# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 7-(5-Methylsulfanyl- $\beta$ -D-erythrofuranosyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine monohydrate (MT-tubercidin H<sub>2</sub>O)

#### Graeme J. Gainsford,\* Richard F. G. Fröhlich and Gary B. **Evans**

Carbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt 5040, New Zealand

Correspondence e-mail: g.gainsford@irl.cri.nz

Received 21 April 2010; accepted 28 May 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.091; data-to-parameter ratio = 12.4.

The title compound,  $C_{12}H_{16}N_4O_3S \cdot H_2O$ , which has potential as a possible antimalarial drug, was studied when small deviations in melting points, for two differently aged preparations, were observed. The unexpected existence of a water molecule of crystallization is considered to be the cause of this variation. The 7H-pyrrolo[2,3-d]pyrimidine unit is very slightly puckered with a total puckering amplitude of 0.035 (2) Å; its mean plane makes an angle of  $88.40 (12)^{\circ}$ with the mean plane through the ribofuranosyl unit. In the crystal, the molecules are bound by strong O-H···N and N-H···O hydrogen bonds, utilizing all available protons and linking mainly through the water of crystallization.

#### **Related literature**

For details of the synthesis of and for background to the title compound, see: Riegelhaupt et al. (2010). For related structures, see: Seela et al. (2007); Abola & Sundaralingam (1973). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995).



#### **Experimental**

#### Crystal data

C12H16N4O3S·H2O  $M_r = 314.36$ Orthorhombic,  $P2_12_12_1$ a = 4.790 (1) Å b = 16.610(3) Å c = 18.020 (4) Å

#### Data collection

| Rigaku Spider diffractometer             |
|------------------------------------------|
| Absorption correction: multi-scan        |
| (ABSCOR; Higashi, 1995)                  |
| $T_{\rm min} = 0.712, T_{\rm max} = 1.0$ |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.039$ | H atoms treated by a mixture of                           |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.091$               | independent and constrained                               |
| S = 1.08                        | refinement                                                |
| 2582 reflections                | $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 209 parameters                  | $\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$  |
| 2 restraints                    | Absolute structure: Flack (1983),                         |
|                                 | 986 Friedel pairs                                         |
|                                 | Flack parameter: 0.02 (2)                                 |

V = 1433.7 (5) Å<sup>3</sup>

Cu Ka radiation

 $0.50 \times 0.02 \times 0.02 \text{ mm}$ 

8013 measured reflections 2582 independent reflections

2422 reflections with  $I > 2\sigma(I)$ 

 $\mu = 2.22 \text{ mm}^{-1}$ 

T = 100 K

 $R_{\rm int}=0.045$ 

Z = 4

Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                                                                                  | D-H                                                      | $H \cdot \cdot \cdot A$                                  | $D \cdots A$                                                  | $D - \mathbf{H} \cdot \cdot \cdot A$                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|
| $\begin{array}{c} O2' - H2'O\cdots N3^{i} \\ O1W - H1A\cdots O3' \\ O1W - H1B\cdots O2'^{ii} \\ O3' - H3'O\cdots N1^{iii} \\ N6 - H6A\cdots O1W^{iv} \end{array}$ | 0.79 (3)<br>0.82 (3)<br>0.80 (3)<br>0.84 (3)<br>0.90 (3) | 1.99 (3)<br>1.96 (3)<br>2.07 (3)<br>1.94 (3)<br>2.12 (3) | 2.776 (3)<br>2.748 (3)<br>2.848 (3)<br>2.766 (3)<br>2.998 (3) | 173 (3)<br>162 (3)<br>162 (3)<br>166 (3)<br>166 (3) |
| $N6-H6B\cdots O1W^{v}$                                                                                                                                            | 0.82 (3)                                                 | 2.13 (3)                                                 | 2.928 (3)                                                     | 164 (3)                                             |

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii)  $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$ ; (iv)  $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}; (v) - x + 1, y - \frac{1}{2}, -z + \frac{3}{2}.$ 

Data collection: CrystalClear (Rigaku Americas, 2005); cell refinement: FSProcess in PROCESS-AUTO (Rigaku, 1998); data reduction: FSProcess in PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

We thank the MacDiarmid Institute for Advanced Materials and Nanotechnology for funding of the diffractometer equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2257).

