# metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Bis{2-[(2-benzovlhydrazin-1-vlidene)methyl]-6-methoxyphenolato}iron(III) chloride monohydrate

### Li-Fei Zou, Yu-Qin Ma, Gui-Miao Yu, Feng-Jiao Gan and Yun-Hui Li\*

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China Correspondence e-mail: liyh@cust.edu.cn

Received 9 June 2010; accepted 16 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.051; wR factor = 0.153; data-to-parameter ratio = 13.1.

In the title mononuclear iron(III) complex, [Fe(C<sub>15</sub>H<sub>13</sub>-N<sub>2</sub>O<sub>3</sub>)<sub>2</sub>]Cl·H<sub>2</sub>O, the Fe<sup>III</sup> atom has a distorted octahedral geometry and is six-coordinated by four O atoms and two N atoms from two ligands. In the crystal structure, the complex cations, Cl<sup>-</sup> anions and water molecules are connected into a chain along [100] through N-H···O, O-H···Cl and N-H···Cl hydrogen bonds. Two adjacent chains are linked by  $O-H \cdot \cdot \cdot O$  hydrogen bonds.

### **Related literature**

For the applications of metal-Schiff base compounds, see: Dilworth (1976); Merchant & Clothia (1970); Pickart et al. (1983). For the ligand synthesis, see: Pouralimardan et al. (2007); Sacconi (1954). For related structures, see: Gao et al. (1998); Monfared et al. (2007); Yu et al. (2010).



### **Experimental**

Crystal data

[Fe(C15H13N2O3)2]Cl·H2O  $M_{\star} = 647.86$ Monoclinic,  $P2_1/c$ a = 12.7778 (10) Åb = 22.7113 (18) Å c = 10.0604 (7) Å  $\beta = 94.542 \ (1)^{\circ}$ 

V = 2910.4 (4) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 0.67 \text{ mm}^{-1}$ T = 296 K0.24  $\times$  0.18  $\times$  0.15 mm

#### Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.857, T_{\max} = 0.907$ 

## Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.051$ | 390 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.153$               | H-atom parameters constrained                              |
| S = 0.98                        | $\Delta \rho_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 5098 reflections                | $\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm \AA}^{-3}$ |

14540 measured reflections

 $R_{\rm int} = 0.052$ 

5098 independent reflections

3508 reflections with  $I > 2\sigma(I)$ 

## Table 1

Selected bond lengths (Å).

| Fe1-O1 | 2.070 (3) | Fe1-O5 | 1.901 (3) |
|--------|-----------|--------|-----------|
| Fe1-O2 | 1.904 (3) | Fe1-N2 | 2.106 (3) |
| Fe1-O4 | 2.062 (3) | Fe1-N4 | 2.124 (3) |
|        |           |        |           |

| Table 2                        |  |
|--------------------------------|--|
| Hydrogen-bond geometry (Å, °). |  |

| $D - H \cdots A$                     | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|------|--------------|--------------|--------------------------------------|
| $N1 - H1B \cdot \cdot \cdot Cl1^{i}$ | 0.86 | 2.25         | 3.087 (3)    | 163                                  |
| $N3 - H3B \cdots O1W$                | 0.86 | 1.92         | 2.759 (4)    | 164                                  |
| $O1W-H1WA\cdots O5^{ii}$             | 0.85 | 2.39         | 3.045 (4)    | 134                                  |
| $O1W-H1WB\cdots Cl1$                 | 0.85 | 2.37         | 3.198 (3)    | 163                                  |

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 2.

Data collection: SMART (Bruker, 2007): cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

We thank the Jilin Environmental Protection Bureau Foundation of China (2007-28) and Changchun University of Science and Technology for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2322).

### References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Dilworth, J.-R. (1976). Coord. Chem. Rev. 21, 29-62.

Gao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595-3606.

Merchant, J. R. & Clothia, D. S. (1970). J. Med. Chem. 13, 335-336.

- Monfared, H. H., Sadighian, S., Kamyabi, M. A. & Mayer, P. (2007). J. Mol. Catal. A, 304, 139–146.
- Pickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868-3871.
- Pouralimardan, O., Chamayou, A. C., Janiak, C. & Monfared, H. H. (2007). Inorg. Chim. Acta, 360, 1599-1608.

Sacconi, L. (1954). Z. Anorg. Allg. Chem. 275, 249-256.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

Yu, G.-M., Li, Y.-H., Zou, L.-F., Zhu, J.-W. & Liu, X.-Q. (2010). Acta Cryst. E66, m693-m694.

