

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pentaaqua[2-(5-carboxylato-2-oxido-1pyridinio)acetato]zinc(II) monohydrate

Jing Chen and Yun-Long Feng*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China

Correspondence e-mail: sky37@zjnu.cn

Received 20 April 2010; accepted 12 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.084; data-to-parameter ratio = 13.7.

In the title compound, $[Zn(C_8H_5NO_5)(H_2O)_5]\cdot H_2O$, the Zn^{II} atom is coordinated by one O atom from the 2-(5-carboxylato-2-oxidopyridinium-1-yl)acetate ligand and by five water molecules, forming a distorted octahedral geometry. Coordinated and uncoordinated water molecules form $O-H\cdots O$ hydrogen bonds, leading to a three-dimensional framework.

Related literature

For related structures, see: Jiang *et al.* (2009); Szafran *et al.* (2006); Yang *et al.* (2010); Zhang *et al.* (2003); He & Feng (2007).

Experimental

Crystal data

$$\begin{split} & [\text{Zn}(\text{C}_8\text{H}_5\text{NO}_5)(\text{H}_2\text{O})_5]\cdot\text{H}_2\text{O}\\ & M_r = 368.60\\ & \text{Monoclinic, } P_{2_1}/c\\ & a = 10.9584 \ (4) \\ & \text{\AA}\\ & b = 7.5548 \ (4) \\ & \text{\AA}\\ & c = 16.6510 \ (7) \\ & \text{\AA}\\ & \beta = 103.498 \ (3)^\circ \end{split}$$

 $V = 1340.43 (10) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 1.89 mm⁻¹ T = 293 K 0.36 \times 0.09 \times 0.05 mm

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.824, T_{\max} = 0.918$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$
$wR(F^2) = 0.084$
S = 1.00
3086 reflections
226 parameters
18 restraints

19343 measured reflections 3086 independent reflections 2233 reflections with $I > 2\sigma(I)$ $R_{int} = 0.100$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.48~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.80~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1WA···O2 ⁱ	0.83 (2)	2.25 (2)	2.972 (3)	145 (3)
$O1W - H1WB \cdots O2W^{ii}$	0.81(2)	2.58 (3)	3.118 (3)	125 (3)
O2W−H2WA···O4 ⁱⁱⁱ	0.83(2)	1.89 (2)	2.716 (2)	169 (3)
$O2W - H2WB \cdot \cdot \cdot O2^{i}$	0.80(2)	1.96 (2)	2.742 (2)	163 (2)
O3W−H3WA···O2 ^{iv}	0.81(2)	1.89 (2)	2.701 (2)	173 (2)
$O3W - H3WB \cdots O4^{v}$	0.82(2)	2.04(2)	2.849 (2)	170 (3)
O4W−H4WA···O5 ^{vi}	0.82(2)	2.02(2)	2.810(2)	160 (3)
$O5W - H5WA \cdots O1^{iii}$	0.82(2)	1.90 (2)	2.705 (2)	166 (3)
$O5W - H5WB \cdots O1^{iv}$	0.81(2)	1.95 (2)	2.742 (2)	164 (3)
$O6W-H6WB\cdots O3^{v}$	0.82 (2)	1.89 (2)	2.697 (3)	171 (3)

Symmetry codes: (i) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2};$ (ii) -x, -y, -z + 1; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2};$ (iv) $x + 1, -y + \frac{3}{2}, z + \frac{1}{2};$ (v) $-x, y + \frac{1}{2}, -z + \frac{1}{2};$ (vi) -x, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2541).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- He, Y.-H. & Feng, Y.-L. (2007). Acta Cryst. E63, 03422.
- Jiang, M.-X., Feng, Y.-L., He, Y.-H. & Su, H. (2009). Inorg. Chim. Acta, 362, 2856–2860.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Szafran, M., Katrusiak, A., Koput, J. & Dega, S. Z. (2006). J. Mol. Struct. 784, 98–108.
- Yang, Q., Zhao, J.-P., Hu, B.-W., Zhang, X.-F. & Bu, X.-H. (2010). *Inorg. Chem.* **49**, 3746–3751.
- Zhang, B., Zhu, X.-Q., Lu, J.-Y., He, J., Wang, P. & Cheng, J.-P. (2003). J. Org. Chem. 68, 3295–3298.