#### References

Abola, E. & Sundaralingam, M. (1973). Acta Cryst. B29, 697-703. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.

Riegelhaupt, P. M., Cassera, M. B., Froehlich, R. F. G., Hazelton, K. Z., Hefter, J. J., Schramm, V. L. & Akabas, M. H. (2010). *Mol. Biochem. Parasitol.* 169, 40–49.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku Americas (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.

- Seela, F., Peng, X., Eickmeier, H. & Reuter, H. (2007). Acta Cryst. C63, 096-098.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supporting information

Acta Cryst. (2010). E66, o1688-o1689 [doi:10.1107/S1600536810020179]

# 7-(5-Methylsulfanyl- $\beta$ -D-erythrofuranosyl)-7*H*-pyrrolo[2,3-*d*]pyrimidin-4-amine monohydrate (MT-tubercidin·H<sub>2</sub>O)

## Graeme J. Gainsford, Richard F. G. Fröhlich and Gary B. Evans

#### S1. Comment

The title compound was prepared as part of a study of purine transport or purine salvage pathway inhibitors with potential as alternative anti-malarial drugs (Riegelhaupt *et al.*, 2010). Its common name is 7-(5'Methylthio- $\beta$ -D-erythro-furanosyl)-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-amine monohydrate usually shortened to MT-tubercidin.H<sub>2</sub>O while the conventional name is 2-(4-Amino-pyrrolo[2,3-*d*]pyrimidin-7-yl)-5-methylsulfanylmethyl -tetrahydrofuran-3,4-diol monohydrate. The structural solution showed that in both batches there was an unexpected water molecule of crystallization, a likely cause of the variation in melting points with differently aged samples. The results for the better crystals are presented here. The asymmetric unit contents are shown in Figure 1.

The absolute configuration is defined as C1'(*R*), C2'(*R*), C3'(S) and C4'(S) with the ribofuranosyl unit adopting an (C2'-)*endo*-envelope  $\Delta$  conformation (Q(2) 0.434 (3) Å,  $\varphi$ (2) 76.3 (3)°, Cremer & Pople (1975)). The 7*H*-pyrrolo[2,3-*d*]pyrimidine unit is very slightly puckered with total puckering amplitude of 0.035 (2) Å: its mean plane makes an angle of 88.40 (12)° with the mean plane through the ribofuranosyl unit. The orientation of the C4'–C5' bond is slightly different (with O4'-C1'-N9—C4 torsion angle of -126.6 (2)°) to that found in the related compounds 2'-Deoxy-2-fluoro-tubercidin (-110.2 (3)°, Seela *et al.*, 2007) and tubercidin (-112.8 (4)°, Abola & Sundaralingam, 1973). Other dimensions are normal.

The molecules are packed in three dimensions using 6 strong hydrogen bonds of the O–H···O and N–H···O types (Table 1). The graph set motifs (Etter *et al.*, 1990; Bernstein *et al.*, 1995) are extensive at the binary level:  $C_2^2(7)$ ,  $C_2^2(9)$ ,  $C_2^2(11)$ ,  $C_2^2(12)$ ,  $C_2^2(17)$ ,  $D_3^3(10)$ ,  $D_3^3(13)$ ,  $D_3^3(14)$ ,  $D_3^3(15)$ ,  $D_3^3(17)$  and  $D_3^3(18)$  types are found being based mainly on linked chains through the included water molecule (the latter feature is shown in Figure 2). The C–H··· $\pi$  interaction involving the methyl hydrogen H6'A and the 5-membered pyrrolo ring (at 2.80 Å) is considered fortuitous but noted here for completeness.

#### **S2. Experimental**

The title compound was prepared as described in the supplementary data section (compound 10) by Riegelhaupt *et al.* (2010).

#### **S3. Refinement**

The H atoms of the ordered hydroxyl, water and amine atoms were placed in the positions indicated by a difference electron density map and their positions were allowed to refine with  $U_{iso}(H) = 1.5U_{eq}(O,N)$ . The water H atoms were restrained to an O–H distance of 0.82 (2) Å. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with  $U_{iso}(H) = 1.5U_{eq}(C)$ , but were allowed to rotate freely about the adjacent C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 (aromatic),

0.99 (methylene) or 1.00 (tertiary) Å with  $U_{iso}(H) = 1.2U_{eq}(C,N)$ . Thirty-four high angle outlier reflections identified by having  $F_o >> F_c$  and collected in the same area of reciprocal space (and with  $\Delta F_o **2/e.s.d. > 5$ ) were omitted from the final cycles of refinement based on the lack of backstop mask corrections.



