V = 1066.26 (4) Å³

Mo $K\alpha$ radiation

3795 reflections with $I > 2\sigma(I)$

 $\mu = 0.20 \text{ mm}^{-1}$

T = 2.93 K $0.2\,\times\,0.1\,\times\,0.1$ mm

 $R_{\rm int} = 0.096$

Z = 2

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(4S)-4-Benzyl-N-{[(4S)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]sulfonyl}-2-oxo-1,3oxazolidine-3-carboxamide

Malika Berredjem,^a Assia Allaoui,^a Amani Direm,^b Noureddine Aouf^a and Nourredine Benali-Cherif^{b*}

^aLaboratoire des Chimie Organique Appliquée, Université Badji Mokhtar-Annaba, Algeria, and ^bLaboratoire des Structures, Propriétés et Interactions Inter Atomiques, Centre Universitaire Abbes Laghrour-Khenchela, 40000 Khenchela, Algeria Correspondence e-mail: benalicherif@hotmail.com

Received 17 May 2010; accepted 1 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.054; wR factor = 0.152; data-to-parameter ratio = 18.1.

The title compound, C₂₁H₂₁N₃O₇S, contains an oxazolidinone ring and a sulfonamide group, both characteristic for biologically and pharmaceutically active compounds. Both stereogenic centres reveal an S absolute configuration. The two oxazolidinone rings are in an envelope conformation with the methylene carbon flap atoms deviating by 0.428 (1) and 0.364 (2) Å from the best least-square planes formed by the four other ring atoms. An intramolecular N-H···O hydrogen bond contributes to the folded conformation of the molecule. In the crystal, weak intermolecular $C-H\cdots O$ interactions connect the molecules into helices along the the twofold screw axes.

Related literature

For the biological activity of sulfonamides, see: Gayathri et al. (2006); Supuran et al. (2003); Kang & Reynolds (2009); Bouasla et al. (2010). For heterocyclic sulfonamide derivatives, see: Yan et al. (2007); Naganawa et al. (2006). For their use in coordination chemistry, see: King & Burgen (1976); Beloso et al. (2005). For hydrogen bonding, see: Adsmond & Grant (2001); Bernstein et al. (1995). For related structures, see: Michaux et al. (2001); Cheng et al. (2005); Benali-Cherif et al.(2002).

Experimental

Crystal data

$C_{21}H_{21}N_3O_7S$
$M_r = 459.48$
Monoclinic, P2 ₁
a = 10.4262 (3) Å
b = 9.7171 (2) Å
c = 10.7402 (2) Å
$\beta = 101.504 \ (2)^{\circ}$

Data collection

Nonius KappaCCD diffractometer 17946 measured reflections 5245 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constraned
$wR(F^2) = 0.152$	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
S = 1.00	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$
5245 reflections	Absolute structure: Flack (1983),
289 parameters	1981 Friedel pairs
1 restraint	Flack parameter: 0.06 (8)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1N\cdots O2A$ $C3B-H3B\cdots O2A^{i}$ $C4B-H42B\cdots O1B^{ii}$	0.86	2.07	2.691 (3)	128 (1)
	0.98	2.58	3.372 (4)	138 (1)
	0.97	2.48	3.428 (4)	165 (1)

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, -z + 2; (ii) -x + 3, $y + \frac{1}{2}$, -z + 2.

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

We wish to thank Dr M. Giorgi, Faculté des Sciences et Techniques de Saint Jérome, Marseilles, France, for providing diffraction facilities, and the DG-RSDT and the Centre Universitaire 'Abbes Laghrour'- Khenchela, Algeria for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2261).

References

- Adsmond, D. A. & Grant, D. J. W. J. (2001). Pharm. Sci. 90, 2058-2077.
- Beloso, I., Castro, J., Garcia-Vazquesz, J. A., Perez-Lourido, P., Romero, J. & Sousa, A. (2005). *Inorg. Chem.* 44, 336–351.
- Benali-Cherif, N., Dokhane, S. & Abdaoui, M. (2002). Acta Cryst. E58, 0723-0725.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bouasla, R., Berredjem, M., Allaoui, A., Berredjem, H., Lecouvey, M. & Aouf, N. (2010). J. Heterocycl. Chem. In the press.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Cheng, J.-L., Tan, C.-X. & Zhu, G.-N. (2005). Acta Cryst. E61, 03194-03195.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gayathri, D., Velmurugan, D., Ravikumar, K., Poornachandran, M. & Raghunathan, R. (2006). Acta Cryst. E62, 04454–04455.