# supporting information

Acta Cryst. (2010). E66, m828 [doi:10.1107/S1600536810023226]

# Bis{2-[(2-benzoylhydrazin-1-ylidene)methyl]-6-methoxyphenolato}iron(III) chloride monohydrate

# Li-Fei Zou, Yu-Qin Ma, Gui-Miao Yu, Feng-Jiao Gan and Yun-Hui Li

# S1. Comment

Studies of acylhydrazone Schiff base and the dependence of their chelation mode with transition metal ions have been of significant interest. On one hand, their metal compounds have been reported to act as enzyme inhibitors (Dilworth, 1976) and are useful due to their pharmacological applications (Merchant & Clothia, 1970). On the other hand, it seems to be a good candidate for catalytic oxidation studies because of their stability to resist oxidation (Pickart *et al.*, 1983). These findings have triggered the exploration of new molecular clusters based on acylhydrazone Schiff base. During the last several years, the crystal structures of metal compounds with 3-methoxysalicylaldehyde benzoylhydrazide have been attracted tremendous interest (Gao *et al.*, 1998; Monfared *et al.*, 2007; Yu *et al.*, 2010). As a continuation of our effort in this system, the preparation and crystal structure of the title Schiff base iron(III) compound are reported here.

The molecular structure of the title compound is illustrated in Fig. 1, which consists of one mononuclear  $[Fe(C_{15}H_{13}N_2O_3)_2]^+$  cation, one Cl<sup>-</sup> anion and one water molecule. The Fe<sup>III</sup> atom has a distorted octahedral geometry and is six-coordinated by four O atoms and two N atoms from two ligands (Table 1). In one ligand, the strained angle of O1— Fe1—N2 [74.54 (11)°] correlates with the bite angle for the five-membered chelate ring Fe1—O1—C7—N1—N2, and the loose angle of O2—Fe1—N2 [84.74 (11)°] correlates with the six-membered ring Fe1—N2—C8—C9—C10—O2. The axial angle N2—Fe1—N4 [159.46 (12)°] deviates significantly from the ideal 180°. Similar case occurs for another ligand. In the crystal structure, the complex cations, Cl<sup>-</sup> anions and water molecules are connected into a chain through N —H…O, O—H…Cl and N—H…Cl hydrogen bonds. Two adjacent chains are linked by O—H…O hydrogen bonds. (Fig. 2 and Table 2).

# **S2. Experimental**

The 3-methoxysalicylaldehyde benzoylhydrazide ligand ( $H_2L$ ) was prepared in a similar manner according to the reported procedures (Pouralimardan *et al.*, 2007; Sacconi, 1954). The title compound was synthesized by adding FeCl<sub>3</sub>.6H<sub>2</sub>O (27.0 mg, 0.1 mmol) to a solution of  $H_2L$  (27.3 mg, 0.10 mmol) in methanol (15 ml). The resulting mixture was stirred for 3 h at room temperature to afford a dark brown solution and then filtered. The filtrate was allowed to stand at room temperature for about three weeks and black crystals were produced at the bottom of the vessel on slow evaporation of methanol.

# **S3. Refinement**

All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 (aromatic), 0.96 (methyl) Å and N—H = 0.86 Å and with  $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C, N)$ . Water H atoms were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and  $U_{iso}(H) = 1.2U_{eq}(O)$ .



# Figure 1

Molecular structure of the title compound. H atoms are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.



# Figure 2

One-dimensional chain structure in the title compound. Hydrogen bonds are shown as green dashed lines.

# Bis{2-[(2-benzoylhydrazin-1-ylidene)methyl]-6-methoxyphenolato}iron(III) chloride monohydrate

| Crystal data                              |                                                       |
|-------------------------------------------|-------------------------------------------------------|
| $[Fe(C_{15}H_{13}N_2O_3)_2]Cl \cdot H_2O$ | $V = 2910.4 (4) \text{ Å}^3$                          |
| M = 647.86                                | Z = 4                                                 |
| Monoclinic, $P2_1/c$                      | F(000) = 1340                                         |
| Hall symbol: -P 2ybc                      | $D_{\rm x} = 1.479 \text{ Mg m}^{-3}$                 |
| a = 12.7778 (10)  Å                       | Mo $K\alpha$ radiation. $\lambda = 0.71073 \text{ Å}$ |
| b = 22.7113 (18)  Å                       | Cell parameters from 4767 reflections                 |
| c = 10.0604 (7)  A                        | $\theta = 4.8 - 51.7^{\circ}$                         |
| $\beta = 94.542 (1)^{\circ}$              | $\mu = 0.67 \text{ mm}^{-1}$                          |