#### Figure 1

An *ORTEP* (Farrugia, 1999) view showing the asymmetric unit of (I) with 50% probabilility ellipsoids. The dotted lines represents an intermolecular hydrogen bond.



#### Figure 2

Mercury cell packing view (Macrae *et al.*, 2006) emphasizing the links with the water of crystallization: conventional hydrogen bonds not running up the *a* axis are shown (dotted lines).For the complete hydrogen bonding set see Table 1. Contact atoms are shown in ball mode; H atoms are omitted for clarity. Symmetry operations: (i) 1 - x, y - 1/2, 3/2 - z (ii) 1/2 - x, 1 - y, 1/2 + z.

#### 7-(5-Methylsulfanyl-β-D-erythrofuranosyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine monohydrate

F(000) = 664

 $\theta = 10.7 - 72.1^{\circ}$ 

 $\mu = 2.22 \text{ mm}^{-1}$ T = 100 K

Needle, colourless

 $0.50 \times 0.02 \times 0.02$  mm

 $D_{\rm x} = 1.456 {\rm Mg} {\rm m}^{-3}$ 

Cu Ka radiation,  $\lambda = 1.54178$  Å

Cell parameters from 1322 reflections

#### Crystal data

 $C_{12}H_{16}N_4O_3S \cdot H_2O$   $M_r = 314.36$ Orthorhombic,  $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 4.790 (1) Å b = 16.610 (3) Å c = 18.020 (4) Å V = 1433.7 (5) Å<sup>3</sup> Z = 4

#### Data collection

| Rigaku Spider                                   | $T_{\min} = 0.712, \ T_{\max} = 1.0$                            |
|-------------------------------------------------|-----------------------------------------------------------------|
| diffractometer                                  | 8013 measured reflections                                       |
| Radiation source: Rigaku MM007 rotating         | 2582 independent reflections                                    |
| anode                                           | 2422 reflections with $I > 2\sigma(I)$                          |
| Rigaku VariMax-HF Confocal Optical System       | $R_{\rm int} = 0.045$                                           |
| monochromator                                   | $\theta_{\rm max} = 71.9^\circ, \ \theta_{\rm min} = 7.3^\circ$ |
| Detector resolution: 10 pixels mm <sup>-1</sup> | $h = -5 \rightarrow 2$                                          |
| ω–scans                                         | $k = -20 \longrightarrow 20$                                    |
| Absorption correction: multi-scan               | $l = -21 \rightarrow 19$                                        |
| (ABSCOR; Higashi, 1995)                         |                                                                 |
|                                                 |                                                                 |

#### Refinement

| Refinement on $F^2$<br>Least-squares matrix: full | Hydrogen site location: inferred from<br>neighbouring sites |
|---------------------------------------------------|-------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.039$                   | H atoms treated by a mixture of independent                 |
| $wR(F^2) = 0.091$                                 | and constrained refinement                                  |
| S = 1.08                                          | $w = 1/[\sigma^2(F_o^2) + (0.031P)^2 + 0.7234P]$            |
| 2582 reflections                                  | where $P = (F_o^2 + 2F_c^2)/3$                              |
| 209 parameters                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                         |
| 2 restraints                                      | $\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$   |
| Primary atom site location: structure-invariant   | $\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$    |
| direct methods                                    | Absolute structure: Flack (1983), 986 Friedel               |
| Secondary atom site location: difference Fourier  | pairs                                                       |
| map                                               | Absolute structure parameter: 0.02 (2)                      |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| Fractional atomic coordinates and isotr | ropic or | equivalent | isotropic | displacement | parameters | $(Å^2)$ | ) |
|-----------------------------------------|----------|------------|-----------|--------------|------------|---------|---|
|-----------------------------------------|----------|------------|-----------|--------------|------------|---------|---|

