3427(3) 0.3442(12)	0.2316(7)	0.069(1)	0.152(11) 0.452(14)
C2B	0.3900(7)	0.3112(12) 0.4859(9)	0.2310(7) 0.4075(6)	0.001(1)	0.152(11) 0.452(14)
C3B	0.3403(3)	0.1003(14)	0.3494(7)	0.071(1) 0.057(4)	0.152(11) 0.452(14)
C1B	0.4493(4)	0.4513(11)	0.3347(11)	0.059(4)	0.152(11) 0.452(14)
H2A	0 29841	0.31948	0.31421	0.0743*	0.132(11) 0.548(14)
H3A	0.39814	0.24098	0.17497	0.0854*	0.548(14)
H1	0.02125	0.72473	0 24998	0.0516*	0.010(11)
HIA	0.33027	0.51581	0.47674	0.0691*	0.548(14)
н9	0.35192	0.75418	0 18780	0.0721*	0.010(11)
H12	0.19812	0.46272	-0.01774	0.0542*	
H13	0.09095	0.47731	0.05016	0.0522*	
H15	0.13519	0 78179	0.32884	0.0583*	
H16	0.24256	0 76579	0.26085	0.0595*	
H19	-0.09203	0.43527	0.44165	0.0570*	
H20	-0.19813	0.48397	0 50050	0.0690*	
H21	-0.24698	0.66902	0.39664	0.0667*	
H22	-0.18916	0.80268	0 23229	0.0603*	
H23	-0.08235	0.75637	0.17540	0.0525*	
H4A	0.49163	0.38880	0.25146	0.0754*	0.548(14)
H5A	0.44968	0.55865	0.43796	0.0843*	0.548(14)
H6	0.30465	0.44801	-0.09898	0.0682*	
H7	0.42391	0.49520	-0.12674	0.0859*	

supporting information

H8	0.45265	0.68325	0.04830	0.0857*	
H1B	0.48960	0.49158	0.35164	0.0710*	0.452 (14)
H2B	0.38458	0.55296	0.48043	0.0854*	0.452 (14)
H3B	0.29669	0.40137	0.37753	0.0683*	0.452 (14)
H4B	0.34740	0.24631	0.18514	0.0827*	0.452 (14)
H5B	0.46662	0.30206	0.16913	0.0768*	0.452 (14)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
Fe1	0.0403 (3)	0.0540 (3)	0.0581 (3)	-0.0033 (3)	0.0001 (2)	0.0041 (3)
01	0.0488 (16)	0.0309 (15)	0.098 (2)	0.0007 (13)	0.0098 (15)	0.0039 (16)
N1	0.0424 (18)	0.0271 (16)	0.060 (2)	-0.0006 (14)	0.0035 (15)	0.0015 (15)
C1A	0.044 (5)	0.077 (6)	0.051 (5)	-0.007 (5)	0.001 (4)	0.010 (4)
C2A	0.074 (7)	0.052 (6)	0.060 (6)	-0.015 (5)	0.006 (5)	-0.001 (5)
C3A	0.074 (7)	0.058 (6)	0.082 (6)	0.009 (5)	0.001 (5)	0.008 (5)
C4A	0.045 (5)	0.064 (6)	0.080 (7)	0.003 (5)	-0.002 (5)	0.001 (6)
C5A	0.055 (6)	0.088 (6)	0.067 (6)	0.003 (5)	-0.018 (5)	0.004 (6)
C6	0.054 (2)	0.067 (3)	0.051 (2)	0.004 (2)	0.0038 (19)	-0.005 (2)
C7	0.055 (3)	0.091 (4)	0.069 (3)	0.011 (2)	0.020 (2)	0.007 (3)
C8	0.057 (3)	0.064 (3)	0.094 (4)	-0.013 (2)	0.012 (3)	0.018 (3)
C9	0.054 (3)	0.051 (3)	0.076 (3)	-0.006 (2)	0.009 (2)	0.004 (2)
C10	0.047 (2)	0.044 (2)	0.046 (2)	-0.0008 (19)	0.0011 (19)	0.0072 (19)
C11	0.046 (2)	0.035 (2)	0.036 (2)	0.0022 (17)	-0.0020 (18)	0.0062 (17)
C12	0.054 (2)	0.037 (2)	0.045 (2)	-0.0002 (18)	0.0050 (18)	-0.0052 (17)
C13	0.051 (2)	0.038 (2)	0.042 (2)	-0.0072 (16)	0.0026 (18)	-0.0049 (17)
C14	0.041 (2)	0.0288 (19)	0.044 (2)	-0.0018 (16)	0.0004 (18)	0.0049 (18)
