Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Chloro- N -(4-sulfamoylphenyl)propanamide

Mehmet Akkurt, ${ }^{\text {a* }}$ Serife Pınar Yalçın, ${ }^{\text {b }}$ Hasan Türkmen ${ }^{\text {c }}$ and Orhan Büyükgüngör ${ }^{\text {d }}$

a Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {b }}$ Department of Physics, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, ${ }^{\text {c Department of Chemistry, Faculty of Arts and Sciences, }}$ Harran University, 63300 Şanlıurfa, Turkey, and d Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
Correspondence e-mail: akkurt@erciyes.edu.tr

Received 26 May 2010; accepted 29 May 2010
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.038 ; w R$ factor $=0.106 ;$ data-to-parameter ratio $=15.0$.

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$, the dihedral angle between the benzene ring and the amido $-\mathrm{NHCO}-$ plane is 15.0 (2) ${ }^{\circ}$. An intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond generates an $S(6)$ ring motif. In the crystal structure, the amino NH_{2} group is involved in intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which connect the molecules into a double layer structure expanding parallel to the $b c$ plane. The layers are further linked by an amido $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. Between the layers, a weak $\pi-\pi$ interaction with a centroidcentroid distance of 3.7447 (12) \AA is also observed.

Related literature

For the antibacterial and pharmacological properties of sulfonamides and their derivatives, see: Albala et al. (1994); Mann \& Keilin (1940); Maren (1976); Pastorekova et al. (2004); Reynolds (1996); Silverman (1992); Supuran \& Scozzafava (2001, 2002); Supuran et al. $(2003,2004)$; Türkmen et al. (2005). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

```
\(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}\)
\(M_{r}=262.72\)
Monoclinic, \(P 2_{k} / c\)
\(a=7.7554\) (4) A
\(b=14.8191\) ( 8 ) \(\AA\)
\(c=9.7482\) (5) A
\(\beta=94.181\) (4) \({ }^{\circ}\)
```

$V=1117.36(10) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.52 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.78 \times 0.45 \times 0.22 \mathrm{~mm}$

Data collection

Stoe IPDS2 diffractometer Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.754, T_{\text {max }}=0.892$
6023 measured reflections 2294 independent reflections 2007 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.040$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.106$
$S=1.08$ independent and constrained

2294 reflections
153 parameters
2 restraints
refinement
$\Delta \rho_{\max }=0.28$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.859(18)$	$2.14(2)$	$2.926(2)$	$151(3)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 3^{\text {ii }}$	$0.85(2)$	$2.12(3)$	$2.923(2)$	$158(3)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.86	2.13	$2.991(2)$	175
C3-H3 $\cdots \mathrm{O} 3$	0.93	2.32	$2.889(3)$	120
Symmetry codes:	(i) $x,-y+\frac{3}{2}, z-\frac{1}{2} ;$	(ii)	$-x,-y+1,-z+1 ;$	(iii)
$-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.				

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X AREA (Stoe \& Cie, 2002); data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F. 279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2555).

References

Albala, D. M., Prien, E. L. \& Galal, H. A. (1994). J. Endourol. 8, 401-403. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Mann, T. \& Keilin, D. (1940). Nature (London), 164, 146-148.
Maren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309-327.
Pastorekova, S., Parkkila, S., Pastorek, J. \& Supuran, C. T. J. (2004). J. Enzyme Inhib. Med. Chem. 19, 199-229.
Reynolds, J. E. F. (1996). Editor. Martindale: The Extra Pharmacopoeia, 31st ed. London: The Royal Pharmaceutical Society.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Silverman, R. B. (1992). The Organic Chemistry of Drug Design and Drug Action. London: Academic.
Stoe \& Cie (2002). X-AREA and X-RED32. Stoe \& Cie, Darmstadt, Germany.
Supuran, C. T. \& Scozzafava, A. (2001). Curr. Med. Chem. Immunol. Endocrinol. Metab. Agent. 1, 61-97.
Supuran, C. T. \& Scozzafava, A. (2002). Expert Opin. Ther. Patents, 12, 217242.

