

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Hexaaquamanganese(II) 4,4'-(1,2dihydroxyethane-1,2-diyl)dibenzoate monohydrate

### Cheng-Jun Hao\* and Yun-Li Cao

College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China Correspondence e-mail: haochengjun2008@163.com

Received 1 June 2010; accepted 10 June 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.057; wR factor = 0.140; data-to-parameter ratio = 13.4.

In the title compound,  $[Mn(H_2O)_6](C_{16}H_{12}O_6)\cdot H_2O$ , the  $[Mn(H_2O)_6]^{2+}$  complex cation lies on a mirror plane, the  $4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate anion is located on an inversion center and the solvent water molecule also lies on a mirror plane. Extensive <math>O-H\cdots O$  hydrogen-bonding interactions between the cations, anions and water molecules stabilize the three-dimensional network.

### **Related literature**

For the intriguing architectures and potential applications of polymeric coordination networks, see: Carlucci *et al.* (2003); Rosi *et al.* (2003).



### Experimental

### Crystal data $[Mn(H_2O)_6](C_{16}H_{12}O_6)\cdot H_2O$ $M_r = 481.31$ Monoclinic, $P2_1/m$

a = 6.0803 (6) Åb = 20.643 (2) Åc = 8.6610 (9) Å  $\beta = 104.420 (1)^{\circ}$   $V = 1052.84 (19) \text{ Å}^3$  Z = 2Mo  $K\alpha$  radiation

#### Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001)  $T_{\rm min} = 0.760, T_{\rm max} = 0.886$ 

### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$   $wR(F^2) = 0.140$  S = 1.231899 reflections 5275 measured reflections 1899 independent reflections

 $\mu = 0.69 \text{ mm}^{-1}$ 

 $0.42 \times 0.21 \times 0.18 \text{ mm}$ 

. T – 298 K

1647 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.024$ 

142 parameters H-atom parameters constrained 
$$\begin{split} &\Delta \rho_{max} = 0.84 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3} \end{split}$$

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                     | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|--------------------------------------|------|-------------------------|--------------|---------------------------|
| $O3-H3\cdots O1^{i}$                 | 0.82 | 2.02                    | 2.830 (5)    | 172                       |
| O4−H4 <i>C</i> ···O1 <sup>ii</sup>   | 0.85 | 1.86                    | 2.712 (4)    | 177                       |
| $O5-H5C\cdots O4^{iii}$              | 0.85 | 1.93                    | 2.777 (6)    | 175                       |
| $D5 - H5D \cdots O8^{iii}$           | 0.85 | 1.88                    | 2.728 (7)    | 175                       |
| $D6 - H6C \cdots O3^{iv}$            | 0.85 | 1.99                    | 2.840 (5)    | 178                       |
| $D6 - H6D \cdots O8$                 | 0.85 | 2.19                    | 3.040 (6)    | 178                       |
| $O7 - H7C \cdots O1^{v}$             | 0.85 | 1.95                    | 2.799 (5)    | 180                       |
| $O7 - H7D \cdots O2^{ii}$            | 0.85 | 1.82                    | 2.673 (4)    | 180                       |
| $O8 - H8C \cdot \cdot \cdot O2^{vi}$ | 0.85 | 1.92                    | 2.767 (5)    | 172                       |
|                                      |      |                         |              |                           |

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) x - 1, y, z - 1; (iii) x + 1, y, z; (iv) -x + 1, -y + 1, -z + 1; (v) x, y, z - 1; (vi) x - 1, y, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge Pingdingshan University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2318).

### References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289.

Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). *Science*, **300**, 1127–1129.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# metal-organic compounds

# supporting information

Acta Cryst. (2010). E66, m809 [doi:10.1107/S1600536810022300]

# Hexaaquamanganese(II) 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate monohydrate

# Cheng-Jun Hao and Yun-Li Cao

### S1. Comment

Current interest in polymeric coordination networks is rapidly expanding for their intriguing architectures (Carlucci *et al.*, 2003) and potential applications (Rosi *et al.*, 2003). We have reacted 1,2-bis(4-carboxyphenyl)-1,2-ethanediol with MnCl<sub>2</sub> under hydrothermal conditions to obtain the title compound and its structure is reported here.

As illustrated in Fig. 1, the title compound contains one  $[Mn(H_2O)_6]^{2+}$  complex cation lying on a mirror plan, one 1,2-dihydroxyethane-1,2-bis(4-benzenecarboxylate) anion located on an inversion center and one solvent water molecule lying on a mirror plan. The carboxylate group lies in the plane of the benzene ring as indicated by the O1—C1—C2—C3 and O2—C1—C2—C7 torsion angles of -3.0 (6) and -1.2 (6)°. The benzene ring is nearly planar with maximum deviations from the mean plane being -0.003 (6) Å for C6. The cation, anion and solvent water molecule interact via O—H···O hydrogen bonds, consolidating the three-dimensional network (Fig. 2, Table 1).

