

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dimethyl 2,2'-[ethane-1,2-diylbis-(sulfanedivl)]dibenzoate

Xiaoming Hu,^a* Jianghua Yu^b and Limin Yuan^b

^aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467002, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou 225002, People's Republic of China

Correspondence e-mail: xiaominghu10@163.com

Received 10 June 2010; accepted 11 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.082; data-to-parameter ratio = 17.7.

The title compound, $C_{18}H_{18}O_4S_2$, was synthesized by the reaction of 1,2-dibromoethane with methyl thiosalicylate. The complete molecule is generated by crystallographic twofold symmetry: two methyl benzoate units are linked by an $-S-(CH_2)_2-S-$ bridging chain with a gauche $S-CH_2-CH_2-$ S torsion angle $[72.88 (16)^{\circ}]$. The two aromatic rings form a dihedral angle of 79.99 (6)°. In the crystal, adjacent molecules are linked into a three-dimensional network by non-classical C-H···O hydrogen bonds.

Related literature

For the potential use of dithiodibenzoates in the construction of diverse frameworks with tailored properties and functions, see: Humphrey et al. (2004); Li et al. (2007); Murugavel et al. (2001); Wang et al. (2004); Zhou et al. (2009).

3836 measured reflections

 $R_{\rm int} = 0.023$

1948 independent reflections

1864 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{18}H_{18}O_4S_2$ M = 362.44	$V = 873.6 (3) \text{ Å}^3$ Z = 2
Monoclinic, C2	Mo $K\alpha$ radiation
a = 15.077 (3) A b = 5.3913 (10) Å	$\mu = 0.32 \text{ mm}^{-1}$ T = 296 K
c = 12.495 (2) Å $3 = 120.662 (2)^{\circ}$	$0.52 \times 0.32 \times 0.22 \text{ mm}$
) = 120.002 (2)	

Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2006) $T_{\min} = 0.850, \ T_{\max} = 0.932$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.082$	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.08	$\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$
1948 reflections	Absolute structure: Flack (1983),
110 parameters	834 Friedel pairs
1 restraint	Flack parameter: -0.02 (7)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots O2^{i}$	0.93	2.51	3.435 (2)	171
Symmetry code: (i) r	+1 v -1 z			

metry code: (i) $x + \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by the Top-Class Foundation of Pingdingshan University (grant No. 2006047).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2166).

References

Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Humphrey, S. M., Mole, R. A., Rawson, J. M. & Wood, P. T. (2004). Dalton Trans. pp. 1670-1678

Li, X.-H., Jia, S.-C. & Jalbout, A. F. (2007). Z. Kristallogr. New Cryst. Struct. 222, 117-118.

Murugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870-6878

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, S., Mao-Lin, H. & Chen, F. (2004). Acta Cryst. E60, m413-m415.

Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

Zhou, L.-M., Zhang, Q. & Hu, M. (2009). Acta Cryst. E65, m1221-m1222.

supporting information

Acta Cryst. (2010). E66, o1675 [doi:10.1107/S1600536810022403]

Dimethyl 2,2'-[ethane-1,2-diylbis(sulfanediyl)]dibenzoate

Xiaoming Hu, Jianghua Yu and Limin Yuan

S1. Comment

The flexibility and conformational freedom of the disulfide derivatives of the benzoate – dithiodibenzoates - provides a possibility for the construction of diverse frameworks with tailored properties and functions (Murugavel *et al.*, 2001; Humphrey *et al.*, 2004; Wang *et al.* 2004; Li *et al.*, 2007; Zhou *et al.*, 2009). The flexible bridging ligands adopt unusually twisted structures with different C—S—S—C torsion angles in constructing complexes.

The title compound described here is a longer analogue of 2,2'-dithiodibenzoate with the two methyl benzoate units interconnected by a flexible $-S-(CH_2)_2-S-$ bridge (Fig. 1). The torsion angle $S-CH_2-CH_2-S$ is 72.88 (16)°. The two aromatic rings form a dihedral angle of 79.99 (6)°. The $C1(sp^2)-S$ bond length [1.769 (2) Å] is significantly shorter than the $C8(sp^3)-S$ [1.814 (2) Å] bond length due to $p-\pi$ conjugation. There are no significant S···S nor S···O contacts present in the structure and $C-H\cdots\pi$ (arene) hydrogen bonds and aromatic $\pi\cdots\pi$ stacking interactions are also absent. In the crystal, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular structure (Fig. 2).