Supuran, C. T., Scozzafava, A. \& Casini, A. (2003). Med. Res. Rev. 23, 146-189.

organic compounds

Supuran, C. T., Vullo, D., Manole, G., Casini, A. \& Scozzafava, A. (2004). Curr. Med. Chem. Cardiovasc. Hematol. Agents, 2, 49-68.

Türkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. \& Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, $367-$ 372.

supporting information

Acta Cryst. (2010). E66, o1559-o1560 [doi:10.1107/S1600536810020465]

3-Chloro- \mathbf{N}-(4-sulfamoylphenyl) propanamide

Mehmet Akkurt, Şerife Pınar Yalçın, Hasan Türkmen and Orhan Büyükgüngör

S1. Comment

Sulfanilamide is a sulfonamide antibacterial. Chemically, it is a molecule containing the sulfonamide functional group attached to an aniline. As an antibiotic, it functions by competitively inhibiting (i.e, by acting as a substrate analogue) enzymatic reactions involving. Inhibition of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) with sulfonamides may be exploited clinically for the treatment and prevention of a multitude of diseases (Pastorekova et al., 2004; Supuran et al., 2004; Mann \& Keilin, 1940). With the early report that sulfanilamide acts as an inhibitor of CA, a great scientific adventure initiated, leading to the development of several classes of drugs based on the sulfonamide motif.
Sulfonamides and their derivatives have been the subject of investigation for many reasons. The amides are important constituent of many biologically significant compounds. The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. The sulfonamide derivatives are known for their numerous pharmacological activities, antibacterial, antitumor, insulin-release stimulation and antithyroid properties (Maren, 1976). In addition, the unsubstituted aromatic/heterocyclic sulfonamides act as carbonic anhydrase inhibitors (Supuran \& Scozzafava, 2001; Türkmen et al., 2005; Supuran et al., 2003) whereas other types of derivatives show diuretic activity (high-ceiling diuretics or thiadiazine diuretics), hypoglycemic activity and anti- cancer properties (Supuran \& Scozzafava, 2002). Although sulfonamides are best known as bacteriostatic (Silverman, 1992) and antimalarial agents (Albala et al., 1994), there is now a range of drugs, possessing very different pharmacological activities, in which the sulfonamide group is present (Reynolds, 1996). Due to their significant pharmacology applications and widespread use in medicine, these compounds have gained attention in bio-inorganic and metal-based drug chemistry. In this work we report the crystal structure of 3-chloro- N-(4-sulfamoylphenyl)propanamide.
In the title molecule (I), (Fig. 1), the $\mathrm{S}=\mathrm{O}$ distances $[1.4302$ (14) and 1.4349 (16) \AA] and the $\mathrm{O}=\mathrm{S}=\mathrm{O}$ angle [118.21 $\left.(9)^{\circ}\right]$ are within the normal range as the values of the other geometric parameters of the molecule. The dihedral angle between the benzene ring and the amido $-\mathrm{NHCO}-$ plane is $15.0(2)^{\circ}$.
The crystal structure is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type hydrogen bonds (Table 1, Fig. 2). N1—H1A $\cdots \mathrm{O} 1$ and $\mathrm{N} 1-$ $\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 3$ generate the two-dimensional network (double layer structure), but $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 2$ links the layers into a threedimensional network. An intramolecular hydrogen contact $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 3$ generates a ring of graph-set motif $\mathrm{S}(6)$ (Bernstein et al., 1995) (Table 1). Furthermore, crystal packing is influenced by weak $\pi-\pi$ stacking interactions between nearby aromatic rings of the adjacent molecules, $\left[C g \cdots C g^{\text {iv }}=3.7447\right.$ (12) $\AA ; C g$ is the centroid of the C1-C6 ring; symmetry code: (iv) $1-x, 1-y, 1-z]$.

