

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Cvanomethyl-4-aza-1-azoniabicyclo-[2.2.2]octane bromide dihydrate

Ying Cai

Ordered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: cyik@163.com

Received 25 May 2010; accepted 26 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.041; wR factor = 0.077; data-to-parameter ratio = 19.4.

In the crystal structure of the title compound, $C_8H_{14}N_3^+$. $Br^{-} \cdot 2H_2O$, intermolecular $O-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot Br$ hydrogen bonding occurs. The water molecules are connected into chains extending in the a-axis direction. The bromide anions are connected to the water molecules, forming 10membered rings. The cations are connected to the anions via weak $C-H \cdots Br$ interactions. Two carbon atoms of the cation are disordered and were refined using a split model (occupancy ratio 0.70:0.3).

Related literature

For uses of DABCO (1,4-biazabicyclo[2.2.2]octane) and its derivatives, see: Basaviah et al. (2003); Chen et al. (2010).

 $V = 1185.8 (13) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.20$ mm

13047 measured reflections

2711 independent reflections

2219 reflections with $I > 2\sigma(I)$

 $\mu = 3.45 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int}=0.073$

Z = 4

Experimental

Crystal data

 $C_8H_{14}N_3^+ \cdot Br^- \cdot 2H_2O$ $M_r = 268.16$ Orthorhombic, $P2_12_12_1$ a = 7.461 (5) Åb = 12.008 (7) Å c = 13.236 (8) Å

Data collection

Rigaku Mercury CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.701, T_{\max} = 1.000$

Refinement

H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983)
1134 Friedel pairs
Flack parameter: 0.033 (14)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
O1−H1 <i>O</i> 1···Br1	0.82	2.58	3.354 (3)	159
O2−H1 <i>O</i> 2···O1	0.82	1.98	2.791 (4)	170
$O1 - H2O1 \cdots O2^{i}$	0.82	1.99	2.788 (5)	164
O2−H2O2···Br1 ⁱ	0.82	2.50	3.314 (3)	172
$C7 - H7A \cdots Br1$	0.97	2.81	3.740 (5)	161
$C7 - H7B \cdots Br1^{ii}$	0.97	2.92	3.792 (8)	151

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, -y, z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2186).

References

Basaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811-891. Chen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16_{-21}

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o1527 [doi:10.1107/S1600536810019926]

1-Cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide dihydrate

Ying Cai

S1. Comment

1,4-Diazabicyclo[2.2.2]octane (DABCO) is used as a organocatalyst for a large number of reactions because of its nucleophilicity (Basaviah *et al.*, 2003) and some of its derivatives are ferroelectrics (Chen *et al.*, 2010). The structure determination of the title compound was performed within a project on the electric properties of 1,4-Diazabicyclo-[2.2.2]octane derivatives. Within this project the crystals of the title compound were obtained by accident.

In the crystal stucture of the title compound two C atoms of the cation are disordered (Fig. 1). The cations and anions are connected by weak intermolecular C—H···Br interactions. The bromide anions are additionally linked to the water molecules *via* intermolecular O—H···Br hydrogen bonding and the water molecules are connected into chains that elongate in the direction of the *a* axis (Fig. 2). Each water molecule act as hydrogen bond donor and acceptor. The bromide anions and the water molecules forming ten-membered rings.

S2. Experimental

1,4-Diaza-bicyclo[2.2.2]octane (dabco) (0.05?mol, 5.6?g) and bromoacetonitrile (0.1?mol, 12.00?g) were dissolved in CH₃CN(40?ml). The mixture was stirred for 1?h leading to a white precipitate of the title compound whish was filtered off, washed with acetonitrile and dried. Yield: 80%. Afterwards a mixture of 1-(cyanomethyl)-4-aza-1-azonia-bicyclo-[2.2.2]octane bromide (0.01?mol 2.32?g) and tetrafluoro-borate sodium (0.01?mol 1.10?g) in H₂O (20?ml) was stirred until a clear solution was obtained. On slow evaporation of the solvent colourless plate crystals of the title compand suitable for X-ray analysis were obtained accidently.

The dielectric constant of the title compound as a function of temperature goes smoothly between 93 and 363?K and there is no dielectric anomaly observed within the measured temperature range.

S3. Refinement

The C—H H atoms were positioned with idealized geometry and refined using a riding model ($U_{iso}(H) = 1.2 U_{eq}(C)$). The O—H H atoms were located in difference map, their bond lengths set to ideal values and finally they were refined using a riding model ($U_{iso}(H) = 1.5 U_{eq}(O)$). Two carbon atoms are disordered and were refined using a split model and sof of 0.7 and 0.3. The C atoms with lower occupancy were refined only isotropic. The absolute structure was determined on the basis of 1134 Friedel-pairs.