- Kang, M. H. & Reynolds, C. P. (2009). Clin. Cancer Res. 15, 1126-1132.
- King, R. W. & Burgen, A. S. V. (1976). Proc. R. Soc. London Sect. B, 193, 107– 125.
- Michaux, C., Charlier, C., Julémont, F., Norberg, B., Dogné, J.-M. & Durant, F. (2001). Acta Cryst. E57, o1012–01013.
- Naganawa, A., Matsui, T., Ima, M., Yoshida, K., Tsuruta, H., Yamamoto, S., Yamamoto, H., Okada, H., Maruyama, T., Nakai, H., Kondo, K. & Toda, M. (2006). *Bioorg. Med. Chem.* 14, 7774–7789.
- Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535-558.
- Yan, X.-W., Hu, M.-L. & Xiong, J. (2007). Acta Cryst. E63, 0678-0679.

supporting information

Acta Cryst. (2010). E66, o1611-o1612 [doi:10.1107/S1600536810020866]

(4*S*)-4-Benzyl-*N*-{[(4*S*)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]sulfonyl}-2-oxo-1,3-oxazolidine-3-carboxamide

Malika Berredjem, Assia Allaoui, Amani Direm, Noureddine Aouf and Nourredine Benali-Cherif

S1. Comment

Sulfonamides constitute an important class of biologically active compounds and have several pharmaceutical applications for a variety of diseases because of their potential pharmacological activities such as antimalarial, antibacterial diuretic, hypoglycaemic, antigermicidal(Gayathri *et al.*, 2006;) and antitumoral (Supuran *et al.*, 2003).

N-Acylsulfonamide is an important functional group in organic chemistry and is present in many biologically active molecules. They has been incorporated into tested drugs and therapeutic agents for Alzheimer's disease, bacterial infection, osteoporolysis, and cancer (Kang *et al.*, 2009). Recently, it was reported on the in vitro activity of acyl-sulfonamide bis-oxazolidinone against the virulent strain RH of Toxoplasma gondii and the human lymphocytes (Bouasla *et al.*, 2010).

Those compounds have also been useful in studies of the physical chemistry and the mechanism of action of carbonic anhydrase because of their highly specific interaction with the active site (King & Burgen, 1976). Moreover, sulfonamides containing different donor atoms find use in coordination chemistry (Beloso *et al.*, 2005). They are also very interesting for studying hydrogen-bonding interactions (Adsmond & Grant, 2001).

Recently, many new heterocyclic sulfonamide derivatives have been synthesised (Yan *et al.*, 2007) and some of them have been optimized as highly selective EP1 receptor antagonists (Naganawa *et al.*, 2006). We report here the molecular structure of a new heterocyclic sulfonamide, (I), derived from *R*-phenyl alanine which was prepared in order to investigate its potential clinical application.

In the molecule $C_{21}H_{21}N_3O_7S$, (Fig. 1), the distances and angles around the sulfonamide group are within the expected range of values found in similar structures (Michaux *et al.*, 2001).

The S—O bond lengths observed are shorter in $C_{21}H_{21}N_3O_7S$ [1.411 (2) Å] than in $C_{23}H_{36}N_4O_8S_2$ [1.443 (3) Å] (Caira *et al.*, 1993) and $C_{16}H_{19}BrN_2O_2S$ [1.432 (4) Å] (Benali-Cherif *et al.*, 2002)suggesting that electronic delocalization is less important for the O atoms of the sulfonamide group in (I) than in the other sulfonamide derivatives. The geometric parameters of the oxazolidinone rings are in a good agreement with those reported in previous similar studies (Cheng *et al.*, 2005). The non-planarity of the heterocyclic rings is evidenced by the torsion angles of -12.0 (3)° and -12.2 (3)° for C2B—O1B—C1B—N2B and C2A—O1A—C1A—N1A, respectively.