### **S2. Experimental**

A mixture of  $MnCl_2$  (0.1 mmol, 0.013 g), 1,2-bis(4-carboxyphenyl)-1,2-ethanediol (0.1 mmol, 0.03 g) and 10 ml of H<sub>2</sub>O was sealed in a 20 ml Telflon-lined stainless steel vessel and heated at 303 K for 2 d. Colorless crystals were obtained when the solution was cooled to room temperature slowly.

### **S3. Refinement**

H atoms bound to C atoms were placed at calculated positions and were treated as riding on the parent atoms, with C—H = 0.93 (aromatic) and 0.98 (CH) Å and with  $U_{iso}(H) = 1.2U_{eq}(C)$ . H atoms of hydroxyl group and water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and  $U_{iso}(H) = 1.2(1.5 \text{ for hydroxyl})U_{eq}(O)$ .



## Figure 1

Molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. H atoms and water molecule are omitted for clarity. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) x, 3/2-y, z.]



# Figure 2

View of the three-dimensional network constructed by O—H…O hydrogen bonds (dashed lines). H atoms are omitted for clarity.

## Hexaaquamanganese(II) 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate monohydrate

| F(000) = 502                                          |
|-------------------------------------------------------|
| $D_{\rm x} = 1.518 {\rm Mg} {\rm m}^{-3}$             |
| Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Cell parameters from 2215 reflections                 |
| $\theta = 2.5 - 24.0^{\circ}$                         |
| $\mu = 0.69 \text{ mm}^{-1}$                          |
| T = 298  K                                            |
| Block, colorless                                      |
| $0.42 \times 0.21 \times 0.18 \text{ mm}$             |
|                                                       |
|                                                       |

Data collection

| Bruker SMART 1000 CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2001)<br>$T_{\min} = 0.760, T_{\max} = 0.886$ | 5275 measured reflections<br>1899 independent reflections<br>1647 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.024$<br>$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$<br>$h = -7 \rightarrow 6$<br>$k = -24 \rightarrow 22$<br>$l = -10 \rightarrow 9$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                          |
| Refinement on $F^2$<br>Least-squares matrix: full                                                                                                                                                                                                             | Secondary atom site location: difference Fourier map                                                                                                                                                                                                                     |
| $R[F^2 > 2\sigma(F^2)] = 0.057$<br>wR(F^2) = 0.140                                                                                                                                                                                                            | Hydrogen site location: inferred from<br>neighbouring sites                                                                                                                                                                                                              |
| S = 1.23<br>1899 reflections                                                                                                                                                                                                                                  | H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0292P)^2 + 3.0592P]$                                                                                                                                                                                       |
| 142 parameters                                                                                                                                                                                                                                                | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                           |
| 0 restraints                                                                                                                                                                                                                                                  | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                                                                                                                                                                      |
| Primary atom site location: structure-invariant                                                                                                                                                                                                               | $\Delta \rho_{\rm max} = 0.84 \ { m e} \ { m \AA}^{-3}$                                                                                                                                                                                                                  |
| direct methods                                                                                                                                                                                                                                                | $\Delta \rho_{\min} = -0.33 \text{ e} \text{ Å}^{-3}$                                                                                                                                                                                                                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ            | $U_{ m iso}*/U_{ m eq}$ |
|-----|--------------|--------------|--------------|-------------------------|
| Mn1 | 0.65486 (15) | 0.7500       | 0.46088 (10) | 0.0289 (3)              |
| O1  | 1.0818 (5)   | 0.64065 (16) | 1.2067 (4)   | 0.0444 (8)              |
| O2  | 1.3265 (5)   | 0.64967 (19) | 1.0567 (4)   | 0.0567 (10)             |
| O3  | 0.6710 (6)   | 0.42818 (15) | 0.5229 (4)   | 0.0472 (9)              |
| Н3  | 0.7538       | 0.4103       | 0.6004       | 0.071*                  |
| O4  | 0.2836 (6)   | 0.7500       | 0.3483 (5)   | 0.0296 (9)              |
| H4C | 0.2168       | 0.7166       | 0.3015       | 0.036*                  |
| O5  | 1.0130 (7)   | 0.7500       | 0.5635 (5)   | 0.0533 (14)             |
| H5C | 1.0885       | 0.7500       | 0.4931       | 0.064*                  |
| H5D | 1.1062       | 0.7500       | 0.6548       | 0.064*                  |
| O6  | 0.5811 (6)   | 0.67978 (16) | 0.6304 (4)   | 0.0477 (8)              |
| H6C | 0.5029       | 0.6476       | 0.5861       | 0.057*                  |
| H6D | 0.5095       | 0.6985       | 0.6904       | 0.057*                  |
| 07  | 0.6863 (5)   | 0.67266 (18) | 0.2996 (4)   | 0.0548 (10)             |
| H7C | 0.8061       | 0.6629       | 0.2710       | 0.066*                  |
| H7D | 0.5724       | 0.6653       | 0.2220       | 0.066*                  |
| 08  | 0.3346 (10)  | 0.7500       | 0.8464 (6)   | 0.090 (2)               |
| H8C | 0.3323       | 0.7167       | 0.9035       | 0.109*                  |
| C1  | 1.1422 (7)   | 0.6306 (2)   | 1.0792 (5)   | 0.0377 (11)             |
| C2  | 0.9858 (7)   | 0.5932 (2)   | 0.9471 (5)   | 0.0321 (10)             |
| C3  | 0.7845 (7)   | 0.5675 (2)   | 0.9661 (5)   | 0.0364 (10)             |
| H3A | 0.7415       | 0.5747       | 1.0605       | 0.044*                  |
| C4  | 0.6454 (7)   | 0.5311 (2)   | 0.8455 (5)   | 0.0371 (10)             |
| H4  | 0.5098       | 0.5144       | 0.8597       | 0.045*                  |
| C5  | 0.7062 (7)   | 0.5195 (2)   | 0.7053 (5)   | 0.0335 (10)             |