S2. Experimental

Sulfanilamide ($2.00 \mathrm{~g}, 0.011 \mathrm{~mol}$) and N-ethylmaleimide (NEM) $(1.566 \mathrm{~g}, 0.016 \mathrm{~mol})$ were stirred in tetrahydrofuran (THF) (200 ml) until most of the starting material had dissolved. 3-Chloropropanoylchloride ($1.782 \mathrm{~g}, 0.014 \mathrm{~mol}$) in THF was slowly added to the reaction mixture. The reaction was stirred at 258 K for 4 h under anhydrous conditions. After
warming to room temperature the white precipitate of $\mathrm{NEM} / \mathrm{HCl}$ salt filtered off. The THF was removed in vacuo and the resulting white solid dissolved in ethyl acetate. The organic extract was washed with $3 M$ hydrochloric acid (20 ml) then with saturated sodium bicarbonate solution (20 ml) and finally with brine. Drying over magnesium sulfate and evaporation yielded a white solid which was recrystallized from water to give the title compound (yield: 70\%, m.p: 501503 K).

S3. Refinement

The H -atoms of the NH_{2} group were located in a difference Fourier map, and were refined with distance restraints of N $\mathrm{H}=0.86$ (2) \AA; their temperature factors were freely refined. The other H -atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and were included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figure 1

The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2
The packing of the molecules of (I) linked by of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, viewed down the c axis. All hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are indicated by dotted lines.

3-Chloro- N -(4-sulfamoylphenyl) propanamide

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=262.72$
Monoclinic, $P 2_{1} / c$
Hall symbol: - P 2 ybc
$a=7.7554$ (4) \AA
$b=14.8191$ (8) \AA
$c=9.7482(5) \AA$
$\beta=94.181(4)^{\circ}$

$$
\begin{aligned}
& V=1117.36(10) \AA^{3} \\
& Z=4 \\
& F(000)=544 \\
& D_{\mathrm{x}}=1.562 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 8775 \text { reflections } \\
& \theta=2.1-28.0^{\circ} \\
& \mu=0.52 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=296 \mathrm{~K}$
Prism, colourless

Data collection

Stoe IPDS2
diffractometer
Radiation source: sealed X-ray tube, 12×0.4
mm long-fine focus
Plane graphite monochromator
Detector resolution: 6.67 pixels mm^{-1}
ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.106$
$S=1.08$
2294 reflections
153 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
$0.78 \times 0.45 \times 0.22 \mathrm{~mm}$
$T_{\text {min }}=0.754, T_{\text {max }}=0.892$
6023 measured reflections
2294 independent reflections
2007 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=26.5^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-8 \rightarrow 9$
$k=-16 \rightarrow 18$
$l=-12 \rightarrow 12$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F^{2} for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors $w R$ and all goodnesses of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The observed criterion of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating - R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.18392(12)$	$-0.00186(4)$	$0.38004(9)$	$0.0791(3)$
S1	$0.31196(6)$	$0.73280(3)$	$0.40392(4)$	$0.0330(1)$
O1	$0.2882(2)$	$0.75787(10)$	$0.54296(14)$	$0.0471(5)$
O2	$0.4665(2)$	$0.76199(10)$	$0.34461(15)$	$0.0445(5)$
O3	$0.1258(2)$	$0.28706(10)$	$0.52407(19)$	$0.0571(6)$
N1	$0.1520(2)$	$0.77368(12)$	$0.31092(18)$	$0.0398(5)$
N2	$0.3009(2)$	$0.33382(11)$	$0.36141(18)$	$0.0419(5)$
C1	$0.3044(2)$	$0.61415(12)$	$0.39403(17)$	$0.0331(5)$
C2	$0.2424(3)$	$0.56420(15)$	$0.4978(2)$	$0.0499(7)$
C3	$0.2372(4)$	$0.47119(15)$	$0.4898(2)$	$0.0530(7)$
C4	$0.2965(2)$	$0.42797(13)$	$0.37652(19)$	$0.0360(5)$
C5	$0.3592(3)$	$0.47919(15)$	$0.2722(2)$	$0.0508(7)$
C6	$0.3617(3)$	$0.57169(15)$	$0.2792(2)$	$0.0488(7)$