S2. Experimental

The title compound was synthesized as follows: a solution of 1,2-dibromoethane (0.94 g, 5 mmol) in methanol (10 ml) was added dropwise to a mixture of methyl thiosalicylate (1.85 g, 11 mmol), KOH (0.617 g, 11 mmol) and ethanol (10 ml). The reaction mixture was stirred and heated for 12 h. The precipitate was filtered off, washed with water. Yield 72%; Colourless block crystals suitable for single-crystals X-ray analysis were obtained by recrystallization from an aceto-nitrile solution.

S3. Refinement

Hydrogen atoms were placed in calculated positions [C—H = 0.93–0.97 Å] and refined as riding [$U_{iso}(H) = 1.2Ueq(C)$ or $1.5Ueq(C_{methyl})$].

Figure 1

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids. Unlabeled atoms are related to labeled atoms by the symmetry code (-x, y, -z).

Figure 2

View of the connections inter- and intramolecules in (I) with the C-H-O interactions shown as orange dashed lines.

Dimethyl 2,2'-[ethane-1,2-diylbis(sulfanediyl)]dibenzoate

Crystal data

C₁₈H₁₈O₄S₂ $M_r = 362.44$ Monoclinic, C2 Hall symbol: C 2y a = 15.077 (3) Å b = 5.3913 (10) Å c = 12.495 (2) Å $\beta = 120.662$ (2)° V = 873.6 (3) Å³ Z = 2

Data collection

Bruker SMART APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2006) $T_{\min} = 0.850, T_{\max} = 0.932$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.082$ S = 1.081948 reflections 110 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 380 $D_x = 1.378 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2178 reflections $\theta = 2.7-27.4^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.52 \times 0.32 \times 0.22 \text{ mm}$

3836 measured reflections 1948 independent reflections 1864 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -19 \rightarrow 18$ $k = -6 \rightarrow 6$ $l = -16 \rightarrow 16$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0441P)^2 + 0.1272P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.15$ e Å⁻³ Absolute structure: Flack (1983), 834 Friedel pairs Absolute structure parameter: -0.02 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.24609 (11)	0.0317 (4)	0.17607 (14)	0.0440 (3)	
C2	0.31876 (12)	0.1986 (4)	0.26461 (15)	0.0455 (4)	
C3	0.42223 (14)	0.1865 (5)	0.29514 (18)	0.0590 (5)	
H3	0.4700	0.2970	0.3530	0.071*	
C4	0.45387 (16)	0.0121 (6)	0.2402 (2)	0.0689 (7)	
H4	0.5224	0.0062	0.2606	0.083*	
C5	0.38363 (18)	-0.1516 (5)	0.1556 (2)	0.0694 (7)	
Н5	0.4051	-0.2695	0.1192	0.083*	
C6	0.28109 (16)	-0.1440 (4)	0.12343 (19)	0.0577 (5)	
H6	0.2348	-0.2574	0.0660	0.069*	
C7	0.28831 (13)	0.3846 (4)	0.32683 (16)	0.0478 (4)	
C8	0.05804 (14)	-0.2095 (4)	0.02558 (17)	0.0525 (4)	
H8A	0.0717	-0.1916	-0.0420	0.063*	
H8B	0.0879	-0.3649	0.0679	0.063*	
С9	0.3458 (2)	0.6901 (7)	0.4813 (3)	0.0898 (8)	
H9A	0.2859	0.7821	0.4230	0.135*	
H9B	0.4035	0.8008	0.5233	0.135*	
H9C	0.3330	0.6119	0.5411	0.135*	
01	0.36822 (11)	0.5052 (4)	0.41658 (15)	0.0793 (5)	
O2	0.20111 (11)	0.4248 (3)	0.30111 (15)	0.0675 (4)	
S1	0.11495 (3)	0.04719 (7)	0.13359 (4)	0.04790 (14)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0394 (7)	0.0510 (9)	0.0398 (7)	0.0110 (9)	0.0188 (6)	0.0069 (9)
C2	0.0355 (8)	0.0578 (11)	0.0388 (8)	0.0087 (7)	0.0157 (7)	0.0098 (7)
C3	0.0380 (9)	0.0805 (14)	0.0535 (10)	0.0051 (9)	0.0198 (8)	0.0137 (10)
C4	0.0461 (10)	0.100 (2)	0.0675 (12)	0.0304 (14)	0.0340 (9)	0.0303 (14)
C5	0.0659 (14)	0.0845 (17)	0.0697 (14)	0.0365 (12)	0.0433 (12)	0.0199 (12)
C6	0.0567 (11)	0.0623 (12)	0.0551 (11)	0.0187 (10)	0.0292 (9)	0.0041 (9)
C7	0.0387 (9)	0.0555 (11)	0.0409 (8)	-0.0024 (8)	0.0143 (7)	0.0010 (8)
C8	0.0529 (10)	0.0413 (9)	0.0474 (10)	0.0051 (8)	0.0141 (8)	-0.0028 (7)
C9	0.0861 (18)	0.0898 (19)	0.0753 (16)	-0.0203 (16)	0.0279 (14)	-0.0349 (16)
01	0.0477 (7)	0.1046 (15)	0.0671 (8)	-0.0113 (9)	0.0159 (6)	-0.0323 (10)
O2	0.0418 (7)	0.0789 (10)	0.0765 (9)	-0.0027 (7)	0.0264 (7)	-0.0284 (8)
S 1	0.03542 (19)	0.0520 (2)	0.0488 (2)	0.0033 (2)	0.01601 (15)	-0.0082 (2)