supporting information

Acta Cryst. (2010). E66, m759 [doi:10.1107/S1600536810017538]

Pentaaqua[2-(5-carboxylato-2-oxido-1-pyridinio)acetato]zinc(II) monohydrate

Jing Chen and Yun-Long Feng

S1. Comment

The pyridinium carboxylate ligands, containing both of carboxylate and quaternary ammonium groups, have been extensively employed to design and construct novel complexes due to its versatile coordination behavior to metal ions (Zhang *et al.*, 2003; Szafran *et al.*, 2006; Yang *et al.*, 2010). Herein, we report the synthesis and crystal structure of a new complex, $[ZnL(H_2O)_5]$.H₂O (LH₂ = 5-carboxy-1-carboxymethyl-2-oxidopyridinium; He & Feng, 2007).

As shown in Fig. 1, the metal center Zn^{II} atom is six-coordinated by one O atom from one L²⁻ ligand [Zn—O 2.1039 (16) Å] and five water molecules [Zn—O 2.0554 (17)–2.0988 (19) Å], to form a distorted octahdral geometry. Notably, only one O atom from the flexible carboxylic groups of L²⁻ ligand coordinates to the Zn^{II} ion. As shown in Fig. 2, the complexes connected with each other by the O—H…O hydrogen bonds generate a three-dimensional structure.

S2. Experimental

All the starting materials and solvents were obtained commercially and were used without further purification. A mixture of *N*-carboxymethyl-2-oxo-pyridine-5-carboxylic acid (0.1972 g, 1 mmol), ZnNO₃ (0.1901 g, 1 mmol), and purified water (15 ml) was sealed in a 25 ml stainless steel reactor and kept at 393 K for 3 d. Then, the reactor was cooled to room temperature at a speed of 5 K/h. A large quantity of colorless single crystals were filtered out of the mixture with the yield of 85%.

S3. Refinement

The C-bound H atoms were positioned geometrically and included in the refinement using a riding model, with C—H = 0.93 or 0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. The O-bound H atoms was located in a difference Fourier map and refined, with the distance restraint of O—H = 0.82 (2) Å, and with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

The molecular structure of the title compound, with 30% probability displacement ellipsoids.

Figure 2

Three-dimensional framework with hydrogen bonding interactions.

Pentaaqua[2-(5-carboxylato-2-oxido-1-pyridinio)acetato]zinc(II) monohydrate

Crystal data $[Zn(C_8H_5NO_5)(H_2O)_5]\cdot H_2O$ $M_r = 368.60$

Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 1.9 - 27.6^{\circ}$

 $\mu = 1.89 \text{ mm}^{-1}$

Prism, colourless $0.36 \times 0.09 \times 0.05$ mm

T = 293 K

Cell parameters from 6642 reflections

a = 10.9584 (4) Å b = 7.5548 (4) Å c = 16.6510 (7) Å $\beta = 103.498 (3)^{\circ}$ $V = 1340.43 (10) \text{ Å}^{3}$ Z = 4 F(000) = 760 $D_{x} = 1.826 \text{ Mg m}^{-3}$

Data collection

Bruker APEXII area-detector	19343 measured reflections
diffractometer	3086 independent reflections
Radiation source: fine-focus sealed tube	2233 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.100$
ωscans	$\theta_{\rm max} = 27.6^\circ, \theta_{\rm min} = 1.9^\circ$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Sheldrick, 1996)	$k = -9 \longrightarrow 8$
$T_{\min} = 0.824, \ T_{\max} = 0.918$	$l = -21 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.084$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
3086 reflections	and constrained refinement
226 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0382P)^2]$
18 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.80 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.14951 (2)	0.39964 (4)	0.404996 (17)	0.02275 (11)	
01	-0.56142 (14)	0.8182 (2)	0.07024 (11)	0.0314 (4)	
O1W	0.0969 (2)	0.0417 (3)	0.59084 (15)	0.0564 (6)	
H1WA	0.1593 (19)	-0.021 (4)	0.592 (2)	0.068*	
H1WB	0.038 (2)	-0.002 (4)	0.5579 (17)	0.068*	
O2	-0.70407 (16)	0.6153 (2)	0.01860 (11)	0.0357 (5)	
O2W	0.16338 (18)	0.1231 (2)	0.40753 (11)	0.0324 (5)	
H2WA	0.149 (2)	0.061 (3)	0.3650(11)	0.039*	