Figure 1

Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Disordering is shown with full and open bonds.

Figure 2

Crystal structure of the title compound with view along the *a* axis. Disordered C and H atoms are omitted and intermolecular hydrogen bonding is shown as dashed lines.

1-Cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide dihydrate

Crystal data	
$C_{8}H_{14}N_{3}^{+} \cdot Br^{-} \cdot 2H_{2}O$ $M_{r} = 268.16$ Orthorhombic, $P2_{1}2_{1}2_{1}$ Hall symbol: P 2ac 2ab a = 7.461 (5) Å b = 12.008 (7) Å c = 13.236 (8) Å V = 1185.8 (13) Å ³ Z = 4	F(000) = 552 $D_x = 1.502 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3350 reflections $\theta = 6.3-55.2^{\circ}$ $\mu = 3.45 \text{ mm}^{-1}$ T = 293 K Prism, colourless $0.20 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Rigaku Mercury CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6620 pixels mm ⁻¹ ω scans	Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{min} = 0.701, T_{max} = 1.000$ 13047 measured reflections 2711 independent reflections 2219 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.073$	
$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min}$	$= 3.1^{\circ}$
$h = -9 \rightarrow 9$	

Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.077$	$w = 1/[\sigma^2(F_o^2) + (0.0275P)^2]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
2711 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
140 parameters	$\Delta ho_{ m max} = 0.29 \ { m e} \ { m \AA}^{-3}$
101 restraints	$\Delta ho_{ m min} = -0.29 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheldrick,
direct methods	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0055 (11)
map	Absolute structure: Flack (1983), 1134 Friedel pairs
	Absolute structure parameter: 0.033 (14)

 $k = -15 \rightarrow 15$ $l = -17 \rightarrow 17$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.3080 (4)	0.2169 (2)	0.79551 (19)	0.0332 (7)	
C1	0.3169 (6)	0.2800 (3)	0.8942 (3)	0.0470 (10)	
H1A	0.3725	0.2343	0.9458	0.056*	
H1B	0.1972	0.2997	0.9165	0.056*	
C2	0.4287 (6)	0.3857 (3)	0.8761 (3)	0.0623 (11)	
H2A	0.3617	0.4499	0.8995	0.075*	
H2B	0.5381	0.3812	0.9154	0.075*	
C3	0.2110 (6)	0.2873 (3)	0.7178 (3)	0.0640 (13)	
H3A	0.0839	0.2899	0.7330	0.077*	0.70
H3B	0.2262	0.2556	0.6509	0.077*	0.70
H3C	0.1046	0.3208	0.7470	0.077*	0.30
H3D	0.1755	0.2422	0.6604	0.077*	0.30
C4	0.2926 (10)	0.4068 (6)	0.7216 (5)	0.053 (2)	0.70