Geometric parameters (Å, °)

C1—C6	1.401 (3)	С6—Н6	0.9300
C1—C2	1.413 (3)	C7—O2	1.203 (2)
C1—S1	1.7685 (15)	C7—O1	1.324 (2)
C2—C3	1.406 (2)	C8—C8 ⁱ	1.527 (4)
C2—C7	1.478 (3)	C8—S1	1.8143 (19)

C3—C4	1.384 (4)	C8—H8A	0.9700
С3—Н3	0.9300	C8—H8B	0.9700
C4—C5	1.370 (4)	С9—О1	1.429 (3)
C4—H4	0.9300	С9—Н9А	0.9600
C5—C6	1.386 (3)	С9—Н9В	0.9600
С5—Н5	0.9300	С9—Н9С	0.9600
C6—C1—C2	118.08 (15)	O2—C7—O1	122.42 (19)
C6—C1—S1	121.47 (16)	O2—C7—C2	124.88 (16)
C2—C1—S1	120.44 (14)	O1—C7—C2	112.71 (16)
C3—C2—C1	119.52 (18)	C8 ⁱ —C8—S1	108.52 (12)
C3—C2—C7	119.22 (18)	C8 ⁱ —C8—H8A	110.0
C1—C2—C7	121.26 (14)	S1—C8—H8A	110.0
C4—C3—C2	120.8 (2)	C8 ⁱ —C8—H8B	110.0
С4—С3—Н3	119.6	S1—C8—H8B	110.0
С2—С3—Н3	119.6	H8A—C8—H8B	108.4
C5—C4—C3	119.61 (18)	O1—C9—H9A	109.5
C5—C4—H4	120.2	O1—C9—H9B	109.5
C3—C4—H4	120.2	H9A—C9—H9B	109.5
C4—C5—C6	120.9 (2)	O1—C9—H9C	109.5
С4—С5—Н5	119.5	H9A—C9—H9C	109.5
С6—С5—Н5	119.5	H9B—C9—H9C	109.5
C5—C6—C1	121.0 (2)	C7—O1—C9	116.51 (17)
С5—С6—Н6	119.5	C1—S1—C8	102.68 (10)
С1—С6—Н6	119.5		
C6 C1 C2 C3	1 1 (3)	S1 C1 C6 C5	178 76 (16)
$c_0 = c_1 = c_2 = c_3$	-178.60(15)	$C_1 = C_1 = C_2 = C_3$	173.83(10)
6-1-22-23	-178.26(18)	$C_{1} = C_{2} = C_{7} = O_{2}$	-6.8(3)
$S_1 - C_1 - C_2 - C_7$	19(2)	$C_{3} - C_{2} - C_{7} - O_{1}$	-6.6(3)
C1 - C2 - C3 - C4	-0.4(3)	$C_1 - C_2 - C_7 - O_1$	172.80(18)
$C_1 - C_2 - C_3 - C_4$	178.97(18)	$0^{2}-0^{7}-0^{1}-0^{9}$	-0.9(3)
$C_{1}^{2} = C_{2}^{2} = C_{3}^{2} = C_{4}^{2} = C_{5}^{2}$	-0.4(3)	$C_2 = C_7 = 01 = C_9$	179.6(2)
$C_2 = C_3 = C_4 = C_5 = C_5$	0.7(3)	$C_{2} = C_{1} = C_{2}$	260(18)
$C_{1} = C_{1} = C_{1}$	0.3(3)	$C_{1} = C_{1} = C_{1} = C_{1}$	2.00(10) -17758(15)
$C_{+} - C_{-} - C_{-$	-11(3)	$C_2 - C_1 - S_1 - C_0$	-176.60(15)
$C_2 - C_1 - C_0 - C_3$	1.1 (3)	0-0-51-01	170.00 (13)

Symmetry code: (i) -x, y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С3—Н3…О1	0.93	2.34	2.679 (3)	101
C4—H4····O2 ⁱⁱ	0.93	2.51	3.435 (2)	171

Symmetry code: (ii) x+1/2, y-1/2, z.