C7	$0.2202(3)$	$0.27011(13)$	$0.4329(2)$	$0.0389(6)$
C8	$0.2583(3)$	$0.17489(14)$	$0.3889(2)$	$0.0448(6)$
C9	$0.1263(4)$	$0.10957(16)$	$0.4265(4)$	$0.0725(10)$
H1A	$0.153(4)$	$0.7665(17)$	$0.2235(18)$	$0.053(7)^{*}$
H1B	$0.055(3)$	$0.7636(17)$	$0.342(3)$	$0.051(7)^{*}$
H2	0.20340	0.59310	0.57430	0.0600^{*}
H2A	0.36310	0.31400	0.29840	0.0500^{*}
H3	0.19400	0.43770	0.56030	0.0640^{*}
H5	0.40020	0.45050	0.19620	0.0610^{*}
H6	0.40150	0.60550	0.20760	0.0590^{*}
H8A	0.26540	0.17370	0.29000	0.0540^{*}
H8B	0.36990	0.15670	0.43140	0.0540^{*}
H9A	0.01560	0.12520	0.38000	0.0870^{*}
H9B	0.11490	0.11230	0.52490	0.0870^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.1120(6)$	$0.0337(3)$	$0.0982(6)$	$-0.0094(3)$	$0.0520(5)$	$-0.0065(3)$
S1	$0.0424(3)$	$0.0302(2)$	$0.0276(2)$	$-0.0060(2)$	$0.0106(2)$	$-0.0011(2)$
O1	$0.0702(10)$	$0.0434(8)$	$0.0294(7)$	$-0.0105(7)$	$0.0146(6)$	$-0.0057(5)$
O2	$0.0459(8)$	$0.0452(8)$	$0.0440(8)$	$-0.0140(6)$	$0.0142(6)$	$0.0000(6)$
O3	$0.0628(10)$	$0.0383(8)$	$0.0757(11)$	$-0.0035(7)$	$0.0427(9)$	$-0.0018(7)$
N1	$0.0471(10)$	$0.0372(9)$	$0.0367(9)$	$0.0024(7)$	$0.0131(7)$	$0.0019(7)$
N2	$0.0504(10)$	$0.0315(8)$	$0.0466(9)$	$0.0014(7)$	$0.0233(7)$	$-0.0011(7)$
C1	$0.0382(10)$	$0.0295(9)$	$0.0323(8)$	$0.0002(7)$	$0.0075(7)$	$0.0012(6)$
C2	$0.0740(15)$	$0.0352(10)$	$0.0443(11)$	$0.0005(10)$	$0.0310(10)$	$0.0001(8)$
C3	$0.0814(16)$	$0.0348(11)$	$0.0473(11)$	$0.0008(11)$	$0.0354(11)$	$0.0060(9)$
C4	$0.0383(10)$	$0.0315(9)$	$0.0394(9)$	$0.0021(8)$	$0.0116(8)$	$0.0022(7)$
C5	$0.0732(15)$	$0.0387(10)$	$0.0447(11)$	$-0.0035(10)$	$0.0323(11)$	$-0.0041(9)$
C6	$0.0712(15)$	$0.0377(10)$	$0.0410(10)$	$-0.0061(10)$	$0.0278(10)$	$0.0009(8)$
C7	$0.0385(10)$	$0.0335(10)$	$0.0461(11)$	$-0.0008(8)$	$0.0126(8)$	$0.0004(8)$
C8	$0.0500(12)$	$0.0344(10)$	$0.0520(11)$	$-0.0010(9)$	$0.0176(9)$	$-0.0027(8)$
C9	$0.0714(18)$	$0.0328(11)$	$0.118(2)$	$-0.0020(12)$	$0.0382(17)$	$-0.0012(13)$

Geometric parameters ($\hat{A}^{\circ}{ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 9$	$1.778(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.384(3)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.4302(14)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.385(3)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.4349(16)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.373(3)$
$\mathrm{S} 1-\mathrm{N} 1$	$1.6012(17)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.510(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.7617(18)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.475(4)$
$\mathrm{O} 3-\mathrm{C} 7$	$1.218(3)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{~N} 2-\mathrm{C} 4$	$1.404(3)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{~N} 2-\mathrm{C} 7$	$1.354(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A}$	$0.859(18)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B}$	$0.85(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~A}$	0.8600	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700