H2WB	0.207 (2)	0.071 (3)	0.4456 (11)	0.039*
O3	-0.30374 (16)	0.1584 (2)	0.26291 (11)	0.0322 (4)
O3W	0.13340 (17)	0.6755 (3)	0.41312 (11)	0.0331 (5)
H3WA	0.183 (2)	0.732 (3)	0.4479 (12)	0.040*
H3WB	0.120 (2)	0.730 (3)	0.3697 (10)	0.040*
O4	-0.08994 (16)	0.4075 (2)	0.22554 (10)	0.0290 (4)
O4W	0.12338 (18)	0.3724 (2)	0.52419 (11)	0.0306 (4)
H4WA	0.092 (2)	0.452 (2)	0.5466 (16)	0.037*
H4WB	0.103 (2)	0.276 (2)	0.5380 (16)	0.037*
O5	-0.04711 (15)	0.3999 (2)	0.36330 (10)	0.0263 (4)
O5W	0.33859 (16)	0.4349 (3)	0.45253 (12)	0.0348 (5)
H5WA	0.400 (2)	0.396 (3)	0.4376 (16)	0.042*
H5WB	0.357 (2)	0.520 (3)	0.4830 (15)	0.042*
O6W	0.17072 (18)	0.3938 (2)	0.28435 (11)	0.0302 (4)
H6WB	0.2178 (19)	0.467 (3)	0.2718 (16)	0.036*
H6WA	0.1020 (16)	0.399 (3)	0.2526 (15)	0.036*
N1	-0.34860 (18)	0.4432 (3)	0.22449 (12)	0.0223 (5)
C1	-0.4197 (2)	0.5668 (3)	0.17514 (15)	0.0233 (6)
H1A	-0.3972	0.6854	0.1826	0.028*
C2	-0.5222 (2)	0.5226 (3)	0.11561 (14)	0.0224 (5)
C3	-0.5541 (2)	0.3417 (3)	0.10731 (15)	0.0287 (6)
H3A	-0.6260	0.3074	0.0687	0.034*
C4	-0.4824 (2)	0.2166 (3)	0.15441 (15)	0.0279 (6)
H4A	-0.5046	0.0981	0.1462	0.033*
C5	-0.3744 (2)	0.2628 (3)	0.21590 (15)	0.0248 (6)
C6	-0.2487 (2)	0.4933 (3)	0.29580 (14)	0.0269 (6)
H6A	-0.2699	0.4489	0.3455	0.032*
H6B	-0.2454	0.6214	0.2996	0.032*
C7	-0.1195 (2)	0.4249 (3)	0.29292 (15)	0.0216 (5)
C8	-0.6009 (2)	0.6622 (3)	0.06435 (14)	0.0240 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U ²³
Zn1	0.02172 (18)	0.0210 (2)	0.02425 (17)	0.00083 (12)	0.00280 (12)	-0.00019 (12)
01	0.0270 (10)	0.0199 (11)	0.0432 (11)	-0.0037 (8)	-0.0001 (8)	0.0073 (9)
O1W	0.0464 (15)	0.0551 (16)	0.0705 (17)	0.0124 (12)	0.0194 (12)	0.0136 (13)
O2	0.0303 (11)	0.0272 (11)	0.0393 (11)	-0.0024 (8)	-0.0125 (8)	-0.0002 (8)
O2W	0.0466 (13)	0.0209 (11)	0.0242 (10)	0.0051 (8)	-0.0032 (9)	-0.0027 (8)
03	0.0332 (10)	0.0268 (11)	0.0346 (10)	0.0082 (8)	0.0040 (8)	0.0064 (8)
O3W	0.0361 (11)	0.0223 (11)	0.0341 (11)	0.0003 (8)	-0.0053 (9)	-0.0004 (8)
04	0.0275 (10)	0.0371 (11)	0.0215 (9)	0.0010 (8)	0.0042 (8)	0.0006 (8)
O4W	0.0394 (12)	0.0296 (12)	0.0237 (10)	0.0038 (9)	0.0093 (8)	-0.0017 (8)
05	0.0196 (9)	0.0366 (11)	0.0205 (9)	0.0013 (7)	0.0003 (7)	0.0007 (8)
O5W	0.0203 (10)	0.0372 (13)	0.0448 (12)	0.0009 (8)	0.0036 (9)	-0.0134 (9)
O6W	0.0278 (11)	0.0356 (12)	0.0258 (10)	-0.0059 (8)	0.0035 (8)	0.0019 (8)
N1	0.0183 (11)	0.0221 (13)	0.0242 (11)	0.0009 (9)	0.0002 (8)	-0.0009 (9)
C1	0.0237 (14)	0.0203 (15)	0.0260 (13)	0.0004 (10)	0.0058 (11)	0.0006 (11)