The molecular structure is stabilized by an intramolecular N—H···O hydrogen-bond interaction (Fig. 2) involving the NH group and the carbonyl O atom. In the crystal packing (Fig. 3), molecules are linked by infinite chains of C—H···O hydrogen-bonds (Table 1) running parallel to the b axis and generating a C(9) graph-set motif (Bernstein *et al.*, 1995).

S2. Experimental

N,N'-acylsulfonamide bis-oxazolidinones are prepared in two steps: carbamoylationand sulfamoylation, from the condensation reaction of oxazolidin-2-one derived from S-phenylalanine with chlorosulfonyl carbamate. The synthesis carried out in two steps: carbamoylation and sulfamoylation, starting from chlorosulfonyl isocyanate and α -hydroxyester.

To a stirred solution of chlorosulfonyl isocyanate (1.62 g, 11.4 mmol) in 20 ml of anhydrous CH_2Cl_2 at 0°C, was added dropwise 1 equivalent of -hydroxyester (1.34 g, 11.4 mmol) in 5 ml of the same of solvent. After 30 min, the carbamate was added to a solution of oxazolidinine (2.01 g, 11.4 mmol), in presence of 1.1 equivalent of triethylamine at 273 K. The reaction was stirred for less than 1 h at room temperature. The reaction mixture was washed with hydrochloride acid (0.1 N, 2x10 mL) and water (20 mL). Organic layers were dried over anhydrous magnesium sulfate, filtrated and concentrated under vacuum. The residue was purified by chromatography on silica gel eluted by CH_2Cl_2 to give 17% of carboxylsulfamides and 46% of *N*-acylsulfonamide bis oxazolidinone as a white solid.

Single crystals suitable for X-ray structure analysis could be obtained by slow evaporation of a concentrated solution in ether at room temperature.

S3. Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. H atoms were positioned with idealized geometry and refined using a riding model with C—H and N—H bond lengths constrained to 0.93–0.98 and 0.86 Å, respectively. Their isotropic displacement parameters were set equal to 1.2Ueq (parent atom). The title compound crystallizes in the non centrosymmetric space group $P2_1$ and the absolute configuration is determined from measured Friedel opposites.

Figure 1

ORTEP view of the asymmetric unit of (I) showing 50% probability displacement ellipsoids.

Figure 2

A view of the intramolecular N-H···O interaction.

Figure 3

Crystal packing with intermolecular hydrogen bonding patterns shown as dashed lines.

(4S)-4-Benzyl-N-{[(4S)-4-benzyl-2-oxo-1,3-oxazolidin- 3-yl]sulfonyl}-2-oxo-1,3-oxazolidine-3-carboxamide

Crystal data	
$C_{21}H_{21}N_3O_7S$	<i>a</i> = 10.4262 (3) Å
$M_r = 459.48$	b = 9.7171 (2) Å
Monoclinic, <i>P</i> 2 ₁	c = 10.7402 (2) Å

Cell parameters from 3258 reflections

 $\theta = 2.5 - 30.0^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$

Prism, yellow

 $0.2 \times 0.1 \times 0.1 \text{ mm}$

3795 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 30.0^\circ, \, \theta_{\rm min} = 2.5^\circ$

T = 293 K

 $R_{\rm int} = 0.096$

 $h = -14 \rightarrow 12$

 $k = -9 \rightarrow 13$

 $l = -15 \rightarrow 15$

 $\beta = 101.504 (2)^{\circ}$ $V = 1066.26 (4) \text{ Å}^3$ Z = 2 F(000) = 480 $D_x = 1.431 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega - \theta$ scans 17946 measured reflections 5245 independent reflections