|     | X            | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|--------------|--------------|-------------------------------|
| S1  | 0.97214 (14) | 0.38389 (4)  | 0.36963 (3)  | 0.01889 (16)                  |
| O1W | 0.2297 (5)   | 0.66101 (10) | 0.58560 (11) | 0.0210 (4)                    |

| H1A  | 0.363 (5)  | 0.6337 (16)  | 0.5723 (16)  | 0.032*     |
|------|------------|--------------|--------------|------------|
| H1B  | 0.110 (6)  | 0.6336 (16)  | 0.6041 (16)  | 0.032*     |
| O2′  | 0.8902 (4) | 0.53482 (10) | 0.64314 (9)  | 0.0155 (4) |
| H2′O | 0.971 (7)  | 0.5148 (17)  | 0.6768 (15)  | 0.023*     |
| O3′  | 0.6026 (4) | 0.56178 (10) | 0.51450 (10) | 0.0171 (4) |
| H3′O | 0.553 (7)  | 0.5708 (17)  | 0.4704 (16)  | 0.026*     |
| O4′  | 0.4719 (4) | 0.38417 (10) | 0.55162 (8)  | 0.0166 (4) |
| N1   | 0.1518 (5) | 0.40830 (11) | 0.87950 (11) | 0.0148 (5) |
| C2   | 0.0798 (6) | 0.45356 (14) | 0.82094 (13) | 0.0152 (5) |
| H2   | -0.0681    | 0.4906       | 0.8293       | 0.018*     |
| N3   | 0.1866 (5) | 0.45398 (11) | 0.75258 (11) | 0.0132 (4) |
| C4   | 0.3891 (6) | 0.39748 (13) | 0.74463 (13) | 0.0126 (5) |
| C5   | 0.4795 (6) | 0.34442 (13) | 0.79930 (13) | 0.0130 (5) |
| C6   | 0.3551 (5) | 0.35230 (14) | 0.87012 (13) | 0.0144 (5) |
| N6   | 0.4318 (5) | 0.30707 (13) | 0.92757 (12) | 0.0188 (5) |
| H6A  | 0.355 (7)  | 0.3126 (17)  | 0.9726 (16)  | 0.028*     |
| H6B  | 0.552 (7)  | 0.2722 (17)  | 0.9214 (17)  | 0.028*     |
| C7   | 0.6937 (6) | 0.29487 (14) | 0.76725 (14) | 0.0155 (5) |
| H7   | 0.7949     | 0.2532       | 0.7913       | 0.019*     |
| C8   | 0.7228 (6) | 0.31939 (14) | 0.69593 (14) | 0.0141 (5) |
| H8   | 0.8501     | 0.2971       | 0.6611       | 0.017*     |
| N9   | 0.5374 (4) | 0.38247 (11) | 0.68120 (10) | 0.0128 (4) |
| C1′  | 0.5393 (6) | 0.43227 (14) | 0.61535 (12) | 0.0139 (5) |
| H1′  | 0.3971     | 0.4760       | 0.6208       | 0.017*     |
| C2′  | 0.8210 (6) | 0.46963 (14) | 0.59653 (13) | 0.0133 (5) |
| H2′  | 0.9698     | 0.4276       | 0.5998       | 0.016*     |
| C3′  | 0.7750 (6) | 0.49214 (14) | 0.51606 (14) | 0.0138 (5) |
| H3′  | 0.9552     | 0.5009       | 0.4892       | 0.017*     |
| C4′  | 0.6191 (6) | 0.41680 (15) | 0.48763 (13) | 0.0139 (5) |
| H4′  | 0.4815     | 0.4328       | 0.4486       | 0.017*     |
| C5′  | 0.8164 (6) | 0.35258 (16) | 0.45686 (13) | 0.0188 (6) |
| H5'A | 0.7116     | 0.3019       | 0.4492       | 0.023*     |
| H5′B | 0.9660     | 0.3419       | 0.4935       | 0.023*     |
| C6′  | 0.7305 (6) | 0.34328 (16) | 0.30226 (15) | 0.0219 (6) |
| H6'A | 0.7358     | 0.2843       | 0.3041       | 0.033*     |
| H6′B | 0.7835     | 0.3615       | 0.2525       | 0.033*     |
| H6′C | 0.5412     | 0.3620       | 0.3137       | 0.033*     |
|      |            |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-----------------|-------------|--------------|--------------|
| S1  | 0.0145 (4)  | 0.0267 (3)  | 0.0155 (3)      | -0.0023 (3) | 0.0037 (3)   | -0.0050 (3)  |
| O1W | 0.0206 (12) | 0.0217 (9)  | 0.0208 (10)     | -0.0034 (8) | 0.0045 (8)   | 0.0000 (8)   |
| O2′ | 0.0170 (10) | 0.0174 (8)  | 0.0120 (9)      | -0.0004 (7) | -0.0028 (8)  | -0.0007 (7)  |
| O3′ | 0.0200 (11) | 0.0205 (9)  | 0.0108 (8)      | 0.0075 (8)  | -0.0027 (8)  | 0.0023 (7)   |
| O4′ | 0.0138 (10) | 0.0262 (9)  | 0.0096 (8)      | -0.0044 (9) | 0.0006 (8)   | -0.0020 (7)  |
| N1  | 0.0160 (12) | 0.0172 (10) | 0.0113 (10)     | 0.0002 (8)  | -0.0001 (9)  | 0.0006 (8)   |
| C2  | 0.0135 (14) | 0.0164 (11) | 0.0157 (12)     | 0.0007 (10) | -0.0020 (11) | -0.0023 (10) |