C15	0.052 (2)	0.036 (2)	0.058 (3)	-0.0002 (18)	0.004 (2)	-0.0109 (19)
C16	0.041 (2)	0.046 (2)	0.061 (3)	-0.0039 (18)	-0.0027 (19)	-0.011 (2)
C17	0.049 (2)	0.0293 (19)	0.048 (2)	0.0011 (18)	-0.0019 (19)	0.0012 (18)
C18	0.040 (2)	0.0309 (19)	0.040 (2)	-0.0026 (17)	-0.0010 (17)	-0.0052 (17)
C19	0.055 (2)	0.041 (2)	0.046 (2)	-0.003 (2)	0.0010 (17)	0.007 (2)
C20	0.056 (3)	0.064 (3)	0.053 (3)	-0.007 (2)	0.014 (2)	0.009 (2)
C21	0.047 (2)	0.070 (3)	0.050 (3)	0.008 (2)	0.007 (2)	-0.003 (2)
C22	0.049 (2)	0.045 (2)	0.057 (3)	0.008 (2)	-0.004 (2)	-0.002 (2)
C23	0.047 (2)	0.035 (2)	0.050 (2)	-0.0055 (17)	0.0018 (18)	0.0022 (18)
C4B	0.062 (7)	0.065 (7)	0.079 (8)	0.000 (5)	-0.004 (6)	0.015 (6)
C5B	0.059 (7)	0.054 (7)	0.079 (7)	0.001 (5)	-0.007 (6)	0.001 (6)
C2B	0.065 (9)	0.085 (7)	0.064 (6)	0.001 (6)	0.011 (6)	0.001 (6)
C3B	0.050 (6)	0.062 (7)	0.059 (7)	-0.004 (5)	0.006 (5)	0.012 (6)
C1B	0.053 (6)	0.073 (8)	0.051 (7)	0.004 (5)	-0.010 (5)	-0.015 (6)

Geometric parameters (Å, °)

Fel—ClA	2.086 (7)	C11—C16	1.390 (5)	
Fe1—C2A	2.091 (9)	C12—C13	1.377 (5)	
Fe1—C3A	2.063 (7)	C13—C14	1.388 (5)	
Fe1—C4A	2.039 (9)	C14—C15	1.383 (5)	

Fe1—C5A	2.054 (9)	C15—C16	1.381 (5)
Fe1—C6	2.034 (3)	C17—C18	1.483 (5)
Fe1—C7	2.030 (4)	C18—C23	1.385 (5)
Fe1—C8	2.028 (4)	C18—C19	1.384 (5)
Fe1—C9	2.039 (4)	C19—C20	1.372 (5)
Fe1—C10	2.059 (3)	C20—C21	1.381 (6)
Fe1—C1B	2.040 (9)	C21—C22	1.370 (5)
Fe1—C2B	1.976 (5)	C22—C23	1.376 (5)
Fe1—C3B	1 967 (9)	C1A—H1A	0.9300
Fe1—C4B	2,025 (6)	C1B—H1B	0.9300
Fe1—C5B	2.069 (11)	C2A—H2A	0.9300
01 - C17	1 229 (4)	C2B—H2B	0.9300
N1 C14	1.229(4)		0.9300
N1_C17	1.411(4)	C2P H2P	0.9300
NI H1	0.8600		0.9300
	1.421(14)		0.9300
CIA-CJA	1.421(14)		0.9300
CIA-C2A	1.420 (12)	CSA—HSA	0.9300
CIB-C2B	1.419 (15)	Сов—нов	0.9300
CIB—C5B	1.420 (15)	С6—Н6	0.9300
C2A—C3A	1.421 (13)	C/—H7	0.9300
C2B—C3B	1.420 (16)	C8—H8	0.9300
C3A—C4A	1.420 (13)	С9—Н9	0.9300
C3B—C4B	1.420 (13)	C12—H12	0.9300
C4A—C5A	1.420 (14)	C13—H13	0.9300
C4B—C5B	1.419 (15)	C15—H15	0.9300
C6—C7	1.417 (5)	C16—H16	0.9300
C6—C10	1.422 (5)	С19—Н19	0.9300
С7—С8	1.399 (6)	С20—Н20	0.9300
C8—C9	1.417 (6)	C21—H21	0.9300
C9—C10	1.428 (5)	С22—Н22	0.9300
C10-C11	1.475 (5)	С23—Н23	0.9300
C11—C12	1.387 (5)		
Fe1…C12	4.001 (4)	C3B····H4B	2.1100
Fe1…C16	4.022 (3)	C3B····H21 ^{iv}	2.9800
Fe1···H1B	2.7100	C4A···H3A	2.1100
Fe1···H2B	2.6300	C4A···H5A	2.1100
Fe1···H3B	2.6300	C4A···H5A ⁱⁱⁱ	3.0700
Fe1H4B	2.6900	C4B···H5B	2 1000
Fe1···H5B	2,7500	C4B···H3B	2.1000
01	2.926 (4)	$C4B \cdots H21^{i}$	3 0900
$01 \cdots C23^{i}$	2.920(4) 3.180(4)	$C_{4}D_{1121}$	2 1100