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.054$ H-atom parameters constrained $wR(F^2) = 0.152$ $w = 1/[\sigma^2(F_0^2) + (0.0929P)^2 + 0.0529P]$ S = 1.00where $P = (F_0^2 + 2F_c^2)/3$ 5245 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\text{max}} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.47 \text{ e } \text{\AA}^{-3}$ 289 parameters 1 restraint Primary atom site location: structure-invariant Absolute structure: Flack (1983), 1981 Friedel direct methods pairs Secondary atom site location: difference Fourier Absolute structure parameter: 0.06 (8) map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	1.11803 (6)	0.79846 (7)	1.11762 (6)	0.04863 (18)	
N2B	1.25586 (19)	0.7726 (2)	1.06927 (19)	0.0437 (5)	
C5B	1.5343 (2)	0.8050 (3)	1.2204 (2)	0.0487 (5)	
O2	1.1209 (2)	0.9380 (3)	1.1528 (2)	0.0654 (6)	
O1B	1.3838 (2)	0.6678 (2)	0.9587 (2)	0.0627 (6)	
O2A	0.7466 (2)	0.7106 (2)	0.9147 (2)	0.0630 (6)	
01A	0.66210 (19)	0.8112 (3)	0.7296 (2)	0.0747 (7)	
O2B	1.2389 (3)	0.5376 (3)	1.0322 (3)	0.0775 (7)	
03	1.08127 (19)	0.9126 (2)	0.85647 (19)	0.0569 (5)	
01	1.0989 (2)	0.6947 (3)	1.2046 (2)	0.0722 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

N1 A	0.87762(10)	0,8226(2)	0.7043(2)	0.0471(5)
NIA CAR	1.4444 (3)	0.8220(2)	0.7943(2) 1 1650(3)	0.0471(3)
U42B	1.4444 (5)	0.9200 (3)	1.1059 (5)	0.0522 (0)
1142D 1141D	1.4970	0.9903	1.1408	0.063*
C1	1.3973	0.9308	1.2301	0.003°
C1 C2D	0.9943(2)	0.0410(3)	0.8803(3)	0.0444(3)
	1.3440(2) 1.2042	0.8855 (5)	1.0430 (3)	0.0482 (0)
	1.2943	0.9049	1.0110	0.0565(7)
	0.8341 (3)	0.0789 (4)	0.0048 (3)	0.0303 (7)
ПЗА	0.9046	0.9033	0.0011	0.068^{*}
C2B	1.4016 (5)	0.8134 (4)	0.9414 (3)	0.0603 (7)
H22B	1.3556	0.8427	0.8581	0.072*
H21B	1.4937	0.8354	0.9502	0.072*
C6B	1.6509 (3)	0.7814 (4)	1.1794 (3)	0.0596 (7)
H6B	1.6/45	0.8411	1.1201	0.07/1*
CIA	0.7615 (3)	0.7751 (3)	0.8242 (3)	0.0542 (7)
C1B	1.2861 (3)	0.6467 (3)	1.0213 (3)	0.0517 (6)
C5A	1.0220 (3)	0.7315 (3)	0.5809 (3)	0.0584 (7)
C10B	1.5048 (3)	0.7145 (4)	1.3092 (3)	0.0664 (9)
H10B	1.4289	0.7271	1.3410	0.080*
C2A	0.7090 (3)	0.9099 (5)	0.6474 (4)	0.0745 (10)
H21A	0.6946	1.0035	0.6729	0.089*
H22A	0.6653	0.8972	0.5596	0.089*
C7B	1.7327 (3)	0.6731 (4)	1.2235 (3)	0.0658 (8)
H7B	1.8104	0.6614	1.1947	0.079*
C4A	0.8813 (3)	0.7738 (5)	0.5683 (3)	0.0721 (9)
H41A	0.8298	0.6921	0.5754	0.087*
H42A	0.8512	0.8113	0.4839	0.087*
C6A	1.0983 (4)	0.7965 (5)	0.5074 (3)	0.0786 (10)
H6A	1.0616	0.8640	0.4498	0.094*
C9B	1.5884 (4)	0.6031 (5)	1.3526 (4)	0.0823 (12)
H9B	1.5669	0.5419	1.4118	0.099*
C10A	1.0801 (5)	0.6306 (4)	0.6632 (4)	0.0861 (12)
H10A	1.0311	0.5835	0.7130	0.103*
C8A	1.2831 (6)	0.6652 (11)	0.5994 (8)	0.141 (3)
H8A	1.3709	0.6431	0.6055	0.169*
C9A	1.2111 (8)	0.5991 (7)	0.6722 (6)	0.126 (3)
H9A	1.2499	0.5317	0.7290	0.151*
C8B	1.7004 (4)	0.5848 (4)	1.3079 (4)	0.0740 (9)
H8B	1.7547	0.5105	1.3360	0.089*
C7A	1.2278 (6)	0.7624 (8)	0.5188 (6)	0.118 (2)
H7A	1.2780	0.8080	0.4692	0.141*
NI	1.0021 (2)	0.7704 (3)	0.9924 (2)	0.0512 (5)
HIN	0.9439	0.7089	0.9970	0.061*
	0.7.07		0.2270	0.001