T = 296 KBlock, black

Data collection

| Bruker SMART APEX CCD<br>diffractometer         | 14540 measured reflections                                                |
|-------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube        | 3508 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                          | $R_{\rm int} = 0.052$                                                     |
| $\varphi$ and $\omega$ scans                    | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ |
| Absorption correction: multi-scan               | $h = -15 \rightarrow 15$                                                  |
| (SADABS; Sheldrick, 1996)                       | $k = -27 \rightarrow 23$                                                  |
| $T_{\min} = 0.857, T_{\max} = 0.907$            | $l = -11 \rightarrow 10$                                                  |
| Refinement                                      |                                                                           |
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier                          |
| Least-squares matrix: full                      | map                                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.051$                 | Hydrogen site location: inferred from                                     |
| $wR(F^2) = 0.153$                               | neighbouring sites                                                        |
| S = 0.98                                        | H-atom parameters constrained                                             |
| 5098 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0933P)^2 + 0.1872P]$                         |
| 390 parameters                                  | where $P = (F_0^2 + 2F_c^2)/3$                                            |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.95 \ { m e} \ { m \AA}^{-3}$                     |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$                |

 $0.24 \times 0.18 \times 0.15 \text{ mm}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|      | x           | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|--------------|--------------|-----------------------------|--|
| Fe1  | 0.28270 (4) | 0.56160 (2)  | 0.90592 (5)  | 0.02612 (19)                |  |
| Cl1  | 0.87327 (8) | 0.66511 (5)  | 0.74420 (12) | 0.0455 (3)                  |  |
| C1   | 0.0861 (3)  | 0.69236 (18) | 0.5203 (4)   | 0.0376 (10)                 |  |
| H1A  | 0.0396      | 0.7024       | 0.5832       | 0.045*                      |  |
| C2   | 0.0804 (4)  | 0.7195 (2)   | 0.3979 (5)   | 0.0449 (12)                 |  |
| H2A  | 0.0305      | 0.7487       | 0.3787       | 0.054*                      |  |
| C3   | 0.1472 (4)  | 0.7040 (2)   | 0.3036 (5)   | 0.0511 (13)                 |  |
| H3A  | 0.1416      | 0.7227       | 0.2211       | 0.061*                      |  |
| C4   | 0.2219 (4)  | 0.6615 (2)   | 0.3292 (4)   | 0.0433 (11)                 |  |
| H4A  | 0.2659      | 0.6508       | 0.2640       | 0.052*                      |  |
| C5   | 0.2313 (3)  | 0.63511 (19) | 0.4515 (4)   | 0.0350 (10)                 |  |
| H5A  | 0.2837      | 0.6073       | 0.4703       | 0.042*                      |  |
| C6   | 0.1631 (3)  | 0.64933 (18) | 0.5489 (4)   | 0.0307 (9)                  |  |
| C7   | 0.1786 (3)  | 0.61984 (17) | 0.6799 (4)   | 0.0275 (9)                  |  |
| C8   | 0.0525 (3)  | 0.58652 (18) | 0.9627 (4)   | 0.0310 (9)                  |  |
| H8A  | -0.0129     | 0.6023       | 0.9359       | 0.037*                      |  |
| C9   | 0.0651 (3)  | 0.55879 (18) | 1.0885 (4)   | 0.0294 (9)                  |  |
| C10  | 0.1608 (3)  | 0.53399 (17) | 1.1403 (4)   | 0.0290 (9)                  |  |
| C11  | 0.1644 (3)  | 0.50693 (18) | 1.2666 (4)   | 0.0319 (10)                 |  |
| C12  | 0.0756 (3)  | 0.5034 (2)   | 1.3356 (4)   | 0.0397 (11)                 |  |
| H12A | 0.0786      | 0.4844       | 1.4177       | 0.048*                      |  |
| C13  | -0.0175 (3) | 0.5278 (2)   | 1.2842 (4)   | 0.0440 (12)                 |  |
| H13A | -0.0766     | 0.5256       | 1.3322       | 0.053*                      |  |
|      |             |              |              |                             |  |