01N1i	3 110 (4)	C54H14	2.1100
O1H10	2 6000		2.1100
O1 1117 O1U12	2.0000		2.9200
	2.4000		2.1100
	2.2000		2.1100
01···H23 ⁴	2.5000		2.1000
N1…O1"	3.110 (4)	C0H17	2.7200

N1…H23	2.6900	C7…H9 ^v	3.0800
C1A···C3A	2.298 (11)	С7…Н8	2.0800
C1A···C4A	2.298 (12)	C7…H4A ^{vi}	2.9300
C1A…C9	3.354 (9)	С7…Н6	2.1000
C1A…C10	3.399 (8)	С8…Н9	2.1000
C1B····C4B	2.297 (14)	С8…Н7	2.0900
C1B…C7	3.556 (10)	С9…Н8	2.1000
C1B…C8	3.264 (11)	С9…Н16	2.7500
C1B····C1B ⁱⁱⁱ	3.527 (13)	C9····H2B ^v	3.0000
C1B····C3B	2.298 (11)	С10…Н9	2.1100
C1B…C9	3.571 (11)	C10…H16 ^v	3.0500
C2A···C4A	2.298 (9)	С10…Н6	2.1000
C2A…C6	3.460 (10)	C12…H22 ⁱ	2.9400
C2A…C10	3.418 (9)	С12…Н6	2.8900
C2A···C5A	2.298 (12)	C12…H15 ^v	2.8700
C2B····C4B	2.297 (10)	C13…H15 ^v	2.9100
C2B…C9	3.255 (9)	C14…H19 ^{iv}	3.0800
C2B…C10	3.547 (9)	C15H20 ^{iv}	3.0400
C2B…C8	3.536 (8)	C15…H19 ⁱⁱ	3.0100
C2B…C5B	2.297 (13)	C16…H20 ^{iv}	3.0900
СЗА…С5А	2.298 (11)	С16…Н9	2.9200
C3A…C1A	2.298 (11)	C17····H13 ^{vii}	3.0500
C3A…C7	3.461 (8)	C17…H13	2.8400
C3A…C6	3.440 (9)	C18····H13 ^{vii}	3.0000
C3B…C1B	2.298 (11)	C19…H15 ⁱ	3.0500
C3B…C9	3.560 (13)	C20····H22 ^{viii}	2.9900
C3B…C5B	2.298 (11)	C20····H3B ^{iv}	3.0500
C3B…C6	3.488 (8)	C21····H22 ^{viii}	3.0300
C3B…C10	3.258 (11)	C21····H3B ^{iv}	2.9000
C4A…C1A	2.298 (12)	C21····H2A ⁱⁱ	3.0000
C4A…C8	3.389 (12)	C22····H2A ⁱⁱ	2.8700
C4A···C2A	2.298 (9)	C22····H12 ^{vii}	2.9600
C4A···C7	3.401 (12)	C23····H12 ^{vii}	3.1000
C4B···C7	3.500 (8)	C23…H1	2.6100
C4B···C2B	2.297 (10)	C23····H13 ^{vii}	3.0600
C4B…C1B	2.297 (14)	H1…H15	2.4700
C4B···C6	3.252 (8)	H1…C23	2.6100
C5A…C9	3.344 (10)	H1…H23	2.2100
C5A…C8	3.354 (10)	H1…O1 ⁱⁱ	2.2600
C5A···C5A ⁱⁱⁱ	3.495 (14)	H1B…Fe1	2.7100
C5A···C3A	2.298 (11)	H1B…H1B ⁱⁱⁱ	2.4900
C5A···C2A	2.298 (12)	H1B…C1B ⁱⁱⁱ	2.9100
C5B···C3B	2.298 (11)	H2A…C22 ⁱ	2.8700
C5B…C2B	2.297 (13)	H2A…C21 ⁱ	3.0000
C5B…C8	3.548 (12)	H2A…H21 ⁱ	2.5400
C5B…C7	3.258 (10)	H2A…H22 ⁱ	2.2600
C5B…C6	3.600 (9)	H2B…Fe1	2.6300
C6…C9	2.287 (6)	H2B····C9 ^{viii}	3.0000

C6…C11	2.590 (5)	H3B····H20 ^{iv}	2.5800
C6…C3A	3.440 (9)	H3B…Fe1	2.6100
C6…C8	2.275 (6)	H3B····H22 ⁱ	2.5600
C6…C2A	3.460 (10)	H3B····C20 ^{iv}	3.0500
C6…C4B	3.252 (8)	H3B····C21 ^{iv}	2.9000
C6…C5B	3.600 (9)	H3B…H21 ^{iv}	2.2800
C6…C3B	3.488 (8)	$H4A$ ··· $H7^{vi}$	2.3700
С7…С5В	3.258 (10)	H4A…C7 ^{vi}	2.9300
C7…C4A	3.401 (12)	H4B…Fe1	2.6900
C7···C1B	3.556 (10)	$H4B\cdots H21^{i}$	2.2800
C7…C9	2.289 (6)	H5A····C5A ⁱⁱⁱ	2.9200
C7…C3A	3 461 (8)	Н5А…Н5Аііі	2,5700
C7…C10	2308(5)		3 0700
C7…C4B	3 500 (8)	H5B…Fel	2 7500