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1	0.0478 (3)	0.0557 (4)	0.0443 (3)	-0.0059 (3)	0.0135 (2)	-0.0030 (3)

N2B	0.0420 (9)	0.0395 (12)	0.0494 (10)	-0.0003 (8)	0.0089 (8)	-0.0003 (9)
C5B	0.0451 (11)	0.0479 (14)	0.0513 (12)	-0.0111 (12)	0.0056 (9)	-0.0086 (13)
02	0.0560 (11)	0.0671 (14)	0.0769 (13)	-0.0016 (10)	0.0222 (10)	-0.0215 (12)
O1B	0.0726 (13)	0.0603 (13)	0.0580 (11)	0.0165 (10)	0.0196 (10)	-0.0061 (10)
O2A	0.0549 (12)	0.0544 (13)	0.0836 (15)	-0.0101 (9)	0.0232 (10)	-0.0051 (12)
O1A	0.0402 (9)	0.0917 (18)	0.0871 (15)	0.0001 (11)	0.0006 (9)	-0.0081 (15)
O2B	0.108 (2)	0.0414 (12)	0.0823 (16)	-0.0072 (12)	0.0179 (14)	-0.0036 (11)
03	0.0456 (9)	0.0636 (14)	0.0597 (10)	-0.0092 (9)	0.0065 (8)	0.0109 (10)
01	0.0742 (14)	0.0918 (19)	0.0524 (11)	-0.0146 (13)	0.0167 (10)	0.0165 (12)
N1A	0.0408 (9)	0.0505 (14)	0.0499 (10)	-0.0014 (9)	0.0086 (8)	-0.0058 (10)
C4B	0.0468 (13)	0.0416 (14)	0.0707 (16)	-0.0057 (11)	0.0178 (12)	-0.0073 (13)
C1	0.0430 (11)	0.0410 (13)	0.0496 (13)	-0.0016 (9)	0.0101 (9)	-0.0027 (10)
C3B	0.0471 (12)	0.0396 (14)	0.0603 (15)	0.0015 (11)	0.0163 (11)	0.0037 (12)
C3A	0.0529 (14)	0.0639 (19)	0.0493 (14)	0.0022 (13)	0.0022 (11)	-0.0019 (13)
C2B	0.0613 (14)	0.067 (2)	0.0560 (14)	0.0092 (14)	0.0208 (11)	0.0117 (15)
C6B	0.0529 (13)	0.068 (2)	0.0583 (14)	0.0038 (14)	0.0119 (11)	-0.0068 (16)
C1A	0.0407 (12)	0.0506 (17)	0.0720 (16)	-0.0042 (11)	0.0126 (11)	-0.0146 (15)
C1B	0.0633 (15)	0.0403 (15)	0.0494 (13)	0.0066 (12)	0.0066 (11)	0.0001 (11)
C5A	0.0730 (18)	0.0586 (18)	0.0410 (12)	0.0076 (14)	0.0054 (12)	-0.0115 (12)
C10B	0.0473 (15)	0.087 (2)	0.0632 (17)	-0.0144 (15)	0.0069 (12)	0.0109 (17)
C2A	0.0508 (15)	0.094 (3)	0.0736 (19)	0.0098 (16)	-0.0006 (13)	0.002 (2)
C7B	0.0561 (16)	0.075 (2)	0.0647 (17)	0.0071 (15)	0.0077 (13)	-0.0119 (17)
C4A	0.0688 (18)	0.092 (3)	0.0518 (14)	-0.0020 (18)	0.0033 (12)	-0.0188 (18)
C6A	0.094 (2)	0.086 (3)	0.0620 (16)	0.011 (2)	0.0306 (16)	-0.006 (2)
C9B	0.077 (2)	0.086 (3)	0.077 (2)	-0.018 (2)	-0.0017 (18)	0.026 (2)
C10A	0.127 (4)	0.063 (2)	0.064 (2)	0.019 (2)	0.008 (2)	-0.0088 (17)
C8A	0.093 (4)	0.196 (7)	0.121 (4)	0.063 (4)	-0.008 (3)	-0.095 (5)
C9A	0.157 (5)	0.112 (4)	0.090 (3)	0.081 (4)	-0.022 (4)	-0.032 (3)
C8B	0.0590 (17)	0.071 (2)	0.082 (2)	-0.0021 (16)	-0.0105 (15)	-0.0031 (19)
C7A	0.101 (3)	0.141 (5)	0.125 (4)	0.003 (4)	0.058 (3)	-0.048 (4)
N1	0.0451 (11)	0.0539 (14)	0.0544 (11)	-0.0113 (10)	0.0092 (8)	0.0035 (11)