H4A	0.3034	0.4364	0.6536	0.063*	0.70
H4B	0.2148	0.4557	0.7600	0.063*	0.70
C4′	0.349 (2)	0.3801 (15)	0.6842 (12)	0.078 (8)	0.30
H4C	0.4151	0.3555	0.6253	0.093*	0.30
H4D	0.2852	0.4480	0.6669	0.093*	0.30
C5	0.4948 (6)	0.1953 (3)	0.7609 (4)	0.0645 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H5A	0.4948	0.1434	0.7048	0.077*	0.70
H5B	0.5654	0.1638	0.8154	0.077*	0.70
H5C	0.4924	0.1661	0.6926	0.077*	0.30
H5D	0.5497	0.1398	0.8042	0.077*	0.30
C6	0.5746 (11)	0.3096 (5)	0.7274 (8)	0.0645 (12)	0.70
H6A	0.6987	0.3144	0.7489	0.077*	0.70
H6B	0.5718	0.3148	0.6543	0.077*	0.70
C6′	0.6115 (17)	0.3066 (10)	0.7634 (12)	0.078 (8)	0.30
H6C	0.6908	0.3071	0.8215	0.094*	0.30
H6D	0.6830	0.3135	0.7025	0.094*	0.30
N2	0.4744 (4)	0.4012 (3)	0.7705 (3)	0.0493 (8)	
C7	0.2164 (5)	0.1068 (3)	0.8091 (3)	0.0435 (9)	
H7A	0.2139	0.0676	0.7450	0.052*	
H7B	0.2836	0.0619	0.8568	0.052*	
C8	0.0335 (6)	0.1213 (3)	0.8459 (3)	0.0488 (10)	
N3	-0.1082 (6)	0.1335 (3)	0.8753 (3)	0.0724 (11)	
Br1	0.08721 (5)	-0.01932 (3)	0.56114 (3)	0.05169 (15)	
01	0.4108 (4)	0.1366 (2)	0.4565 (2)	0.0779 (9)	
H1O1	0.3519	0.0980	0.4953	0.117*	
H2O1	0.4970	0.1418	0.4946	0.117*	
O2	0.2440 (4)	0.3445 (2)	0.4497 (2)	0.0736 (9)	
H1O2	0.2887	0.2823	0.4448	0.110*	
H2O2	0.3207	0.3932	0.4458	0.110*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0371 (15)	0.0258 (15)	0.0368 (16)	0.0016 (13)	-0.0012 (12)	-0.0057 (12)
C1	0.061 (3)	0.042 (2)	0.038 (2)	-0.0100 (19)	0.0000 (18)	-0.0081 (16)
C2	0.063 (3)	0.049 (2)	0.074 (3)	-0.022 (3)	0.012 (3)	-0.017 (2)
C3	0.079 (3)	0.056 (3)	0.057 (2)	-0.013 (3)	-0.027 (2)	0.021 (2)
C4	0.070 (4)	0.044 (4)	0.044 (4)	0.010 (3)	0.003 (3)	0.012 (3)
C4′	0.12 (2)	0.036 (10)	0.081 (15)	-0.034 (12)	-0.028 (13)	0.018 (10)
C5	0.051 (2)	0.041 (2)	0.101 (3)	0.0023 (19)	0.032 (2)	-0.009 (2)
C6	0.051 (2)	0.041 (2)	0.101 (3)	0.0023 (19)	0.032 (2)	-0.009(2)
C6′	0.076 (13)	0.085 (13)	0.072 (13)	-0.067 (12)	0.050 (10)	-0.046 (10)
N2	0.0519 (19)	0.0353 (17)	0.061 (2)	-0.0021 (15)	0.0030 (16)	0.0087 (16)
C7	0.051 (2)	0.0298 (19)	0.049 (2)	-0.0041 (18)	0.0025 (19)	0.0010 (16)
C8	0.052 (3)	0.042 (2)	0.052 (2)	-0.0124 (19)	-0.0037 (19)	-0.0013 (18)
N3	0.058 (3)	0.072 (3)	0.087 (3)	-0.014 (2)	0.004 (2)	-0.012 (2)
Br1	0.0441 (2)	0.0516 (2)	0.0595 (2)	0.00308 (19)	-0.00010 (19)	-0.00776 (18)
01	0.0656 (19)	0.0689 (19)	0.099 (2)	0.0058 (19)	-0.008(2)	0.0238 (17)
O2	0.0561 (18)	0.0486 (17)	0.116 (3)	-0.0053 (15)	-0.009 (2)	0.0014 (18)