C8…C6	2 275 (6)	H5B···H8 ^{vi}	2.7500
C8 C0	2.275(0) 3 548 (12)	H6C12	2.4900
C8 C3B	3.348(12)	H6H12	2.8900
C8C10	3.204(11)		2.3100
C8C10	2.302(3)		2.3700
C8C4A	3.389(12)		2.4900
C8C2B	3.536 (8)	H9C/	3.0800
C8···CSA	3.354 (10)	H9C16	2.9200
C9···CSA	3.344 (10)		2.3400
C9····CIB	3.571 (11)	H12····C23 ^{vii}	3.1000
C9C11	2.594 (5)	H12····C6	2.7200
C9…C1A	3.354 (9)	H12···H6	2.3100
C9…C6	2.287 (6)	H12····C22 ^{vii}	2.9600
C9…C3B	3.560 (13)	H13…C23 ^{vii}	3.0600
C9…C2B	3.255 (9)	H13…C17	2.8400
C9…C7	2.289 (6)	H13····C17 ^{vii}	3.0500
C10…C7	2.308 (5)	H13…O1	2.4800
C10…C3B	3.258 (11)	H13····C18 ^{vii}	3.0000
C10…C8	2.302 (5)	H15…C19 ⁱⁱ	3.0500
C10…C2B	3.547 (9)	H15····C12 ^{viii}	2.8700
C10…C2A	3.418 (9)	H15…H1	2.4700
C10…C1A	3.399 (8)	H15····C13 ^{viii}	2.9100
C12…Fe1	4.001 (4)	H16…C9	2.7500
$C12 \cdots C22^{i}$	3.433 (4)	Н16…Н9	2.3400
C13…C22 ⁱ	3.496 (4)	H16····C10 ^{viii}	3.0500
C13…O1	2.926 (4)	H19C15 ⁱ	3.0100
C15…C19 ⁱⁱ	3.375 (5)	H19…C14 ^{iv}	3.0800
C16…Fe1	4.022 (3)	H19…O1	2.6000
C19…C15 ⁱ	3.375 (5)	H20…C15 ^{iv}	3.0400
C22…C12 ⁱⁱ	3.433 (4)	H20…C16 ^{iv}	3.0900
C22…C13 ⁱⁱ	3,496 (4)	H20···H3B ^{iv}	2.5800
C23…O1 ⁱⁱ	3.180 (4)	H21····C3B ^{iv}	2,9800
C1A···H2A	2.1100	H21···H3B ^{iv}	2.2800
C1A···H5A	2.1100	H21····C2A ^{iv}	3 0700
C1B···H5B	2.1100	H21···H2A ⁱⁱ	2.5400

C1B···H2B	2.1100	H21····C4B ⁱⁱ	3.0900
C1B···H1B ⁱⁱⁱ	2.9100	H21···H4B ⁱⁱ	2.2800
C2A···H21 ^{iv}	3.0700	H22…C12 ⁱⁱ	2.9400
C2A···H1A	2.1100	H22····H2A ⁱⁱ	2.2600
С2А…НЗА	2.1100	H22···H3B ⁱⁱ	2.5600
C2B···H1B	2.1100	H22…C20 ^v	2.9900
C2B···H3B	2.1100	H22···C21 ^v	3.0300
C3A···H2A	2 1100	H23…N1	2,6900
C3AH4A	2 1100	H23···H1	2 2100
C3B···H2B	2.1100	H23····O1 ⁱⁱ	2.5000
	2.1100	1123 01	2.5000
C1A—Fe1—C2A	39.7 (3)	Fe1—C4B—C5B	71.4 (6)
C1A—Fe1—C3A	67.3 (3)	Fe1—C5A—C4A	69.1 (5)
C1A—Fe1—C4A	67.7 (4)	C1A—C5A—C4A	108.0 (7)
C1A—Fe1—C5A	40.1 (4)	Fe1—C5A—C1A	71.2 (5)
C1A—Fe1—C6	139.9 (3)	Fe1—C5B—C1B	68.7 (6)
C1A—Fe1—C7	177.0 (3)	Fe1—C5B—C4B	68.1 (5)
C1A—Fe1—C8	136.8 (3)	C1B—C5B—C4B	108.0 (7)
C1A—Fe1—C9	108.8 (3)	Fe1—C6—C7	69.4 (2)
C1A—Fe1—C10	110.1 (3)	C7—C6—C10	108.8 (3)
C2A—Fe1—C3A	40.0 (4)	Fe1—C6—C10	70.61 (19)
C2A—Fe1—C4A	67.6 (3)	Fe1—C7—C8	69.8 (3)
C2A—Fe1—C5A	67.3 (3)	Fe1—C7—C6	69.8 (2)
C2A—Fe1—C6	114.0(3)	C6—C7—C8	107.8 (4)
C_2A —Fe1—C7	143.2 (3)	Fe1—C8—C9	70.0 (2)
C2A—Fe1—C8	1764(3)	Fe1—C8—C7	69.9(2)
C2A—Fe1—C9	1365(2)	C7 - C8 - C9	108.7(4)
C2A—Fe1—C10	110.9(2)	Fe1-C9-C10	704(2)
C3A—Fe1—C4A	40.5(4)	C8 - C9 - C10	108.0(3)
C3A—Fe1—C5A	67.9 (3)	Fe1-C9-C8	69 2 (2)
C3A—Fe1—C6	1142(3)	Fe1-C10-C6	68 73 (19)
C3A—Fe1—C7	114.2(3) 1155(3)	Fe1-C10-C11	127.6(2)