# supporting information

| N3  | 0.0108 (11) | 0.0172 (9)  | 0.0117 (11) | 0.0010 (8)   | -0.0005 (9)  | -0.0015 (9)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C4  | 0.0102 (13) | 0.0155 (11) | 0.0121 (12) | -0.0032 (9)  | -0.0034 (10) | -0.0014 (10) |
| C5  | 0.0113 (14) | 0.0155 (10) | 0.0123 (11) | -0.0002 (10) | 0.0009 (11)  | 0.0012 (9)   |
| C6  | 0.0153 (14) | 0.0157 (11) | 0.0121 (11) | -0.0018 (10) | -0.0028 (11) | -0.0004 (10) |
| N6  | 0.0235 (15) | 0.0226 (10) | 0.0104 (10) | 0.0066 (10)  | 0.0018 (10)  | 0.0015 (9)   |
| C7  | 0.0130 (14) | 0.0162 (11) | 0.0174 (12) | 0.0012 (10)  | -0.0002 (12) | 0.0008 (10)  |
| C8  | 0.0105 (14) | 0.0158 (11) | 0.0160 (13) | 0.0017 (10)  | 0.0025 (11)  | -0.0035 (10) |
| N9  | 0.0104 (11) | 0.0170 (9)  | 0.0110 (10) | -0.0010 (9)  | 0.0025 (9)   | 0.0006 (8)   |
| C1′ | 0.0133 (15) | 0.0196 (11) | 0.0089 (11) | 0.0001 (10)  | -0.0008 (10) | -0.0001 (9)  |
| C2′ | 0.0077 (13) | 0.0178 (11) | 0.0142 (12) | -0.0002 (10) | -0.0020 (11) | 0.0008 (10)  |
| C3′ | 0.0110 (14) | 0.0174 (11) | 0.0131 (12) | 0.0020 (10)  | 0.0011 (11)  | 0.0001 (10)  |
| C4′ | 0.0098 (14) | 0.0227 (12) | 0.0091 (11) | 0.0009 (10)  | -0.0027 (10) | 0.0029 (10)  |
| C5′ | 0.0184 (15) | 0.0227 (12) | 0.0153 (12) | 0.0002 (12)  | -0.0011 (12) | -0.0042 (11) |
| C6′ | 0.0177 (16) | 0.0283 (14) | 0.0197 (14) | -0.0005 (12) | -0.0007 (12) | -0.0054 (12) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| S1—C6′       | 1.808 (3)   | N6—H6A      | 0.90 (3)    |  |
|--------------|-------------|-------------|-------------|--|
| S1—C5′       | 1.816 (3)   | N6—H6B      | 0.82 (3)    |  |
| O1W—H1A      | 0.820 (18)  | C7—C8       | 1.355 (3)   |  |
| O1W—H1B      | 0.805 (18)  | С7—Н7       | 0.9500      |  |
| O2'—C2'      | 1.410 (3)   | C8—N9       | 1.399 (3)   |  |
| O2'—H2'O     | 0.79 (3)    | C8—H8       | 0.9500      |  |
| O3'—C3'      | 1.422 (3)   | N9—C1′      | 1.446 (3)   |  |
| O3'—H3'O     | 0.84 (3)    | C1′—C2′     | 1.523 (4)   |  |
| O4′—C1′      | 1.436 (3)   | C1'—H1'     | 1.0000      |  |
| O4'—C4'      | 1.456 (3)   | C2′—C3′     | 1.514 (3)   |  |
| N1—C2        | 1.341 (3)   | C2'—H2'     | 1.0000      |  |
| N1-C6        | 1.357 (3)   | C3′—C4′     | 1.545 (3)   |  |
| C2—N3        | 1.334 (3)   | С3'—Н3'     | 1.0000      |  |
| С2—Н2        | 0.9500      | C4′—C5′     | 1.529 (3)   |  |
| N3—C4        | 1.357 (3)   | C4′—H4′     | 1.0000      |  |
| C4—N9        | 1.369 (3)   | С5′—Н5′А    | 0.9900      |  |
| C4—C5        | 1.391 (3)   | С5′—Н5′В    | 0.9900      |  |
| C5—C6        | 1.415 (3)   | С6'—Н6'А    | 0.9800      |  |
| C5—C7        | 1.436 (3)   | С6′—Нб′В    | 0.9800      |  |
| C6—N6        | 1.331 (3)   | С6'—Н6'С    | 0.9800      |  |
| C6'—S1—C5'   | 102.20 (14) | O4'—C1'—H1' | 109.2       |  |
| H1A—O1W—H1B  | 111 (3)     | N9—C1′—H1′  | 109.2       |  |
| C2'—O2'—H2'O | 104 (2)     | C2'—C1'—H1' | 109.2       |  |
| С3'—О3'—Н3'О | 109 (2)     | O2'—C2'—C3' | 114.53 (19) |  |
| C1'—O4'—C4'  | 108.50 (17) | O2'—C2'—C1' | 112.9 (2)   |  |
| C2-N1-C6     | 118.1 (2)   | C3'—C2'—C1' | 100.7 (2)   |  |
| N3—C2—N1     | 129.2 (2)   | O2'—C2'—H2' | 109.5       |  |
| N3—C2—H2     | 115.4       | C3'—C2'—H2' | 109.5       |  |
| N1—C2—H2     | 115.4       | C1'—C2'—H2' | 109.5       |  |
| C2—N3—C4     | 111.6 (2)   | O3'—C3'—C2' | 107.7 (2)   |  |