supporting information

C2 C3	0.0210 (13) 0.0243 (14)	0.0208 (14) 0.0286 (16)	0.0239 (13) 0.0298 (14)	0.0004 (11) -0.0037 (11)	0.0026 (10)	-0.0001 (11) -0.0039 (12)
C4	0.0286 (14)	0.0187 (14)	0.0339 (14)	-0.0023 (11)	0.0025 (11)	-0.0032(12)
C5	0.0255 (13)	0.0245 (16)	0.0262 (13)	0.0031 (11)	0.0096 (11)	0.0031 (11)
C6	0.0263 (14)	0.0267 (16)	0.0247 (13)	0.0027 (12)	-0.0002 (11)	-0.0034 (11)
C7	0.0221 (13)	0.0142 (14)	0.0267 (13)	-0.0036 (10)	0.0021 (10)	-0.0005 (10)
C8	0.0225 (13)	0.0264 (16)	0.0223 (13)	0.0027 (11)	0.0034 (10)	0.0002 (11)

Geometric parameters (Å, °)

Zn1—O5W	2.0554 (17)	O5W—H5WA	0.821 (16)
Zn1—O6W	2.0759 (18)	O5W—H5WB	0.812 (16)
Zn1—O4W	2.0805 (18)	O6W—H6WB	0.816 (15)
Zn1—O2W	2.0945 (18)	O6W—H6WA	0.814 (16)
Zn1—O3W	2.0988 (19)	N1—C1	1.362 (3)
Zn1—O5	2.1039 (16)	N1—C5	1.392 (3)
O1—C8	1.251 (3)	N1—C6	1.464 (3)
O1W—H1WA	0.829 (17)	C1—C2	1.355 (3)
O1W—H1WB	0.812 (17)	C1—H1A	0.9300
O2—C8	1.257 (3)	C2—C3	1.409 (4)
O2W—H2WA	0.832 (15)	C2—C8	1.498 (3)
O2W—H2WB	0.802 (15)	C3—C4	1.356 (3)
O3—C5	1.246 (3)	С3—НЗА	0.9300
O3W—H3WA	0.813 (15)	C4—C5	1.416 (3)
O3W—H3WB	0.816 (15)	C4—H4A	0.9300
O4—C7	1.245 (3)	C6—C7	1.518 (3)
O4W—H4WA	0.823 (15)	С6—Н6А	0.9700
O4W—H4WB	0.809 (15)	C6—H6B	0.9700
Q5—C7	1.267 (3)		
00 01			
O5W—Zn1—O6W	92.57 (8)	H6WB—O6W—H6WA	110 (2)
O5W—Zn1—O6W O5W—Zn1—O4W	92.57 (8) 89.79 (8)	H6WB—O6W—H6WA C1—N1—C5	110 (2) 122.35 (19)
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W	92.57 (8) 89.79 (8) 172.96 (8)	H6WB—O6W—H6WA C1—N1—C5 C1—N1—C6	110 (2) 122.35 (19) 121.7 (2)
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W O5W—Zn1—O2W	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8)	H6WB—O6W—H6WA C1—N1—C5 C1—N1—C6 C5—N1—C6	110 (2) 122.35 (19) 121.7 (2) 115.59 (19)
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W O5W—Zn1—O2W O6W—Zn1—O2W	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7)	H6WB—O6W—H6WA C1—N1—C5 C1—N1—C6 C5—N1—C6 C2—C1—N1	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2)