| C14          | -0.0234 (3)            | 0.5551 (2)                 | 1.1631 (4)             | 0.0405 (11)          |
|--------------|------------------------|----------------------------|------------------------|----------------------|
| H14A         | -0.0867                | 0.5716                     | 1.1294                 | 0.049*               |
| C15          | 0.2726 (4)             | 0.4590 (2)                 | 1.4393 (4)             | 0.0500 (13)          |
| H15A         | 0.3446                 | 0.4478                     | 1.4594                 | 0.075*               |
| H15B         | 0.2288                 | 0.4246                     | 1.4392                 | 0.075*               |
| H15C         | 0.2522                 | 0.4862                     | 1.5056                 | 0.075*               |
| C16          | 0.5865 (3)             | 0.71820 (18)               | 1.0512 (4)             | 0.0353 (10)          |
| H16A         | 0.6324                 | 0.6914                     | 1.0169                 | 0.042*               |
| C17          | 0.6243 (4)             | 0.76907 (19)               | 1.1109 (4)             | 0.0400 (11)          |
| H17A         | 0.6961                 | 0.7766                     | 1.1178                 | 0.048*               |
| C18          | 0.5563 (4)             | 0.8090(2)                  | 1.1605 (4)             | 0.0435 (12)          |
| H18A         | 0.5822                 | 0.8436                     | 1.2003                 | 0.052*               |
| C19          | 0.4499(4)              | 0 7979 (2)                 | 1 1514 (4)             | 0.0444(12)           |
| H19A         | 0 4043                 | 0.8250                     | 1 1852                 | 0.053*               |
| C20          | 0.4108(3)              | 0.74682 (18)               | 1 0923 (4)             | 0.0356 (10)          |
| H20A         | 0 3389                 | 0.7395                     | 1 0863                 | 0.043*               |
| C21          | 0.4784(3)              | 0.70675 (17)               | 1.0003                 | 0.0294 (9)           |
| C22          | 0.4344(3)              | 0.65140(17)                | 0.9850(4)              | 0.0257(9)            |
| C23          | 0.1511(3)<br>0.5028(3) | 0.52154(17)                | 0.9336(4)              | 0.0257(9)            |
| H23A         | 0.5735                 | 0.5297                     | 0.8244                 | 0.0237 (5)           |
| C24          | 0.5755<br>0.4618 (3)   | 0.3277                     | 0.7770 (4)             | 0.031                |
| C25          | 0.3558(3)              | 0.45109(17)                | 0.7842(4)              | 0.0267(9)            |
| C26          | 0.3356(3)              | 0.49109(17)<br>0.39603(18) | 0.7342(4)<br>0.7277(4) | 0.0209(9)            |
| C20          | 0.3220(3)              | 0.39003(18)<br>0.36044(19) | 0.7277(4)<br>0.6688(4) | 0.0303(9)            |
| H27A         | 0.3928 (3)             | 0.30044 (19)               | 0.6310                 | 0.0331 (10)          |
| C28          | 0.3703                 | 0.3240<br>0.37752 (10)     | 0.0319                 | 0.042                |
| U20          | 0.4908 (3)             | 0.37732 (19)               | 0.0038 (4)             | 0.0300 (10)          |
| П20А<br>С20  | 0.5454                 | 0.3327                     | 0.0240                 | $0.044^{\circ}$      |
| U29          | 0.5512 (5)             | 0.42949 (18)               | 0.7147 (4)             | 0.0327(10)<br>0.030* |
| П29А<br>С20  | 0.0008                 | 0.4404<br>0.2212 (2)       | 0.7091                 | $0.039^{\circ}$      |
|              | 0.1794 (4)             | 0.3313 (2)                 | 0.0782 (0)             | 0.0331 (14)          |
| HJOR<br>HZOD | 0.1005                 | 0.3280                     | 0.0928                 | 0.083                |
| HOUB         | 0.2107                 | 0.2981                     | 0.7175                 | 0.083*               |
| HJUC         | 0.18/4                 | 0.5521                     | 0.3842                 | 0.083*               |
| NI           | 0.1015 (3)             | 0.61943 (14)               | 0.7608 (3)             | 0.0307 (8)           |
| HIB          | 0.0412                 | 0.6352                     | 0.7399                 | 0.03/*               |
| N2           | 0.1262 (2)             | 0.59143 (14)               | 0.8822(3)              | 0.0260 (7)           |
| N3           | 0.4973 (2)             | 0.61077 (13)               | 0.9384 (3)             | 0.0277 (8)           |
| H3B          | 0.5640                 | 0.6158                     | 0.9378                 | 0.033*               |
| N4           | 0.4475 (2)             | 0.55953 (13)               | 0.8906 (3)             | 0.0231 (7)           |
| 01           | 0.2638 (2)             | 0.59602 (12)               | 0.7150 (3)             | 0.0307 (6)           |
| O1W          | 0.7122 (2)             | 0.60423 (13)               | 0.9294 (3)             | 0.0421 (8)           |
| H1WA         | 0.7368                 | 0.5719                     | 0.9611                 | 0.050*               |