Geometric parameters (Å, °)

<u>S1—O2</u>	1.407 (2)	C2B—H22B	0.9700
S101	1.416 (2)	C2B—H21B	0.9700
S1—N2B	1.642 (2)	C6B—C7B	1.378 (5)
S1—N1	1.642 (2)	C6B—H6B	0.9300
N2B—C1B	1.389 (4)	C5A—C10A	1.377 (5)
N2B—C3B	1.473 (3)	C5A—C6A	1.380 (5)
C5B-C10B	1.377 (4)	C5A—C4A	1.503 (5)
C5B—C6B	1.392 (4)	C10B—C9B	1.410 (6)
C5B—C4B	1.501 (4)	C10B—H10B	0.9300
O1B—C1B	1.343 (4)	C2A—H21A	0.9700
O1B—C2B	1.444 (4)	C2A—H22A	0.9700
O2A—C1A	1.192 (4)	C7B—C8B	1.339 (6)
O1A—C1A	1.345 (4)	C7B—H7B	0.9300
O1A—C2A	1.453 (5)	C4A—H41A	0.9700

O2B—C1B	1.184 (4)	C4A—H42A	0.9700
O3—C1	1.207 (3)	C6A—C7A	1.372 (7)
N1A—C1	1.385 (3)	С6А—Н6А	0.9300
N1A—C1A	1.392 (4)	C9B—C8B	1.360 (6)
N1A—C3A	1.470 (4)	С9В—Н9В	0.9300
C4B—C3B	1.531 (4)	C10A—C9A	1.384 (9)
C4B—H42B	0.9700	C10A—H10A	0.9300
C4B—H41B	0.9700	C8A—C7A	1.332 (12)
C1—N1	1.377 (4)	C8A—C9A	1.350 (11)
C3B—C2B	1.526 (4)	C8A—H8A	0.9300
C3B—H3B	0.9800	С9А—Н9А	0.9300
C3A—C2A	1.517 (4)	C8B—H8B	0.9300
C3A—C4A	1.521 (5)	C7A—H7A	0.9300
C3A—H3A	0.9800	N1—H1N	0.8600
O2—S1—O1	120.50 (16)	O1A—C1A—N1A	108.3 (3)
O2—S1—N2B	105.02 (12)	O2B-C1B-O1B	123.9 (3)
O1—S1—N2B	110.32 (14)	O2B—C1B—N2B	128.5 (3)
O2—S1—N1	110.68 (14)	O1B—C1B—N2B	107.6 (2)
O1—S1—N1	104.18 (13)	C10A—C5A—C6A	117.6 (4)
N2B—S1—N1	105.28 (12)	C10A—C5A—C4A	123.3 (4)
C1B—N2B—C3B	112.4 (2)	C6A—C5A—C4A	119.1 (3)
C1B—N2B—S1	122.03 (19)	C5B-C10B-C9B	120.7 (3)
C3B—N2B—S1	124.24 (18)	C5B-C10B-H10B	119.7
C10B—C5B—C6B	116.4 (3)	C9B-C10B-H10B	119.7
C10B—C5B—C4B	122.5 (3)	O1A—C2A—C3A	104.0 (3)
C6B—C5B—C4B	121.1 (3)	O1A—C2A—H21A	110.9
C1B—O1B—C2B	110.1 (2)	C3A—C2A—H21A	110.9
C1A—O1A—C2A	109.2 (2)	O1A—C2A—H22A	110.9
C1—N1A—C1A	125.4 (2)	C3A—C2A—H22A	110.9
C1—N1A—C3A	122.7 (2)	H21A—C2A—H22A	109.0
C1A—N1A—C3A	110.7 (2)	C8B—C7B—C6B	120.0 (3)
C5B—C4B—C3B	115.0 (2)	C8B—C7B—H7B	120.0
C5B—C4B—H42B	108.5	C6B—C7B—H7B	120.0
C3B—C4B—H42B	108.5	C5A—C4A—C3A	115.7 (2)
C5B—C4B—H41B	108.5	C5A—C4A—H41A	108.3
C3B—C4B—H41B	108.5	C3A—C4A—H41A	108.3
H42B—C4B—H41B	107.5	C5A—C4A—H42A	108.3
O3—C1—N1	123.8 (2)	C3A—C4A—H42A	108.3
O3—C1—N1A	122.1 (2)	H41A—C4A—H42A	107.4
N1—C1—N1A	114.0 (2)	C7A—C6A—C5A	120.5 (5)
N2B—C3B—C2B	98.7 (2)	С7А—С6А—Н6А	119.7
N2B—C3B—C4B	111.6 (2)	С5А—С6А—Н6А	119.7
C2B—C3B—C4B	115.1 (2)	C8B—C9B—C10B	120.1 (4)
N2B—C3B—H3B	110.3	C8B—C9B—H9B	119.9
C2B—C3B—H3B	110.3	C10B—C9B—H9B	119.9
C4B—C3B—H3B	110.3	C5A—C10A—C9A	120.3 (5)
N1A—C3A—C2A	99.5 (3)	C5A—C10A—H10A	119.9