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W O5W—Zn1—O2W O6W—Zn1—O2W O4W—Zn1—O2W	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7)	H6WB—O6W—H6WA C1—N1—C5 C1—N1—C6 C5—N1—C6 C2—C1—N1 C2—C1—H1A	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W O5W—Zn1—O2W O6W—Zn1—O2W O4W—Zn1—O2W O5W—Zn1—O2W	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7) 86.50 (7)	H6WB—O6W—H6WA C1—N1—C5 C1—N1—C6 C5—N1—C6 C2—C1—N1 C2—C1—H1A N1—C1—H1A	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9 118.9
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W O5W—Zn1—O2W O6W—Zn1—O2W O4W—Zn1—O2W O5W—Zn1—O2W O5W—Zn1—O3W	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7) 86.50 (7) 96.52 (7)	H6WB—O6W—H6WA C1—N1—C5 C1—N1—C6 C5—N1—C6 C2—C1—N1 C2—C1—H1A N1—C1—H1A C1—C2—C3	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9 118.9 117.1 (2)
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W O5W—Zn1—O2W O6W—Zn1—O2W O4W—Zn1—O2W O5W—Zn1—O2W O5W—Zn1—O3W O6W—Zn1—O3W O4W—Zn1—O3W	92.57 (8) 92.57 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7) 86.50 (7) 96.52 (7) 90.25 (7)	H6WB—O6W—H6WA C1—N1—C5 C1—N1—C6 C5—N1—C6 C2—C1—N1 C2—C1—H1A N1—C1—H1A C1—C2—C3 C1—C2—C8	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9 118.9 117.1 (2) 120.8 (2)
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W O5W—Zn1—O2W O6W—Zn1—O2W O4W—Zn1—O2W O5W—Zn1—O2W O6W—Zn1—O3W O6W—Zn1—O3W O4W—Zn1—O3W O2W—Zn1—O3W	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7) 86.50 (7) 96.52 (7) 90.25 (7) 174.95 (8)	H6WB—O6W—H6WA C1—N1—C5 C1—N1—C6 C5—N1—C6 C2—C1—N1 C2—C1—H1A N1—C1—H1A C1—C2—C3 C1—C2—C8 C3—C2—C8	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9 118.9 117.1 (2) 120.8 (2) 122.0 (2)
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W O5W—Zn1—O2W O6W—Zn1—O2W O4W—Zn1—O2W O5W—Zn1—O3W O6W—Zn1—O3W O4W—Zn1—O3W O2W—Zn1—O3W O5W—Zn1—O3W	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7) 86.50 (7) 96.52 (7) 90.25 (7) 174.95 (8) 171.74 (7)	H6WB—O6W—H6WA C1—N1—C5 C1—N1—C6 C5—N1—C6 C2—C1—N1 C2—C1—H1A N1—C1—H1A C1—C2—C3 C1—C2—C8 C3—C2—C8 C4—C3—C2	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9 118.9 118.9 117.1 (2) 120.8 (2) 122.0 (2) 121.5 (2)