Geometric parameters (Å, °)

N1—C5	1.490 (5)	C4'—H4D	0.9700
N1—C7	1.499 (4)	C5—C6	1.560 (8)

N1C1	1.511 (4)	C5—C6′	1.595 (12)
N1—C3	1.515 (5)	C5—H5A	0.9700
C1—C2	1.538 (5)	С5—Н5В	0.9700
C1—H1A	0.9700	С5—Н5С	0.9700
C1—H1B	0.9700	C5—H5D	0.9700
C2—N2	1.451 (5)	C6—N2	1.448 (7)
C2—H2A	0.9700	C6—H6A	0.9700
С2—Н2В	0.9700	C6—H6B	0.9700
C3—C4	1 560 (8)	C6'—N2	1 532 (13)
C3—C4′	1.579 (14)	C6'—H6C	0.9700
C3—H3A	0.9700	C6'—H6D	0.9700
C3—H3B	0.9700	C7 - C8	1 459 (6)
C3—H3C	0.9700	C7 - H7A	0.9700
C3—H3D	0.9700	C7—H7B	0.9700
C4—N2	1 504 (8)	C8 - N3	1 136 (5)
$C4 H4\Delta$	0.9700	01 - H101	0.8201
CA HAB	0.9700	01 H201	0.8201
C4 M2	1 500 (14)	01 - 11201 02 - 11102	0.8200
C4 - N2	0.0700	02 - 1102	0.8201
С4 —п4С	0.9700	02—H202	0.8200
C5—N1—C7	108.0 (3)	N1—C5—C6′	111.0 (5)
C5—N1—C1	108.2 (3)	C6—C5—C6′	20.1 (9)
C7—N1—C1	111.0 (3)	N1—C5—H5A	110.3
C5-N1-C3	109.6 (3)	C6—C5—H5A	110.3
C7-N1-C3	110.8 (3)	C6'—C5—H5A	123.7
C1-N1-C3	1092(3)	N1—C5—H5B	110.3
N1-C1-C2	107.2(3)	C6-C5-H5B	110.3
N1-C1-H1A	110.2	C6'-C5-H5B	90.9
C^2 — C^1 — H^1A	110.2	H5A-C5-H5B	108.6
N1—C1—H1B	110.2	N1—C5—H5C	109.4
C^2 C^1 H^1B	110.2	C6-C5-H5C	93.5
$H_1 A C_1 H_1 B$	108.5	C6'-C5-H5C	109.4
$N_2 C_2 C_1$	112.6 (3)	$H_{5A} = C_5 = H_{5C}$	18.8
$N_2 = C_2 = C_1$ $N_2 = C_2 = H_2 \Lambda$	100.1	H5R C5 H5C	124.1
$N_2 = C_2 = H_2 A$	109.1	$\frac{1150}{150} = \frac{1150}{150}$	124.1
C1 - C2 - H2R	109.1	C_{6} C_{5} H_{5} D_{5}	109.4
$N_2 = C_2 = \Pi_2 B$	109.1	C6' C5 H5D	127.7
$U_1 - U_2 - \Pi_2 D$	109.1		109.4
$\frac{1}{12} \frac{1}{12} \frac$	107.0	HSA-C5-HSD	90.0 20.4
N1 - C3 - C4	107.7(4)		20.4
NI = C3 = C4	103.9(7)	$H_{3}C = C_{3} = H_{3}D$	108.0
$U_4 - U_3 - U_4$	20.0 (8)	$N_2 = C_6 = C_3$	111.1 (5)
NI - C3 - H3A	110.2	N2 - C6 - H6A	109.4
С4—С3—НЗА	110.2		109.4
U4 - U3 - H3A	132.1		109.4
NI - U - H 3B	110.2		109.4
C4 - C3 - H3B	110.2	H0A - C0 - H0B	108.0
U4 - U3 - H3B	86.8	N2 - C6' - C5	104.9 (8)
нэд—СЗ—НЗВ	108.5	N2-C6'-H6C	110.8

N1—C3—H3C	110.6	С5—С6'—Н6С	110.8
C4—C3—H3C	85.7	N2—C6'—H6D	110.8
C4′—C3—H3C	110.6	C5—C6′—H6D	110.8
НЗА—СЗ—НЗС	26.3	H6C—C6′—H6D	108.8
НЗВ—СЗ—НЗС	128.5	C6—N2—C2	113.8 (5)
N1—C3—H3D	110.6	C6—N2—C4′	84.0 (10)
C4—C3—H3D	130.2	C2—N2—C4′	124.4 (7)
C4′—C3—H3D	110.6	C6—N2—C4	109.2 (5)
H3A—C3—H3D	85.1	C2—N2—C4	102.0 (4)
H3B—C3—H3D	25.6	C4'—N2—C4	27.8 (9)
H3C—C3—H3D	108.7	C6—N2—C6′	21.1 (8)
N2—C4—C3	109.0 (5)	C2—N2—C6′	96.9 (6)
N2—C4—H4A	109.9	C4'—N2—C6'	104.3 (10)
C3—C4—H4A	109.9	C4—N2—C6′	127.5 (6)
N2—C4—H4B	109.9	C8—C7—N1	111.2 (3)
C3—C4—H4B	109.9	С8—С7—Н7А	109.4
H4A—C4—H4B	108.3	N1—C7—H7A	109.4
N2—C4′—C3	108.2 (9)	С8—С7—Н7В	109.4
N2—C4′—H4C	110.1	N1—C7—H7B	109.4
C3—C4′—H4C	110.1	H7A—C7—H7B	108.0
N2—C4′—H4D	110.1	N3—C8—C7	179.2 (5)
C3—C4′—H4D	110.1	H1O1—O1—H2O1	94.5
H4C—C4′—H4D	108.4	H1O2—O2—H2O2	111.1
N1—C5—C6	106.9 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
01—H1 <i>0</i> 1…Br1	0.82	2.58	3.354 (3)	159
O2—H1 <i>O</i> 2…O1	0.82	1.98	2.791 (4)	170
$O1$ — $H2O1$ ··· $O2^{i}$	0.82	1.99	2.788 (5)	164
O2—H2O2···Br1 ⁱ	0.82	2.50	3.314 (3)	172
C7—H7A····Br1	0.97	2.81	3.740 (5)	161
C7—H7 <i>B</i> ···Br1 ⁱⁱ	0.97	2.92	3.792 (8)	151

Symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) -x+1/2, -y, z+1/2.