|                                                                           |                                                             |                                                                            | 111 0 (0)                                                      |
|---------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|
| N3—C4—N9                                                                  | 125.8 (2)                                                   | 03' - C3' - C4'                                                            | 111.8 (2)                                                      |
| N3—C4—C5                                                                  | 125.9 (2)                                                   | C2'—C3'—C4'                                                                | 100.83 (19)                                                    |
| N9—C4—C5                                                                  | 108.3 (2)                                                   | O3'—C3'—H3'                                                                | 112.0                                                          |
| C4—C5—C6                                                                  | 116.7 (2)                                                   | C2'—C3'—H3'                                                                | 112.0                                                          |
| C4—C5—C7                                                                  | 107.5 (2)                                                   | C4'—C3'—H3'                                                                | 112.0                                                          |
| C6—C5—C7                                                                  | 135.8 (2)                                                   | O4'—C4'—C5'                                                                | 109.07 (19)                                                    |
| N6—C6—N1                                                                  | 119.2 (2)                                                   | Q4'—C4'—C3'                                                                | 105.84 (19)                                                    |
| N6-C6-C5                                                                  | 122.2 (2)                                                   | C5'—C4'—C3'                                                                | 112.7 (2)                                                      |
| N1-C6-C5                                                                  | 1186(2)                                                     | O4' - C4' - H4'                                                            | 109.7                                                          |
| C6—N6—H6A                                                                 | 122(2)                                                      | C5' - C4' - H4'                                                            | 109.7                                                          |
| C6 N6 H6P                                                                 | 122(2)<br>110(2)                                            | $C_{3}^{2}$ $C_{4}^{\prime}$ $H_{4}^{\prime}$                              | 109.7                                                          |
|                                                                           | 119(2)<br>110(2)                                            | $C_{3} - C_{4} - 114$                                                      | 109.7                                                          |
| HOA - NO - HOB                                                            | 119(3)                                                      | C4 - C5 - S1                                                               | 111.39 (18)                                                    |
|                                                                           | 106.4 (2)                                                   | C4 - C5 - H5A                                                              | 109.3                                                          |
| C8—C/—H/                                                                  | 126.8                                                       | SI_C5'_H5'A                                                                | 109.3                                                          |
| С5—С7—Н7                                                                  | 126.8                                                       | C4'—C5'—H5'B                                                               | 109.3                                                          |
| C7—C8—N9                                                                  | 109.9 (2)                                                   | S1—C5′—H5′B                                                                | 109.3                                                          |
| С7—С8—Н8                                                                  | 125.1                                                       | H5'A—C5'—H5'B                                                              | 108.0                                                          |
| N9—C8—H8                                                                  | 125.1                                                       | S1—C6'—H6'A                                                                | 109.5                                                          |
| C4—N9—C8                                                                  | 107.91 (19)                                                 | S1—C6′—H6′B                                                                | 109.5                                                          |
| C4—N9—C1′                                                                 | 125.7 (2)                                                   | H6'A—C6'—H6'B                                                              | 109.5                                                          |
| C8—N9—C1′                                                                 | 125.5 (2)                                                   | S1—C6′—H6′C                                                                | 109.5                                                          |
| O4'—C1'—N9                                                                | 109.66 (18)                                                 | H6'A—C6'—H6'C                                                              | 109.5                                                          |
| O4'—C1'—C2'                                                               | 104.34 (19)                                                 | Н6′В—С6′—Н6′С                                                              | 109.5                                                          |
| N9-C1'-C2'                                                                | 1149(2)                                                     |                                                                            |                                                                |