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W O5W—Zn1—O2W O6W—Zn1—O2W O4W—Zn1—O2W O5W—Zn1—O3W O6W—Zn1—O3W O4W—Zn1—O3W O2W—Zn1—O3W O5W—Zn1—O3W O5W—Zn1—O5	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7) 86.50 (7) 96.52 (7) 90.25 (7) 174.95 (8) 171.74 (7) 91.03 (7)	$\begin{array}{l} H6WB-06W-H6WA\\ C1-N1-C5\\ C1-N1-C6\\ C5-N1-C6\\ C2-C1-N1\\ C2-C1-H1A\\ N1-C1-H1A\\ C1-C2-C3\\ C1-C2-C3\\ C1-C2-C8\\ C3-C2-C8\\ C4-C3-C2\\ C4-C3-H3A\\ \end{array}$	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9 118.9 117.1 (2) 120.8 (2) 122.0 (2) 121.5 (2) 119.3
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W O5W—Zn1—O2W O6W—Zn1—O2W O4W—Zn1—O2W O5W—Zn1—O3W O6W—Zn1—O3W O4W—Zn1—O3W O2W—Zn1—O3W O5W—Zn1—O3W O5W—Zn1—O5 O6W—Zn1—O5 O4W—Zn1—O5	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7) 86.50 (7) 96.52 (7) 90.25 (7) 174.95 (8) 171.74 (7) 91.03 (7) 87.51 (7)	$\begin{array}{l} H6WB-06W-H6WA\\ C1-N1-C5\\ C1-N1-C6\\ C5-N1-C6\\ C2-C1-N1\\ C2-C1-H1A\\ N1-C1-H1A\\ C1-C2-C3\\ C1-C2-C8\\ C3-C2-C8\\ C4-C3-C2\\ C4-C3-H3A\\ C2-C3-H3A\\ \end{array}$	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9 118.9 117.1 (2) 120.8 (2) 122.0 (2) 121.5 (2) 119.3 119.3
O5W—Zn1—O6W O5W—Zn1—O4W O6W—Zn1—O4W O5W—Zn1—O2W O6W—Zn1—O2W O4W—Zn1—O2W O5W—Zn1—O3W O6W—Zn1—O3W O4W—Zn1—O3W O2W—Zn1—O3W O5W—Zn1—O5 O6W—Zn1—O5 O4W—Zn1—O5 O2W—Zn1—O5	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7) 86.50 (7) 96.52 (7) 90.25 (7) 174.95 (8) 171.74 (7) 91.03 (7) 87.51 (7) 94.10 (7)	$\begin{array}{l} H6WB-06W-H6WA\\ C1-N1-C5\\ C1-N1-C6\\ C5-N1-C6\\ C2-C1-N1\\ C2-C1-H1A\\ N1-C1-H1A\\ C1-C2-C3\\ C1-C2-C3\\ C3-C2-C8\\ C3-C2-C8\\ C4-C3-H3A\\ C2-C3-H3A\\ C3-C4-C5\\ \end{array}$	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9 118.9 117.1 (2) 120.8 (2) 122.0 (2) 121.5 (2) 119.3 119.3 121.4 (2)
$\begin{array}{l} O5W = Zn1 = O6W \\ O5W = Zn1 = O4W \\ O6W = Zn1 = O4W \\ O5W = Zn1 = O2W \\ O6W = Zn1 = O2W \\ O4W = Zn1 = O2W \\ O5W = Zn1 = O3W \\ O6W = Zn1 = O3W \\ O4W = Zn1 = O3W \\ O2W = Zn1 = O3W \\ O5W = Zn1 = O5 \\ O6W = Zn1 = O5 \\ O4W = Zn1 = O5 \\ O4W = Zn1 = O5 \\ O2W = Zn1 = O5 \\ O3W = $	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7) 86.50 (7) 96.52 (7) 90.25 (7) 174.95 (8) 