N1A—C3A—C4A	112.1 (3)	C9A—C10A—H10A	119.9
C2A—C3A—C4A	111.5 (3)	C7A—C8A—C9A	119.7 (5)
N1A—C3A—H3A	111.1	C7A—C8A—H8A	120.1
С2А—С3А—НЗА	111.1	С9А—С8А—Н8А	120.1
С4А—С3А—Н3А	111.1	C8A—C9A—C10A	120.6 (5)
O1B—C2B—C3B	105.3 (2)	С8А—С9А—Н9А	119.7
O1B—C2B—H22B	110.7	С10А—С9А—Н9А	119.7
C3B—C2B—H22B	110.7	C7B—C8B—C9B	120.3 (4)
01B-C2B-H21B	110.7	C7B—C8B—H8B	119.8
C3B-C2B-H21B	110.7	C9B—C8B—H8B	119.8
H22B—C2B—H21B	108.8	C8A—C7A—C6A	121.3 (6)
C7B—C6B—C5B	122.5 (3)	C8A—C7A—H7A	119.4
C7B—C6B—H6B	118.8	C6A - C7A - H7A	119.4
C5B—C6B—H6B	118.8	C1-N1-S1	122.56 (18)
02A - C1A - 01A	123.1 (3)	C1—N1—H1N	118 7
O2A - C1A - N1A	1285(3)	S1N1H1N	118.7
	120.5 (5)		110.7
Ω^2 —S1—N2B—C1B	-1772(2)	C2B-01B-C1B-02B	168 8 (3)
01 - S1 - N2B - C1B	516(2)	C2B = O1B = C1B = N2B	-120(3)
N1 = S1 = N2B = C1B	-603(2)	C3B $N2B$ $C1B$ $O2B$	12.0(3) 1747(3)
Ω^2 S1 N2B C3B	-111(2)	S1 = N2B = C1B = O2B	-17.8(4)
01 = 1 = N2B = C3B	-1424(2)	C_{3B} N_{2B} C_{1B} O_{2B}	-44(3)
N1 S1 N2B C3B	192.4(2)	S1 N2B C1B 01B	163 15 (18)
C10B C5B C4B C3B	-90.1(3)	C6B $C5B$ $C10B$ $C9B$	-1 A (A)
C6B C5B C4B C3B	90.1 (5) 87 5 (3)	C4B $C5B$ $C10B$ $C9B$	1.4(4) 1763(3)
$C_{10} = C_{10} = C_{10} = C_{10}$	-1617(3)	$C_{10} = C_{10} = C_{10} = C_{10}$	260(4)
$C_{1A} = N_{1A} = C_{1} = O_{3}$	A A (A)	$\frac{1}{10000000000000000000000000000000000$	-27.6(3)
$C_{1A} = N_{1A} = C_{1} = 0.05$	4.4(4)	$C_{4A} = C_{3A} = C_{2A} = O_{1A}$	27.0(3)
$C_{1A} = N_{1A} = C_{1} = N_{1}$	-174.3(3)	$C_{4A} = C_{5A} = C_{2A} = O_{1A}$	90.8(3)
$C_{1}D_{1}D_{2}D_{2}C_{2}D_{2}D_{2}D_{2}D_{2}D_{2}D_{2}D_{2}D$	174.3(3)	$C_{3}D = C_{3}D = C_{3}D = C_{3}D$	0.8(3)