|                                                                           | 11, (2)                                                     |                                                                            |                                                                |
| C6 N1 C2 N2                                                               | -23(4)                                                      | CA' = OA' = C1' = N0                                                       | -1482(2)                                                       |
| $C_0 = N_1 = C_2 = N_3$                                                   | 2.3(4)                                                      | C4 = 04 = C1 = 103                                                         | 146.2(2)                                                       |
| N1 - C2 - N3 - C4                                                         | 2.3 (4)                                                     | C4 - 04 - C1 - C2                                                          | -24.6(2)                                                       |
| C2—N3—C4—N9                                                               | 1/9.6 (2)                                                   | C4 - N9 - C1' - O4'                                                        | -126.6(2)                                                      |
| C2—N3—C4—C5                                                               | 0.3 (3)                                                     | C8—N9—C1′—O4′                                                              | 65.6 (3)                                                       |
| N3-C4-C5-C6                                                               | -2.4 (4)                                                    | C4—N9—C1′—C2′                                                              | 116.2 (3)                                                      |
| N9—C4—C5—C6                                                               | 178.2 (2)                                                   | C8—N9—C1′—C2′                                                              | -51.6 (3)                                                      |
| N3—C4—C5—C7                                                               | 179.5 (2)                                                   | O4'—C1'—C2'—O2'                                                            | 164.56 (18)                                                    |
| N9—C4—C5—C7                                                               | 0.1 (3)                                                     | N9—C1′—C2′—O2′                                                             | -75.3 (3)                                                      |
| C2—N1—C6—N6                                                               | 179.5 (2)                                                   | O4'—C1'—C2'—C3'                                                            | 42.0 (2)                                                       |
| C2—N1—C6—C5                                                               | -0.2 (3)                                                    | N9—C1′—C2′—C3′                                                             | 162.11 (19)                                                    |
| C4—C5—C6—N6                                                               | -177.4(2)                                                   | O2'—C2'—C3'—O3'                                                            | -45.9 (3)                                                      |
| C7—C5—C6—N6                                                               | 0.1 (5)                                                     | C1'—C2'—C3'—O3'                                                            | 75.5 (2)                                                       |
| C4—C5—C6—N1                                                               | 2.2 (3)                                                     | O2'—C2'—C3'—C4'                                                            | -163.2(2)                                                      |
| C7—C5—C6—N1                                                               | 1797(3)                                                     | C1' - C2' - C3' - C4'                                                      | -41.8(2)                                                       |
| C4-C5-C7-C8                                                               | -0.1(3)                                                     | C1' - 04' - C4' - C5'                                                      | 1191(2)                                                        |
| C6 $C5$ $C7$ $C8$                                                         | $-177 \ 8 \ (3)$                                            | C1' O4' C4' C3'                                                            | -25(2)                                                         |
| $C_{5}$ $C_{7}$ $C_{8}$ N0                                                | 177.0(3)                                                    | $C_1 = C_1 = C_1 = C_2$                                                    | -2.5(2)                                                        |
| CJ-C/-Co-N9                                                               | 0.2(3)                                                      | 03-03-04-04                                                                | 85.9(2)                                                        |
| $N_2 C_4 N_0 C_9$                                                         | -1704(2)                                                    | $C^{1}$ $C^{2}$ $C^{1}$ $C^{1}$ $O^{1}$                                    | 10 A (1)                                                       |
| N3-C4-N9-C8                                                               | -179.4 (2)                                                  | C2'-C3'-C4'-O4'                                                            | 28.4 (2)                                                       |
| N3-C4-N9-C8<br>C5-C4-N9-C8                                                | -179.4 (2)<br>0.0 (3)                                       | C2'-C3'-C4'-O4'<br>O3'-C3'-C4'-C5'                                         | 28.4 (2)<br>155.0 (2)                                          |
| N3—C4—N9—C8<br>C5—C4—N9—C8<br>N3—C4—N9—C1'                                | -179.4 (2)<br>0.0 (3)<br>11.0 (4)                           | C2'C3'C4'O4'<br>O3'C3'C4'C5'<br>C2'C3'C4'C5'                               | 28.4 (2)<br>155.0 (2)<br>-90.8 (2)                             |
| N3-C4-N9-C8<br>C5-C4-N9-C8<br>N3-C4-N9-C1'<br>C5-C4-N9-C1'                | -179.4 (2)<br>0.0 (3)<br>11.0 (4)<br>-169.5 (2)             | C2'C3'C4'O4'<br>O3'C3'C4'C5'<br>C2'C3'C4'C5'<br>O4'C4'C5'S1                | 28.4 (2)<br>155.0 (2)<br>-90.8 (2)<br>172.20 (16)              |
| N3—C4—N9—C8<br>C5—C4—N9—C8<br>N3—C4—N9—C1'<br>C5—C4—N9—C1'<br>C7—C8—N9—C4 | -179.4 (2)<br>0.0 (3)<br>11.0 (4)<br>-169.5 (2)<br>-0.1 (3) | C2'C3'C4'O4'<br>O3'C3'C4'C5'<br>C2'C3'C4'C5'<br>O4'C4'C5'S1<br>C3'C4'C5'S1 | 28.4 (2)<br>155.0 (2)<br>-90.8 (2)<br>172.20 (16)<br>-70.5 (2) |