171.74 (7) 91.03 (7) 87.51 (7) 94.10 (7) 85.71 (6)	$\begin{array}{l} H6WB06WH6WA\\ C1N1C5\\ C5N1C6\\ C5N1C6\\ C2C1N1\\ C2C1H1A\\ N1C1H1A\\ C1C2C3\\ C1C2C3\\ C3C2C8\\ C3C2C8\\ C4C3C2\\ C4C3H3A\\ C2C3H3A\\ C3C4C5\\ C3C4H4A\\ \end{array}$	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9 117.1 (2) 120.8 (2) 122.0 (2) 121.5 (2) 119.3 119.3 121.4 (2) 119.3
$\begin{array}{l} O5W = Zn1 = O6W \\ O5W = Zn1 = O4W \\ O6W = Zn1 = O4W \\ O5W = Zn1 = O2W \\ O6W = Zn1 = O2W \\ O4W = Zn1 = O2W \\ O5W = Zn1 = O3W \\ O6W = Zn1 = O3W \\ O4W = Zn1 = O3W \\ O5W = Zn1 = O5 \\ O6W = Zn1 = O5 \\ O4W = Zn1 = O5 \\ O2W = Zn1 = O5 \\ O3W = Zn1 = O5 \\ O3W = Zn1 = O5 \\ H1WA = O1W = H1WB \end{array}$	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7) 86.50 (7) 96.52 (7) 90.25 (7) 174.95 (8) 171.74 (7) 91.03 (7) 87.51 (7) 94.10 (7) 85.71 (6) 107 (3)	$\begin{array}{l} H6WB06WH6WA\\ C1N1C5\\ C1N1C6\\ C5N1C6\\ C2C1N1\\ C2C1H1A\\ N1C1H1A\\ C1C2C3\\ C1C2C8\\ C3C2C8\\ C3C2C8\\ C4C3C2\\ C4C3H3A\\ C2C3H3A\\ C3C4C5\\ C3C4H4A\\ C5C4H4A\\ \end{array}$	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9 117.1 (2) 120.8 (2) 122.0 (2) 121.5 (2) 119.3 119.3 121.4 (2) 119.3
$\begin{array}{l} O5W = Zn1 = O6W \\ O5W = Zn1 = O4W \\ O6W = Zn1 = O4W \\ O5W = Zn1 = O2W \\ O6W = Zn1 = O2W \\ O4W = Zn1 = O2W \\ O5W = Zn1 = O3W \\ O6W = Zn1 = O3W \\ O4W = Zn1 = O3W \\ O4W = Zn1 = O3W \\ O5W = Zn1 = O3W \\ O5W = Zn1 = O5 \\ O6W = Zn1 = O5 \\ O6W = Zn1 = O5 \\ O4W = Zn1 = O5 \\ O4W = Zn1 = O5 \\ O4W = Zn1 = O5 \\ O3W = Zn1 = O5 \\ H1WA = O1W = H1WB \\ Zn1 = O2W = H2WA \end{array}$	92.57 (8) 89.79 (8) 172.96 (8) 93.41 (8) 88.53 (7) 84.70 (7) 86.50 (7) 96.52 (7) 90.25 (7) 174.95 (8) 171.74 (7) 91.03 (7) 87.51 (7) 94.10 (7) 85.71 (6) 107 (3) 123.1 (17)	$\begin{array}{l} H6WB-O6W-H6WA\\ C1-N1-C5\\ C1-N1-C6\\ C5-N1-C6\\ C2-C1-N1\\ C2-C1-H1A\\ N1-C1-H1A\\ C1-C2-C3\\ C1-C2-C8\\ C3-C2-C8\\ C4-C3-C2\\ C4-C3-H3A\\ C2-C3-H3A\\ C2-C3-H3A\\ C3-C4-C5\\ C3-C4-H4A\\ C5-C4-H4A\\ O3-C5-N1\\ \end{array}$	110 (2) 122.35 (19) 121.7 (2) 115.59 (19) 122.1 (2) 118.9 117.1 (2) 120.8 (2) 122.0 (2) 121.5 (2) 119.3 119.3 119.3 119.3 119.3 119.3