| H1WB         | 0.7434                 | 0.6240                     | 0.8725                 | 0.050*               |
| O2           | 0.2468 (2)             | 0.53545 (13)               | 1.0763 (3)             | 0.0346 (7)           |
| O3           | 0.2611 (2)             | 0.48627 (13)               | 1.3112 (3)             | 0.0396 (7)           |
| O4           | 0.3375 (2)             | 0.64162 (12)               | 0.9791 (3)             | 0.0318 (7)           |
| 05           | 0.2873 (2)             | 0.48311 (12)               | 0.8409 (3)             | 0.0323 (7)           |
| O6           | 0.2204 (2)             | 0.38391 (13)               | 0.7375 (3)             | 0.0423 (8)           |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | U <sup>22</sup> | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-----------------|-------------|--------------|--------------|--------------|
| Fe1 | 0.0196(3)   | 0.0345 (3)      | 0.0245 (3)  | 0.0041 (2)   | 0.0039 (2)   | 0.0024 (3)   |
| Cl1 | 0.0289 (6)  | 0.0524 (7)      | 0.0550 (8)  | 0.0074 (5)   | 0.0009 (5)   | 0.0078 (6)   |
| C1  | 0.036 (3)   | 0.040 (3)       | 0.036 (3)   | 0.001 (2)    | -0.0045 (19) | 0.007 (2)    |
| C2  | 0.045 (3)   | 0.045 (3)       | 0.043 (3)   | 0.001 (2)    | -0.008 (2)   | 0.013 (2)    |
| C3  | 0.055 (3)   | 0.062 (3)       | 0.034 (3)   | -0.011 (3)   | -0.010 (2)   | 0.024 (2)    |
| C4  | 0.046 (3)   | 0.055 (3)       | 0.029 (3)   | -0.001 (2)   | 0.001 (2)    | 0.008 (2)    |
| C5  | 0.036 (2)   | 0.042 (3)       | 0.027 (2)   | 0.001 (2)    | 0.0000 (19)  | 0.002 (2)    |
| C6  | 0.029 (2)   | 0.036 (2)       | 0.027 (2)   | -0.0047 (18) | -0.0044 (18) | 0.0020 (18)  |
| C7  | 0.028 (2)   | 0.028 (2)       | 0.026 (2)   | -0.0035 (17) | 0.0018 (17)  | -0.0018 (17) |
| C8  | 0.026 (2)   | 0.041 (2)       | 0.026 (2)   | 0.0031 (18)  | 0.0046 (18)  | 0.0017 (19)  |
| C9  | 0.024 (2)   | 0.038 (2)       | 0.026 (2)   | 0.0022 (18)  | 0.0032 (17)  | -0.0015 (19) |
| C10 | 0.028 (2)   | 0.032 (2)       | 0.028 (2)   | 0.0005 (17)  | 0.0064 (17)  | -0.0040 (18) |
| C11 | 0.036 (2)   | 0.035 (2)       | 0.025 (2)   | -0.0016 (19) | 0.0011 (18)  | -0.0016 (19) |
| C12 | 0.037 (3)   | 0.056 (3)       | 0.026 (2)   | -0.003(2)    | 0.0081 (19)  | 0.001 (2)    |
| C13 | 0.034 (3)   | 0.068 (3)       | 0.032 (3)   | -0.002(2)    | 0.013 (2)    | 0.005 (2)    |
| C14 | 0.030(2)    | 0.058 (3)       | 0.034 (3)   | 0.006 (2)    | 0.0046 (19)  | 0.007 (2)    |
| C15 | 0.056 (3)   | 0.068 (3)       | 0.026 (2)   | 0.006 (3)    | 0.003 (2)    | 0.017 (2)    |
| C16 | 0.033 (2)   | 0.036 (2)       | 0.037 (3)   | 0.0015 (19)  | 0.0023 (19)  | -0.001 (2)   |
| C17 | 0.043 (3)   | 0.039 (3)       | 0.036 (3)   | -0.005 (2)   | -0.005 (2)   | 0.002 (2)    |
| C18 | 0.062 (3)   | 0.039 (3)       | 0.028 (2)   | -0.006 (2)   | -0.003(2)    | -0.009 (2)   |
| C19 | 0.052 (3)   | 0.041 (3)       | 0.040 (3)   | 0.010 (2)    | 0.003 (2)    | -0.009(2)    |
| C20 | 0.040 (3)   | 0.038 (2)       | 0.029 (2)   | 0.006 (2)    | 0.0011 (19)  | -0.0023 (19) |
| C21 | 0.032 (2)   | 0.033 (2)       | 0.022 (2)   | -0.0003 (18) | -0.0045 (17) | 0.0024 (18)  |
| C22 | 0.023 (2)   | 0.033 (2)       | 0.021 (2)   | 0.0052 (17)  | -0.0003 (16) | 0.0050 (17)  |
| C23 | 0.020 (2)   | 0.037 (2)       | 0.020 (2)   | 0.0047 (17)  | 0.0027 (16)  | 0.0028 (17)  |
| C24 | 0.022 (2)   | 0.037 (2)       | 0.020 (2)   | 0.0021 (17)  | -0.0017 (16) | 0.0021 (18)  |
| C25 | 0.028 (2)   | 0.033 (2)       | 0.019 (2)   | 0.0039 (17)  | 0.0007 (17)  | 0.0034 (17)  |
| C26 | 0.027 (2)   | 0.037 (2)       | 0.027 (2)   | -0.0001 (18) | -0.0022 (17) | 0.0054 (18)  |
| C27 | 0.043 (3)   | 0.035 (2)       | 0.027 (2)   | 0.002 (2)    | -0.0001 (19) | -0.0036 (19) |
| C28 | 0.033 (2)   | 0.043 (3)       | 0.034 (2)   | 0.008 (2)    | 0.0037 (19)  | -0.010 (2)   |
| C29 | 0.025 (2)   | 0.041 (3)       | 0.032 (2)   | 0.0027 (18)  | 0.0034 (18)  | -0.0056 (19) |
| C30 | 0.041 (3)   | 0.047 (3)       | 0.077 (4)   | -0.013 (2)   | -0.001 (3)   | -0.012 (3)   |
| N1  | 0.0245 (18) | 0.040 (2)       | 0.0274 (19) | 0.0083 (15)  | 0.0023 (14)  | 0.0098 (15)  |
| N2  | 0.0231 (17) | 0.0344 (19)     | 0.0201 (17) | 0.0038 (14)  | -0.0001 (14) | 0.0063 (14)  |
| N3  | 0.0231 (17) | 0.0315 (18)     | 0.0281 (19) | -0.0025 (14) | 0.0002 (14)  | -0.0003 (15) |
| N4  | 0.0208 (16) | 0.0286 (17)     | 0.0197 (16) | 0.0011 (14)  | -0.0008 (13) | -0.0002 (14) |
| 01  | 0.0250 (15) | 0.0424 (17)     | 0.0251 (15) | 0.0053 (13)  | 0.0053 (12)  | 0.0069 (13)  |
| O1W | 0.0332 (17) | 0.0456 (19)     | 0.0476 (19) | 0.0050 (14)  | 0.0044 (14)  | 0.0046 (15)  |
| O2  | 0.0249 (15) | 0.0553 (19)     | 0.0242 (15) | 0.0088 (13)  | 0.0043 (12)  | 0.0116 (13)  |
| O3  | 0.0346 (17) | 0.059 (2)       | 0.0248 (16) | 0.0076 (15)  | 0.0022 (13)  | 0.0145 (14)  |
| O4  | 0.0279 (16) | 0.0359 (16)     | 0.0318 (16) | 0.0046 (12)  | 0.0033 (12)  | -0.0048 (13) |
| 05  | 0.0235 (15) | 0.0342 (16)     | 0.0399 (17) | 0.0001 (12)  | 0.0073 (12)  | -0.0046 (13) |
| O6  | 0.0303 (17) | 0.0440 (18)     | 0.053 (2)   | -0.0081 (14) | 0.0050 (14)  | -0.0108 (15) |
|     |             |                 | (-)         |              |              |              |