C1-C2	1.369 (3)	C9-H9A	0.9700
C1-C6	1.385 (3)	C9-H9B	0.9700
C2-C3	1.381 (3)		
$\mathrm{Cl} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	3.3993 (19)	$\mathrm{C} 3 \cdots \mathrm{O}$	2.889 (3)
$\mathrm{Cl1} \cdots \mathrm{C} 9^{\text {ii }}$	3.543 (3)	$\mathrm{C} 7 \cdots \mathrm{O} 2^{\text {vi }}$	3.173 (3)
$\mathrm{Cl} 1 \cdots \mathrm{H} 9 \mathrm{~B}^{\text {ii }}$	3.0400	$\mathrm{C} 8 \cdots \mathrm{O} 2^{\text {vi }}$	3.372 (3)
$\mathrm{S} 1 \cdots \mathrm{O} 1^{\text {iii }}$	3.5128 (14)	$\mathrm{C} 9 \cdots \mathrm{Cl} 1^{\text {ii }}$	3.543 (3)
O1 $\cdots \mathrm{N} 1^{\text {iv }}$	2.926 (2)	C7 \cdots H3	2.7900
$\mathrm{O} 1 \cdots \mathrm{~S} 1^{\text {iv }}$	3.5128 (14)	C8 $\cdots{ }^{\text {H }}{ }^{\text {x }}$	3.0400
$\mathrm{O} 1 \cdots \mathrm{O} 2^{\text {iv }}$	3.171 (2)	$\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 1^{\text {iii }}$	2.14 (2)
$\mathrm{O} 2 \cdots \mathrm{~N} 2^{v}$	2.992 (2)	$\mathrm{H} 1 \mathrm{~A} \cdots{ }^{\text {a }}$ iii	2.5800
$\mathrm{O} 2 \cdots \mathrm{C} 8^{\text {vi }}$	3.372 (3)	H1B $\cdots 3^{\text {vii }}$	2.12 (3)
$\mathrm{O} 2 \cdots \mathrm{O}{ }^{\text {iii }}$	3.171 (2)	$\mathrm{H} 2 \cdots \mathrm{O} 1$	2.5500
$\mathrm{O} 2 \cdots \mathrm{C} 7^{\text {vi }}$	3.173 (3)	H2 $\cdots{ }^{\text {H }}$ 1 ${ }^{\text {iv }}$	2.5800
$\mathrm{O} 3 \cdots \mathrm{~N} 1^{\text {vii }}$	2.923 (2)	H2A \cdots H5	2.2800
O3 \cdots C 3	2.889 (3)	H2A \cdots H8A	2.2100
$\mathrm{O} 1 \cdots \mathrm{H}^{\text {iv }}$	2.6900	H2A $\cdots{ }^{\text {O }}{ }^{\text {x }}$	2.1300
O1 \cdots H1A ${ }^{\text {iv }}$	2.14 (2)	H3 $\cdots 3$	2.3200
$\mathrm{O} 1 \cdots \mathrm{H} 2$	2.5500	H3 \cdots C 7	2.7900
O2 $\cdots{ }^{\text {H }} 8{ }^{\text {v }}$	2.8600	H5 \cdots H2A	2.2800
O2 \cdots H6	2.7100	H6 \cdots O2	2.7100
$\mathrm{O} 2 \cdots \mathrm{H} 2 \mathrm{~A}^{\text {v }}$	2.1300	H6 \cdots C 8^{v}	3.0400
$\mathrm{O} 2 \cdots \mathrm{H} 8 \mathrm{~B}^{\text {vi }}$	2.7200	H6 \cdots H8B ${ }^{\text {v }}$	2.4300
O3 \cdots H9A	2.8800	H6 \cdots O1 ${ }^{\text {iii }}$	2.6900
O3 \cdots H9B	2.5900	H8A \cdots H2A	2.2100
O3 \cdots H	2.3200	H8A $\cdots{ }^{\text {O }}{ }^{\text {x }}$	2.8600
O3 \cdots H1B ${ }^{\text {vii }}$	2.12 (3)	H8A \cdots O3 ${ }^{\text {xi }}$	2.8000
O3 $\cdots \mathrm{H}_{8}{ }^{\text {viii }}$	2.8000	H8B $\cdots{ }^{\text {c }}{ }^{\text {x }}$	2.4300
$\mathrm{N} 1 \cdots \mathrm{Cl} 1^{\text {ix }}$	3.3993 (19)	$\mathrm{H} 8 \mathrm{~B} \cdots \mathrm{O}^{\text {vi }}$	2.7200
N1 \cdots O3 ${ }^{\text {vii }}$	2.923 (2)	H9A \cdots O3	2.8800
$\mathrm{N} 1 \cdots \mathrm{O}{ }^{\text {iii }}$	2.926 (2)	H9B $\cdots 3$	2.5900
$\mathrm{N} 2 \cdots \mathrm{O} 2^{\text {x }}$	2.991 (2)	H9B $\cdots \mathrm{Cl1}^{1 i}$	3.0400
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	118.21 (9)	N2-C7-C8	113.46 (18)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	106.87 (9)	O3-C7-C8	122.71 (18)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	107.76 (8)	C7-C8-C9	112.9 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	107.05 (9)	C11-C9-C8	110.8 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	107.72 (8)	C1-C2-H2	120.00
N1-S1-C1	108.98 (9)	C3-C2-H2	120.00
C4-N2-C7	128.58 (17)	C2-C3-H3	120.00
S1-N1-H1A	117 (2)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.00
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	113.8 (19)	C4-C5-H5	120.00
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	114 (3)	C6-C5-H5	119.00
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	116.00	C1-C6-H6	120.00
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	116.00	C5-C6-H6	120.00
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	120.76 (14)	C7-C8-H8A	109.00
S1-C1-C6	119.09 (14)	C7-C8-H8B	109.00