C3A—Fe1—C8	142.6(3)	C_{6}	127.0(2) 106.7(3)
$C_{3}A$ Fe1 C0	176.0(3)	Ee1 - C10 - C9	68.8 (2)
C_{3A} Fe1 C_{10}	170.0(3) 139.2(3)	C_{0} C_{10} C_{11}	126.6(3)
C4A—Fe1—C5A	40.6(4)	C_{6} C_{10} C_{11}	120.0(3) 126.7(3)
C4A Fel $C6$	1/1 2 (3)	C_{10} C_{11} C_{12}	120.7(3) 121.5(3)
C4A = Fe1 = C7	141.2(3)	C10 - C11 - C12	121.3(3) 122.1(3)
C4A = Fe1 = C7	113.4(3) 112.0(3)	$C_{10} = C_{11} = C_{10}$	122.1(3) 116A(3)
C4A = Fe1 = C0	112.9(3) 130.3(3)	$C_{12} - C_{11} - C_{10}$	110.4(3) 122.5(3)
C4A = Fe1 = C10	139.3(3) 177.8(2)	C12 - C12 - C13	122.5(3) 120.5(3)
C_{A} Fel Clo	177.8(3)	$C_{12} - C_{13} - C_{14}$	120.3(3) 117.0(3)
C5A = Fe1 = C0	177.9(2)	C13 - C14 - C13	117.9(3)
C5A = Fe1 = C7	139.0(3)	N1 - C14 - C13	119.4(3)
$C_{5A} = F_{c1} = C_{0}$	110.3(3)	111 - 014 - 015	122.0(3)
C_{3A} F_{c1} C_{10}	109.0(2) 127.6(2)	$C_{14} - C_{15} - C_{16}$	121.1(3)
C_{A} $-re_{I}$ $-C_{I0}$	13/.0(3)	$\begin{array}{c} C11 - C10 - C13 \\ O1 - C17 - N1 \end{array}$	121.7(3)
$C_0 - r c_1 - C_1$	40.01(13)	O1 - O1 - O1	122.4(3)
U-FCI-U0	00.11(1/)	$U_1 - U_1 - U_1 \delta$	120.8 (3)

C6—Fe1—C9	68.32 (16)	N1—C17—C18	116.8 (3)
C6—Fe1—C10	40.66 (14)	C17—C18—C19	118.1 (3)
C1B—Fe1—C6	158.5 (3)	C19—C18—C23	119.0 (3)
C2B—Fe1—C6	158.7 (4)	C17—C18—C23	122.9 (3)
C3B—Fe1—C6	121.3 (2)	C18—C19—C20	120.6 (4)
C4B—Fe1—C6	106.5 (3)	C19—C20—C21	120.2 (4)
C5B—Fe1—C6	122.6 (2)	C20—C21—C22	119.5 (3)
C7—Fe1—C8	40.32 (18)	C21—C22—C23	120.7 (3)
C7—Fe1—C9	68.47 (17)	C18—C23—C22	120.1 (3)
C7—Fe1—C10	68.72 (15)	Fe1—C1A—H1A	127.00
C1B—Fe1—C7	121.8 (3)	C2A—C1A—H1A	126.00
C2B—Fe1—C7	159.4 (4)	C5A—C1A—H1A	126.00
C3B—Fe1—C7	156.2 (3)	C5B—C1B—H1B	126.00
C4B—Fe1—C7	119.4 (2)	Fe1—C1B—H1B	128.00
C5B—Fe1—C7	105.3 (2)	C2B—C1B—H1B	126.00
C8—Fe1—C9	40.79 (16)	Fe1—C2A—H2A	127.00
C8—Fe1—C10	68.55 (15)	C1A—C2A—H2A	126.00
C1B—Fe1—C8	106.7 (3)	C3A—C2A—H2A	126.00
C2B—Fe1—C8	124.0 (3)	C3B—C2B—H2B	126.00
C3B—Fe1—C8	162.4 (4)	Fe1—C2B—H2B	125.00
C4B—Fe1—C8	154.6 (3)	C1B—C2B—H2B	126.00
C5B—Fe1—C8	120.0 (3)	Fe1—C3A—H3A	126.00
C9—Fe1—C10	40.80 (14)	С2А—С3А—НЗА	126.00
C1B—Fe1—C9	122.2 (3)	С4А—С3А—Н3А	126.00
C2B—Fe1—C9	108.3 (3)	Fe1—C3B—H3B	125.00
C3B—Fe1—C9	125.4 (4)	C4B—C3B—H3B	126.00
C4B—Fe1—C9	162.4 (4)	C2B—C3B—H3B	126.00
C5B—Fe1—C9	156.5 (3)	СЗА—С4А—Н4А	126.00
C1B—Fe1—C10	158.9 (3)	Fe1—C4A—H4A	125.00
C2B—Fe1—C10	123.0 (4)	С5А—С4А—Н4А	126.00
C3B—Fe1—C10	108.0 (3)	Fe1—C4B—H4B	127.00
C4B—Fe1—C10	124.5 (3)	C5B—C4B—H4B	126.00
C5B—Fe1—C10	160.1 (3)	C3B—C4B—H4B	126.00
C1B—Fe1—C2B	41.4 (5)	С1А—С5А—Н5А	126.00
C1B—Fe1—C3B	70.0 (3)	Fe1—C5A—H5A	125.00