Geometric parameters (Å, °)

| Fe1—O1    | 2.070 (3)   | C16—C17      | 1.372 (6) |
|-----------|-------------|--------------|-----------|
| Fe1—O2    | 1.904 (3)   | C16—C21      | 1.402 (6) |
| Fe1—O4    | 2.062 (3)   | C16—H16A     | 0.9300    |
| Fe1—O5    | 1.901 (3)   | C17—C18      | 1.377 (6) |
| Fe1—N2    | 2.106 (3)   | C17—H17A     | 0.9300    |
| Fe1—N4    | 2.124 (3)   | C18—C19      | 1.379 (7) |
| C1—C2     | 1.373 (6)   | C18—H18A     | 0.9300    |
| C1—C6     | 1.401 (6)   | C19—C20      | 1.379 (6) |
| C1—H1A    | 0.9300      | C19—H19A     | 0.9300    |
| C2—C3     | 1.372 (7)   | C20—C21      | 1.377 (5) |
| C2—H2A    | 0.9300      | C20—H20A     | 0.9300    |
| C3—C4     | 1.367 (6)   | C21—C22      | 1.476 (5) |
| С3—НЗА    | 0.9300      | C22—O4       | 1.254 (4) |
| C4—C5     | 1.365 (6)   | C22—N3       | 1.334 (5) |
| C4—H4A    | 0.9300      | C23—N4       | 1.289 (5) |
| C5—C6     | 1.399 (6)   | C23—C24      | 1.422 (5) |
| С5—Н5А    | 0.9300      | С23—Н23А     | 0.9300    |
| C6—C7     | 1.478 (5)   | C24—C25      | 1.413 (5) |
| C7—O1     | 1.241 (5)   | C24—C29      | 1.422 (5) |
| C7—N1     | 1.328 (5)   | C25—O5       | 1.303 (4) |
| C8—N2     | 1.294 (4)   | C25—C26      | 1.425 (5) |
| C8—C9     | 1.411 (5)   | C26—O6       | 1.346 (5) |
| C8—H8A    | 0.9300      | C26—C27      | 1.375 (6) |
| C9—C10    | 1.408 (5)   | C27—C28      | 1.389 (6) |
| C9—C14    | 1.409 (5)   | С27—Н27А     | 0.9300    |
| C10—O2    | 1.317 (4)   | C28—C29      | 1.347 (6) |
| C10—C11   | 1.409 (5)   | C28—H28A     | 0.9300    |
| C11—O3    | 1.364 (5)   | С29—Н29А     | 0.9300    |
| C11—C12   | 1.379 (5)   | C30—O6       | 1.417 (5) |
| C12—C13   | 1.375 (6)   | С30—Н30А     | 0.9600    |
| C12—H12A  | 0.9300      | С30—Н30В     | 0.9600    |
| C13—C14   | 1.364 (6)   | С30—Н30С     | 0.9600    |
| С13—Н13А  | 0.9300      | N1—N2        | 1.391 (4) |
| C14—H14A  | 0.9300      | N1—H1B       | 0.8600    |
| C15—O3    | 1.428 (5)   | N3—N4        | 1.394 (4) |
| С15—Н15А  | 0.9600      | N3—H3B       | 0.8600    |
| C15—H15B  | 0.9600      | O1W—H1WA     | 0.8500    |
| C15—H15C  | 0.9600      | O1W—H1WB     | 0.8502    |
| O5—Fe1—O2 | 91.94 (12)  | C21—C16—H16A | 120.1     |
| O5—Fe1—O4 | 158.43 (11) | C16—C17—C18  | 120.2 (4) |
| O2—Fe1—O4 | 93.00 (12)  | C16—C17—H17A | 119.9     |
| O5—Fe1—O1 | 92.26 (11)  | C18—C17—H17A | 119.9     |
| O2—Fe1—O1 | 159.12 (11) | C17—C18—C19  | 120.2 (4) |
| O4—Fe1—O1 | 90.57 (11)  | C17—C18—H18A | 119.9     |
| O5—Fe1—N2 | 108.53 (12) | C19—C18—H18A | 119.9     |