| D—H···A                                       | <i>D</i> —Н | H…A      | $D \cdots A$ | D—H···A |
|-----------------------------------------------|-------------|----------|--------------|---------|
| O2'—H2'O····N3 <sup>i</sup>                   | 0.79 (3)    | 1.99 (3) | 2.776 (3)    | 173 (3) |
| O1 <i>W</i> —H1 <i>A</i> ···O3′               | 0.82 (3)    | 1.96 (3) | 2.748 (3)    | 162 (3) |
| O1 <i>W</i> —H1 <i>B</i> ···O2′ <sup>ii</sup> | 0.80 (3)    | 2.07 (3) | 2.848 (3)    | 162 (3) |
| O3'—H3'O…N1 <sup>iii</sup>                    | 0.84 (3)    | 1.94 (3) | 2.766 (3)    | 166 (3) |
| N6—H6 $A$ ···O1 $W^{iv}$                      | 0.90 (3)    | 2.12 (3) | 2.998 (3)    | 166 (3) |
| N6—H6 <i>B</i> ···O1 <i>W</i> <sup>v</sup>    | 0.82 (3)    | 2.13 (3) | 2.928 (3)    | 164 (3) |

## Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*; (iii) -*x*+1/2, -*y*+1, *z*-1/2; (iv) -*x*+1/2, -*y*+1, *z*+1/2; (v) -*x*+1, *y*-1/2, -*z*+3/2.