supporting information

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$120.15(18)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.56(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.8(2)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$117.07(17)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.15(19)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$123.77(18)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.01(19)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$119.32(19)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 2$	$123.84(18)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$14.47(18)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$143.03(16)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-101.16(17)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$-37.18(17)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$78.63(17)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$15.1(3)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$-166.4(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$1.0(3)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 7-\mathrm{O} 3$	$-178.99(18)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$-179.80(19)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.75(17)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	

C9-C8-H8A	109.00
C9-C8-H8B	109.00
H8A-C8-H8B	108.00
C11-C9-H9A	109.00
Cl1-C9-H9B	109.00
C8-C9-H9A	110.00
C8-C9-H9B	109.00
H9A-C9-H9B	108.00

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-1.5(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.4(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.6(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	$178.1(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.5(3)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-179.24(19)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.6(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$1.6(3)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$21.5(3)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-158.5(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11$	$-177.00(18)$

178.75 (17)

Symmetry codes: (i) $x, y-1, z$; (ii) $-x,-y,-z+1$; (iii) $x,-y+3 / 2, z-1 / 2$; (iv) $x,-y+3 / 2, z+1 / 2$; (v) $-x+1, y+1 / 2,-z+1 / 2$; (vi) $-x+1,-y+1,-z+1$; (vii) $-x$, $-y+1,-z+1$; (viii) $x,-y+1 / 2, z+1 / 2$; (ix) $x, y+1, z$; (x) $-x+1, y-1 / 2,-z+1 / 2$; (xi) $x,-y+1 / 2, z-1 / 2$.

Hydrogen-bond geometry (A, o)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O}^{\text {iii }}$	$0.859(18)$	$2.14(2)$	$2.926(2)$	$151(3)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{O}^{\text {bii }}$	$0.85(2)$	$2.12(3)$	$2.923(2)$	$158(3)$
$\mathrm{N} 2 — \mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{x}}$	0.86	2.13	$2.991(2)$	175
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 3$	0.93	2.32	$2.889(3)$	120

Symmetry codes: (iii) $x,-y+3 / 2, z-1 / 2$; (vii) $-x,-y+1,-z+1$; (x) $-x+1, y-1 / 2,-z+1 / 2$.