| O2—Fe1—N2                       | 84.74 (11)        | C18—C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.3 (4)            |
|---------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 04—Fe1—N2                       | 92.83 (11)        | C18—C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.9                |
| O1—Fe1—N2                       | 74.54 (11)        | C20—C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.9                |
| 05—Fe1—N4                       | 84.04 (11)        | $C_{21}$ $C_{20}$ $C_{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.8 (4)            |
| $\Omega^2$ —Fe1—N4              | 111.65 (11)       | $C_{21}$ $C_{20}$ $H_{20A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.1                |
| 04—Fe1—N4                       | 74 63 (11)        | C19 - C20 - H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.1                |
| 01—Fe1—N4                       | 89.13 (11)        | $C_{20}$ $C_{21}$ $C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.1<br>1199(4)     |
| N2—Fe1—N4                       | 159 46 (12)       | $C_{20}$ $C_{21}$ $C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.9(1)<br>118.4(4) |
| $C_2 - C_1 - C_6$               | 1189(4)           | $C_{16}$ $C_{21}$ $C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.7(4)             |
| $C_2 = C_1 = H_1 A$             | 120.5             | $04-C^{2}-N^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121.7(4)<br>118.8(4) |
| C6-C1-H1A                       | 120.5             | $04 - C^{22} - C^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.9(3)             |
| $C_3 - C_2 - C_1$               | 120.9 (4)         | N3_C22_C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.3(3)             |
| $C_3 - C_2 - H_2 \Delta$        | 119.6             | N4_C23_C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.5(3)<br>123.6(3) |
| C1 - C2 - H2A                   | 119.6             | N4_C23_H23A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123.0 (3)            |
| $C_{1} = C_{2} = M_{2} M_{1}$   | 121.0 (4)         | $C_{24}$ $C_{23}$ $H_{23}$ $A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.2                |
| $C_4 = C_3 = C_2$               | 110 5             | $C_{24} = C_{23} = H_{23} = H$ | 110.2                |
| $C_{1} = C_{2} = H_{2} \Lambda$ | 119.5             | $C_{25} = C_{24} = C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.3(4)             |
| $C_2 = C_3 = H_3 A$             | 119.3<br>110.3(4) | $C_{23} = C_{24} = C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.4(3)             |
| $C_5 = C_4 = C_5$               | 119.3 (4)         | $C_{2} = C_{2} = C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118.1(3)             |
| $C_3 = C_4 = H_{4A}$            | 120.3             | 05 - C25 - C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 123.3(4)             |
| $C_3 = C_4 = H_4 A$             | 120.3             | $C_{23} = C_{23} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.4(3)             |
| C4 = C5 = U5 A                  | 120.9 (4)         | $C_{24} = C_{23} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116.1(3)             |
| C4 - C5 - H5A                   | 119.5             | 06 - C26 - C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 123.3(4)             |
| $C_0 - C_3 - H_3 A$             | 119.5             | 00-20-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114.2(3)             |
| $C_{5} = C_{6} = C_{7}$         | 118.9 (4)         | $C_{27} = C_{20} = C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.5(4)             |
| $C_{3} = C_{0} = C_{7}$         | 110.2(4)          | $C_{20} = C_{27} = C_{28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0 (4)            |
| $C_1 = C_0 = C_1$               | 122.0(4)          | $C_{20} = C_{27} = H_{27} A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.7                |
| OI = C7 = C6                    | 120.0(4)          | $C_{20} = C_{27} = H_{27} = H_{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119.7                |
| 01 - 07 - 00                    | 120.3(3)          | $C_{29} = C_{28} = C_{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.0 (4)            |
| N1 - C = C                      | 119.8 (4)         | $C_{29} = C_{28} = H_{28A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.5                |
| $N_2 = C_3 = U_2 A$             | 124.2 (4)         | $C_{27} = C_{28} = H_{28A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.5                |
| $N_2 = C_8 = H_8 A$             | 117.9             | $C_{28} = C_{29} = C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.5 (4)            |
| $C_9 = C_8 = H_8 A$             | 117.9             | C28—C29—H29A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.8                |
| C10 - C9 - C14                  | 119.3 (4)         | C24—C29—H29A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.8                |
| C10 - C9 - C8                   | 123.0 (3)         | 06—C30—H30A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| C14 - C9 - C8                   | 117.7 (4)         | 06—C30—H30B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| 02                              | 122.9 (3)         | H30A—C30—H30B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| 02                              | 118.8 (4)         | 06—C30—H30C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| C9—C10—C11                      | 118.3 (3)         | H30A—C30—H30C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| 03-011-012                      | 125.1 (4)         | H30B—C30—H30C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| 03-011-010                      | 114.3 (3)         | C7—N1—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114.4 (3)            |
| C12—C11—C10                     | 120.6 (4)         | C7—N1—H1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.8                |
| C13—C12—C11                     | 120.6 (4)         | N2—N1—H1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.8                |
| C13—C12—H12A                    | 119.7             | C8—N2—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.5 (3)            |
| C11—C12—H12A                    | 119.7             | C8—N2—Fel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129.2 (3)            |
| C14—C13—C12                     | 120.3 (4)         | N1—N2—Fel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.2 (2)            |
| C14—C13—H13A                    | 119.8             | C22—N3—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115.3 (3)            |
| C12—C13—H13A                    | 119.8             | C22—N3—H3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.4                |
| C13—C14—C9                      | 120.8 (4)         | N4—N3—H3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.4                |