C1B—Fe1—C4B	68.8 (4)	С4А—С5А—Н5А	126.00
C1B—Fe1—C5B	40.4 (4)	Fe1—C5B—H5B	129.00
C2B—Fe1—C3B	42.2 (4)	C4B—C5B—H5B	126.00
C2B—Fe1—C4B	70.1 (3)	C1B—C5B—H5B	126.00
C2B—Fe1—C5B	69.2 (4)	С7—С6—Н6	126.00
C3B—Fe1—C4B	41.7 (4)	Fe1—C6—H6	126.00
C3B—Fe1—C5B	69.4 (4)	С10—С6—Н6	126.00
C4B—Fe1—C5B	40.5 (4)	С8—С7—Н7	126.00
C14—N1—C17	126.3 (3)	Fe1—C7—H7	126.00
C17—N1—H1	117.00	С6—С7—Н7	126.00
C14—N1—H1	117.00	С9—С8—Н8	126.00
Fe1—C1A—C5A	68.7 (5)	Fe1—C8—H8	126.00
C2A—C1A—C5A	108.0 (7)	С7—С8—Н8	126.00

	70.2 (5)	C10 C0 H0	10(00
Fel—CIA—C2A	/0.3 (5)	C10-C9-H9	126.00
Fel—CIB—C2B	66.9 (5)	Fel—C9—H9	126.00
C2B—C1B—C5B	108.0 (8)	С8—С9—Н9	126.00
Fe1—C1B—C5B	70.9 (5)	C13—C12—H12	119.00
Fe1—C2A—C3A	68.9 (4)	C11—C12—H12	119.00
C1A—C2A—C3A	108.0 (7)	C12—C13—H13	120.00
Fe1—C2A—C1A	69.9 (4)	C14—C13—H13	120.00
Fe1—C2B—C1B	71.7 (4)	C14—C15—H15	119.00
Fe1—C2B—C3B	68.5 (4)	C16—C15—H15	119.00
C1B—C2B—C3B	108.1 (7)	C11—C16—H16	119.00
Fe1—C3A—C4A	68 9 (5)	C15—C16—H16	119.00
Fe1 - C3A - C2A	71.1 (5)	C18-C19-H19	120.00
$C_{2A} = C_{2A} = C_{4A}$	1080(7)	C_{10} C_{10} H_{10}	120.00
$C_{2A} = C_{3A} = C_{4A}$	100.0(7)	$C_{20} = C_{19} = H_{19}$	120.00
Fe1 = C3B = C2B	09.3(3)	C19 - C20 - H20	120.00
Fel—C3B—C4B	/1.4 (4)	C21—C20—H20	120.00
C2B—C3B—C4B	107.9 (7)	C20—C21—H21	120.00
C3A—C4A—C5A	108.0 (7)	C22—C21—H21	120.00
Fe1—C4A—C5A	70.3 (5)	C21—C22—H22	120.00
Fe1—C4A—C3A	70.7 (5)	C23—C22—H22	120.00
C3B—C4B—C5B	108.0 (7)	C18—C23—H23	120.00
Fe1—C4B—C3B	67.0 (5)	С22—С23—Н23	120.00
C2A—Fe1—C1A—C5A	119.5 (7)	C6—Fe1—C8—C9	81.7 (3)
C3A—Fe1—C1A—C2A	-37.3 (5)	C7—Fe1—C8—C9	119.8 (4)
C3A—Fe1—C1A—C5A	82.1 (6)	C9—Fe1—C8—C7	-119.8(4)
C4A—Fe1—C1A—C2A	-81.3(5)	C10—Fe1—C8—C7	-82.0(2)
C4A—Fe1—C1A—C5A	38.1.(5)	C10—Fe1—C8—C9	37.8 (2)
$C_5A = F_{e1} = C_1A = C_2A$	-1195(7)	C1A - Fe1 - C9 - C8	1416(4)
C6-Fe1-C1A-C2A	63.8 (6)	C1A - Fe1 - C9 - C10	-99.3(3)
$C6 F_{21} C1A C5A$	-176.8(4)	C_{2A} E_{21} C_{2} C_{2}	176.3(3)
C_{0}^{R} C_{1}^{R} C_{1}^{R} C_{2}^{R}	170.0(4)	$C_{2A} = Fe_{1} = C_{2} = C_{3}$	170.3(4)
C_{0} FeI C_{1A} C_{2A}	1/8.3(3)	C_{2A} FeI C_{2A}	-64.0(4)
C8—FeI—CIA—CSA	-62.1(6)	C4A - FeI - C9 - C8	04.2 (5)
C9—FeI—CIA—C2A	142.1 (4)	C4A—FeI—C9—C10	-176.7(5)
C9—Fe1—C1A—C5A	-98.4 (4)	C5A—Fe1—C9—C8	99.0 (4)
C10—Fe1—C1A—C2A	98.8 (4)	C5A—Fe1—C9—C10	-141.9 (3)
C10—Fe1—C1A—C5A	-141.8 (4)	C6—Fe1—C9—C8	-81.2 (3)
C1A—Fe1—C2A—C3A	-119.6 (7)	C6—Fe1—C9—C10	37.9 (2)
C3A—Fe1—C2A—C1A	119.6 (7)	C7—Fe1—C9—C8	-37.1 (3)
C4A—Fe1—C2A—C1A	81.6 (6)	C7—Fe1—C9—C10	82.0 (2)
C4A—Fe1—C2A—C3A	-38.0 (6)	C8—Fe1—C9—C10	119.1 (3)