CID - N2D - C3D - C2D	1/.2(3)	$C_{10A} = C_{5A} = C_{4A} = C_{5A}$	83.9(3)
SI - N2D - C3D - C2D	-149.98(19)	COA - CJA - C4A - CJA	-93.7(4)
C1D - N2D - C3D - C4D	-104.3(3)	NIA - CSA - C4A - CSA	-07.1(4)
SI = N2B = C3B = C4B	88.5(2)	C_{2A} C_{3A} C_{4A} C_{5A} C_{7A}	-1/.6(3)
C_{3B} C_{4B} C_{3B} C_{2B} C_{2B}	01.0(3)	C10A - C5A - C6A - C7A	-1.1(0)
C_{3B} C_{4B} C_{3B} C_{2B}	-49.9(3)	C4A - C5A - C6A - C/A	1/8.5 (4)
CI = NIA = C3A = C2A	-140.0(3)	C_{3B} C_{10B} C_{9B} C_{8B}	0.8 (6)
CIA - NIA - C3A - C2A	21.9 (3)	C6A - C5A - C10A - C9A	1.2 (6)
CI - NIA - C3A - C4A	96.0 (3)	C4A - C5A - C10A - C9A	-1/8.4(4)
CIA - NIA - C3A - C4A	-96.0(3)	C/A = C8A = C9A = C10A	0.5 (9)
CIB—OIB—C2B—C3B	23.0 (3)	C5A—C10A—C9A—C8A	-0.9 (7)
N2B-C3B-C2B-O1B	-22.9(3)	С6В—С/В—С8В—С9В	-1.5 (5)
C4B—C3B—C2B—O1B	96.0 (3)	C10B—C9B—C8B—C7B	0.7 (6)
C10B—C5B—C6B—C7B	0.7 (4)	C9A—C8A—C7A—C6A	-0.4 (9)
C4B—C5B—C6B—C7B	-177.1 (3)	C5A—C6A—C7A—C8A	0.7 (8)
C2A—O1A—C1A—O2A	169.2 (3)	O3—C1—N1—S1	12.8 (4)
C2A—O1A—C1A—N1A	-12.2 (3)	N1A—C1—N1—S1	-168.52 (19)
C1—N1A—C1A—O2A	-21.2 (5)	02—S1—N1—C1	55.7 (3)
C3A—N1A—C1A—O2A	171.2 (3)	01—S1—N1—C1	-173.4(2)

supporting information

C1—N1A—C1A—O1A C3A—N1A—C1A—O1A	160.3 (3) -7.2 (3)		N2B—S1—N1—C1		-57.3 (3)
Hydrogen-bond geometry (Å, °)					
D—H···A		D—H	H···A	D····A	D—H···A
N1—H1 <i>N</i> ···O2 <i>A</i>		0.86	2.07	2.691 (3)	128 (1)
C3 <i>B</i> —H3 <i>B</i> ···O2 <i>A</i> ⁱ		0.98	2.58	3.372 (4)	138 (1)
C4 <i>B</i> —H42 <i>B</i> ···O1 <i>B</i> ⁱⁱ		0.97	2.48	3.428 (4)	165 (1)

Symmetry codes: (i) -*x*+2, *y*+1/2, -*z*+2; (ii) -*x*+3, *y*+1/2, -*z*+2.