# supporting information

| C13—C14—H14A  | 119.6     | C23—N4—N3     | 117.7 (3) |  |
|---------------|-----------|---------------|-----------|--|
| C9—C14—H14A   | 119.6     | C23—N4—Fe1    | 129.1 (3) |  |
| O3—C15—H15A   | 109.5     | N3—N4—Fe1     | 112.6 (2) |  |
| O3—C15—H15B   | 109.5     | C7—O1—Fe1     | 117.7 (2) |  |
| H15A—C15—H15B | 109.5     | H1WA—O1W—H1WB | 121.9     |  |
| O3—C15—H15C   | 109.5     | C10-O2-Fe1    | 135.8 (3) |  |
| H15A—C15—H15C | 109.5     | C11—O3—C15    | 118.2 (3) |  |
| H15B—C15—H15C | 109.5     | C22—O4—Fe1    | 118.6 (2) |  |
| C17—C16—C21   | 119.7 (4) | C25—O5—Fe1    | 135.6 (2) |  |
| C17—C16—H16A  | 120.1     | C26—O6—C30    | 118.0 (3) |  |
|               |           |               |           |  |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                                            | <i>D</i> —Н          | H…A                  | $D \cdots A$                        | D—H···A           |
|--------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-------------------------------------|-------------------|
| N1—H1B···Cl1 <sup>i</sup>                                                                                          | 0.86                 | 2.25                 | 3.087 (3)                           | 163               |
| N3—H3 <i>B</i> ···O1 <i>W</i>                                                                                      | 0.86                 | 1.92                 | 2.759 (4)                           | 164               |
| O1W—H1 $WA$ ···O5 <sup>ii</sup>                                                                                    | 0.85                 | 2.39                 | 3.045 (4)                           | 134               |
| O1 <i>W</i> —H1 <i>WB</i> ···Cl1                                                                                   | 0.85                 | 2.37                 | 3.198 (3)                           | 163               |
| N3—H3 <i>B</i> ···O1 <i>W</i><br>O1 <i>W</i> —H1 <i>WA</i> ···O5 <sup>ii</sup><br>O1 <i>W</i> —H1 <i>WB</i> ···Cl1 | 0.86<br>0.85<br>0.85 | 1.92<br>2.39<br>2.37 | 2.759 (4)<br>3.045 (4)<br>3.198 (3) | 164<br>134<br>163 |

Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2.