C5A—Fe1—C2A—C1A	37.5 (5)	C10—Fe1—C9—C8	-119.1 (3)
C5A—Fe1—C2A—C3A	-82.1 (5)	C1A—Fe1—C10—C6	-145.5(3)
C6—Fe1—C2A—C1A	-140.8(5)	C1A—Fe1—C10—C9	95.8 (3)
C6—Fe1—C2A—C3A	99.7 (5)	C1A—Fe1—C10—C11	-24.8(4)
C7—Fe1— $C2A$ — $C1A$	-178.8(5)	C2A—Fe1—C10—C6	-102.9(3)
C7—Fe1— $C2A$ - $C3A$	61 7 (6)	C_2A Fe1 C_10 C_9	132.7(3)
$C_{0} = E_{1} = C_{2} \wedge C_{1} \wedge C_{2} \wedge C_{1} \wedge C_{2} \wedge C_{2$	-57.6 (6)	C_{2A} Fe1_ C10_ C11	178(A)
$C_{2} = C_{1} = C_{2} = C_{1} = C_{2} = C_{2$	177.0(0)	$C_{2A} = C_{10} = C_{10} = C_{10}$	(7, 2, (4))
U9—rei—U2A—U3A	-1/1.2(4)	USA-rei-UIU-Ub	-07.3 (4)

C10—Fe1—C2A—C1A	-96.8 (5)	C3A—Fe1—C10—C9	173.9 (4)
C10—Fe1—C2A—C3A	143.7 (5)	C3A—Fe1—C10—C11	53.4 (5)
C1A—Fe1—C3A—C2A	37.1 (5)	C5A—Fe1—C10—C6	178.3 (4)
C1A—Fe1—C3A—C4A	-81.8 (6)	C5A—Fe1—C10—C9	59.5 (4)
C2A—Fe1—C3A—C4A	-118.9 (7)	C5A—Fe1—C10—C11	-61.0 (5)
C4A—Fe1—C3A—C2A	118.9 (7)	C6—Fe1—C10—C9	-118.8(3)
C5A—Fe1—C3A—C2A	80.7 (5)	C6—Fe1—C10—C11	120.7 (4)
C5A—Fe1—C3A—C4A	-38.2 (6)	C7—Fe1—C10—C6	37.5 (2)
C6—Fe1—C3A—C2A	-99.1 (5)	C7—Fe1—C10—C9	-81.3(2)
C6—Fe1—C3A—C4A	142.1 (5)	C7—Fe1—C10—C11	158.2 (3)
C7—Fe1—C3A—C2A	-144.2 (4)	C8—Fe1—C10—C6	80.9 (2)
C7—Fe1—C3A—C4A	96.9 (5)	C8—Fe1—C10—C9	-37.8(2)
C8—Fe1—C3A—C2A	175.9 (4)	C8—Fe1—C10—C11	-158.4(3)
C8—Fe1—C3A—C4A	57.0 (7)	C9—Fe1—C10—C6	118.8 (3)
C10—Fe1—C3A—C2A	-57.8 (6)	C9—Fe1—C10—C11	-120.5(4)
C10—Fe1—C3A—C4A	-176.7 (5)	C17—N1—C14—C13	37.2 (5)
C1A—Fe1—C4A—C3A	80.6 (6)	C17—N1—C14—C15	-145.1(3)
C1A—Fe1—C4A—C5A	-37.7(5)	C14—N1—C17—O1	0.2 (5)
C2A—Fe1—C4A—C3A	37.5 (5)	C14—N1—C17—C18	-178.8(3)
C2A—Fe1—C4A—C5A	-80.8(6)	Fe1—C1A—C2A—C3A	58.6 (6)
C3A—Fe1—C4A—C5A	-118.3(8)	C5A—C1A—C2A—Fe1	-58.5(5)
C5A—Fe1—C4A—C3A	118.3 (8)	C5A—C1A—C2A—C3A	0.0 (9)
C6—Fe1—C4A—C3A	-63.4 (7)	Fe1—C1A—C5A—C4A	-59.6 (7)
C6—Fe1—C4A—C5A	178.3 (4)	C2A—C1A—C5A—Fe1	59.6 (6)
C7—Fe1—C4A—C3A	-102.4(5)	C2A—C1A—C5A—C4A	0.0 (10)
C7—Fe1—C4A—C5A	139.3 (5)	Fe1—C2A—C3A—C4A	59.2 (6)
C8—Fe1—C4A—C3A	-146.4 (5)	C1A—C2A—C3A—Fe1	-59.2 (6)
C8—Fe1—C4A—C5A	95.3 (5)	C1A—C2A—C3A—C4A	-0.1 (10)
C9—Fe1—C4A—C3A	173.9 (4)	Fe1—C3A—C4A—C5A	60.6 (7)
C9—Fe1—C4A—C5A	55.6 (7)	C2A—C3A—C4A—Fe1	-60.6 (6)
C1A—Fe1—C5A—C4A	118.6 (7)	C2A—C3A—C4A—C5A	0.1 (11)
C2A—Fe1—C5A—C1A	-37.1 (5)	Fe1—C4A—C5A—C1A	60.9 (6)
C2A—Fe1—C5A—C4A	81.5 (5)	C3A—C4A—C5A—Fe1	-60.9 (7)
C3A—Fe1—C5A—C1A	-80.5 (6)	C3A—C4A—C5A—C1A	0.0 (11)
C3A—Fe1—C5A—C4A	38.1 (6)	Fe1—C6—C7—C8	-59.7 (3)
C4A—Fe1—C5A—C1A	-118.6 (7)	C10-C6-C7-Fe1	59.9 (2)
C7—Fe1—C5A—C1A	175.6 (4)	C10—C6—C7—C8	0.2 (5)
C7—Fe1—C5A—C4A	-65.8 (6)	Fe1—C6—C10—C9	58.6 (3)
C8—Fe1—C5A—C1A	139.7 (4)	Fe1—C6—C10—C11	-121.8(3)