H2WA—O2W—H2WB	111 (2)	N1—C5—C4	115.5 (2)
Zn1—O3W—H3WA	120.8 (18)	N1—C6—C7	114.4 (2)
Zn1—O3W—H3WB	116.6 (19)	N1—C6—H6A	108.7
H3WA—O3W—H3WB	109 (2)	С7—С6—Н6А	108.7
Zn1—O4W—H4WA	121.7 (18)	N1—C6—H6B	108.7
Zn1—O4W—H4WB	118.0 (19)	С7—С6—Н6В	108.7
H4WA—O4W—H4WB	111 (2)	H6A—C6—H6B	107.6
C7—O5—Zn1	132.66 (16)	O4—C7—O5	125.4 (2)
Zn1—O5W—H5WA	131.2 (19)	O4—C7—C6	120.3 (2)
Zn1—O5W—H5WB	114.9 (18)	O5—C7—C6	114.1 (2)
H5WA—O5W—H5WB	112 (2)	O1—C8—O2	124.0 (2)
Zn1—O6W—H6WB	117.0 (19)	O1—C8—C2	118.4 (2)
Zn1—O6W—H6WA	109.4 (19)	O2—C8—C2	117.6 (2)
O5W—Zn1—O5—C7	103.1 (5)	C1—N1—C5—C4	-2.3 (3)
O6W—Zn1—O5—C7	-12.8 (2)	C6—N1—C5—C4	171.2 (2)
O4W—Zn1—O5—C7	174.1 (2)	C3—C4—C5—O3	178.9 (2)
O2W—Zn1—O5—C7	-101.4 (2)	C3—C4—C5—N1	0.5 (4)
O3W—Zn1—O5—C7	83.6 (2)	C1—N1—C6—C7	-121.4 (2)
C5—N1—C1—C2	1.6 (4)	C5—N1—C6—C7	65.1 (3)
C6—N1—C1—C2	-171.5 (2)	Zn1—O5—C7—O4	21.6 (4)
N1—C1—C2—C3	1.0 (3)	Zn1—O5—C7—C6	-154.06 (16)
N1-C1-C2-C8	177.9 (2)	N1-C6-C7-O4	32.4 (3)
C1—C2—C3—C4	-2.8 (4)	N1—C6—C7—O5	-151.6 (2)
C8—C2—C3—C4	-179.6 (2)	C1-C2-C8-O1	9.1 (3)
C2—C3—C4—C5	2.1 (4)	C3-C2-C8-O1	-174.2 (2)
C1—N1—C5—O3	179.1 (2)	C1—C2—C8—O2	-170.0 (2)
C6—N1—C5—O3	-7.4 (3)	C3—C2—C8—O2	6.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
01 <i>W</i> —H1 <i>WA</i> ···O2 ⁱ	0.83 (2)	2.25 (2)	2.972 (3)	145 (3)
O1W—H1 WB ···O2 W ⁱⁱ	0.81 (2)	2.58 (3)	3.118 (3)	125 (3)
$O2W - H2WA - O4^{iii}$	0.83 (2)	1.89 (2)	2.716 (2)	169 (3)
$O2W$ — $H2WB$ ··· $O2^{i}$	0.80 (2)	1.96 (2)	2.742 (2)	163 (2)
$O3W$ — $H3WA$ ··· $O2^{iv}$	0.81 (2)	1.89 (2)	2.701 (2)	173 (2)
$O3W$ — $H3WB$ ···· $O4^{v}$	0.82 (2)	2.04 (2)	2.849 (2)	170 (3)
O4 <i>W</i> —H4 <i>WA</i> ···O5 ^{vi}	0.82 (2)	2.02 (2)	2.810(2)	160 (3)
O5 <i>W</i> —H5 <i>WA</i> ···O1 ⁱⁱⁱ	0.82 (2)	1.90 (2)	2.705 (2)	166 (3)
O5W—H5WB····O1 ^{iv}	0.81 (2)	1.95 (2)	2.742 (2)	164 (3)
O6 <i>W</i> —H6 <i>WB</i> ···O3 ^v	0.82 (2)	1.89 (2)	2.697 (3)	171 (3)

Symmetry codes: (i) x+1, -y+1/2, z+1/2; (ii) -x, -y, -z+1; (iii) -x, y-1/2, -z+1/2; (iv) x+1, -y+3/2, z+1/2; (v) -x, y+1/2, -z+1/2; (vi) -x, -y+1, -z+1.