C8—Fe1—C5A—C4A	-101.6 (5)	C7—C6—C10—Fe1	-59.1 (3)
C9—Fe1—C5A—C1A	96.2 (4)	C7—C6—C10—C9	-0.6(4)
C9—Fe1—C5A—C4A	-145.2 (5)	C7—C6—C10—C11	179.1 (3)
C10—Fe1—C5A—C1A	59.5 (6)	Fe1—C7—C8—C9	-59.4 (3)
C10—Fe1—C5A—C4A	178.1 (4)	C6—C7—C8—Fe1	59.7 (3)
C1A—Fe1—C6—C7	175.5 (4)	C6—C7—C8—C9	0.2 (5)
C1A—Fe1—C6—C10	55.7 (5)	Fe1—C8—C9—C10	-59.9 (3)
C2A—Fe1—C6—C7	-145.6 (3)	C7-C8-C9-Fe1	59.4 (3)
C2A—Fe1—C6—C10	94.6 (3)	C7—C8—C9—C10	-0.6(5)

C3A—Fe1—C6—C7	-101.6 (4)	Fe1—C9—C10—C6	-58.5 (2)
C3A—Fe1—C6—C10	138.6 (4)	Fe1-C9-C10-C11	121.9 (3)
C4A—Fe1—C6—C7	-62.1 (5)	C8-C9-C10-Fe1	59.2 (3)
C4A—Fe1—C6—C10	178.2 (4)	C8—C9—C10—C6	0.7 (4)
C7—Fe1—C6—C10	-119.8 (3)	C8—C9—C10—C11	-179.0 (3)
C8—Fe1—C6—C7	37.6 (2)	Fe1—C10—C11—C12	-90.0 (4)
C8—Fe1—C6—C10	-82.1 (2)	Fe1-C10-C11-C16	91.2 (4)
C9—Fe1—C6—C7	81.7 (3)	C6-C10-C11-C12	0.2 (5)
C9—Fe1—C6—C10	-38.0 (2)	C6-C10-C11-C16	-178.5 (3)
C10—Fe1—C6—C7	119.8 (3)	C9—C10—C11—C12	179.7 (3)
C2A—Fe1—C7—C6	59.4 (4)	C9—C10—C11—C16	1.0 (5)
C2A—Fe1—C7—C8	178.3 (4)	C10-C11-C12-C13	-178.2 (3)
C3A—Fe1—C7—C6	98.2 (4)	C16—C11—C12—C13	0.6 (5)
C3A—Fe1—C7—C8	-142.9 (4)	C10-C11-C16-C15	178.1 (3)
C4A—Fe1—C7—C6	142.8 (4)	C12-C11-C16-C15	-0.7 (5)
C4A—Fe1—C7—C8	-98.3 (4)	C11—C12—C13—C14	-0.2 (5)
C5A—Fe1—C7—C6	-176.9 (4)	C12-C13-C14-N1	177.7 (3)
C5A—Fe1—C7—C8	-58.0 (4)	C12-C13-C14-C15	0.0 (5)
C6—Fe1—C7—C8	118.9 (3)	N1-C14-C15-C16	-177.9 (3)
C8—Fe1—C7—C6	-118.9 (3)	C13—C14—C15—C16	-0.2 (5)
C9—Fe1—C7—C6	-81.3 (3)	C14-C15-C16-C11	0.6 (5)
C9—Fe1—C7—C8	37.5 (2)	O1—C17—C18—C19	32.4 (5)
C10—Fe1—C7—C6	-37.4 (2)	O1—C17—C18—C23	-145.5 (3)
C10—Fe1—C7—C8	81.5 (2)	N1-C17-C18-C19	-148.6 (3)
C1A—Fe1—C8—C7	-179.0 (4)	N1—C17—C18—C23	33.5 (5)
C1A—Fe1—C8—C9	-59.2 (5)	C17—C18—C19—C20	-177.5 (3)
C3A—Fe1—C8—C7	63.6 (5)	C23-C18-C19-C20	0.5 (5)
C3A—Fe1—C8—C9	-176.6 (4)	C17—C18—C23—C22	177.0 (3)
C4A—Fe1—C8—C7	99.8 (4)	C19—C18—C23—C22	-1.0 (5)
C4A—Fe1—C8—C9	-140.4 (4)	C18—C19—C20—C21	-0.1 (5)
C5A—Fe1—C8—C7	143.6 (3)	C19—C20—C21—C22	0.2 (5)
C5A—Fe1—C8—C9	-96.6 (4)	C20—C21—C22—C23	-0.6 (5)
C6—Fe1—C8—C7	-38.1 (2)	C21—C22—C23—C18	1.0 (5)

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+1/2; (ii) -*x*, *y*+1/2, -*z*+1/2; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, -*y*+1, -*z*+1; (v) *x*, -*y*+3/2, *z*-1/2; (vi) -*x*+1, -*y*+1, -*z*; (vii) -*x*, -*y*+1, -*z*; (viii) *x*, -*y*+3/2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱⁱ	0.8600	2.2600	3.110 (4)	172.00
C13—H13…O1	0.9300	2.4800	2.926 (4)	109.00
C23—H23…O1 ⁱⁱ	0.9300	2.5000	3.180 (4)	130.00

Symmetry code: (ii) -x, y+1/2, -z+1/2.