| C6 | 0.9078 (8) | 0.5454 (2) | 0.6850 (5) | 0.0398 (11) |
|----|------------|------------|------------|-------------|
| H6 | 0.9505     | 0.5381     | 0.5906     | 0.048*      |
| C7 | 1.0457 (7) | 0.5820 (2) | 0.8053 (5) | 0.0387 (11) |
| H7 | 1.1802     | 0.5993     | 0.7905     | 0.046*      |
| C8 | 0.5518 (8) | 0.4795 (2) | 0.5750 (5) | 0.0365 (10) |
| H8 | 0.4286     | 0.4613     | 0.6160     | 0.044*      |
|    |            |            |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | <b>T</b> 711 | 1.722           | 1 733       | <b>T</b> 712 | T 713        | 1723            |
|-----|--------------|-----------------|-------------|--------------|--------------|-----------------|
|     | U"           | U <sup>22</sup> | U           | U'           | U            | U <sup>23</sup> |
| Mn1 | 0.0245 (5)   | 0.0337 (5)      | 0.0272 (5)  | 0.000        | 0.0039 (4)   | 0.000           |
| 01  | 0.0364 (17)  | 0.051 (2)       | 0.0399 (18) | 0.0007 (15)  | -0.0016 (14) | -0.0157 (15)    |
| O2  | 0.0333 (19)  | 0.078 (3)       | 0.052 (2)   | -0.0144 (18) | -0.0013 (15) | -0.0261 (19)    |
| O3  | 0.053 (2)    | 0.0349 (18)     | 0.0454 (19) | 0.0047 (15)  | -0.0045 (15) | -0.0064 (15)    |
| O4  | 0.026 (2)    | 0.029 (2)       | 0.031 (2)   | 0.000        | 0.0003 (16)  | 0.000           |
| 05  | 0.025 (2)    | 0.100 (4)       | 0.032 (2)   | 0.000        | 0.0016 (19)  | 0.000           |
| O6  | 0.058 (2)    | 0.0403 (19)     | 0.0434 (19) | -0.0019 (16) | 0.0097 (16)  | 0.0080 (15)     |
| O7  | 0.0285 (17)  | 0.078 (3)       | 0.053 (2)   | 0.0039 (17)  | 0.0007 (15)  | -0.0328 (19)    |
| 08  | 0.065 (4)    | 0.169 (7)       | 0.037 (3)   | 0.000        | 0.012 (3)    | 0.000           |
| C1  | 0.030 (2)    | 0.037 (3)       | 0.038 (3)   | 0.009 (2)    | -0.0053 (19) | -0.011 (2)      |
| C2  | 0.028 (2)    | 0.029 (2)       | 0.032 (2)   | 0.0044 (18)  | -0.0058 (18) | -0.0058 (18)    |
| C3  | 0.037 (2)    | 0.037 (2)       | 0.032 (2)   | -0.001 (2)   | 0.0018 (18)  | -0.0065 (19)    |
| C4  | 0.033 (2)    | 0.036 (2)       | 0.038 (2)   | -0.0057 (19) | -0.0007 (19) | -0.003 (2)      |
| C5  | 0.030(2)     | 0.028 (2)       | 0.035 (2)   | 0.0017 (18)  | -0.0063 (18) | -0.0048 (18)    |
| C6  | 0.038 (3)    | 0.044 (3)       | 0.034 (2)   | 0.002 (2)    | 0.0021 (19)  | -0.012 (2)      |
| C7  | 0.027 (2)    | 0.045 (3)       | 0.041 (3)   | -0.001 (2)   | 0.0030 (19)  | -0.012 (2)      |
| C8  | 0.037 (2)    | 0.033 (2)       | 0.032 (2)   | 0.001 (2)    | -0.0043 (19) | -0.0060 (19)    |
|     |              |                 |             |              |              |                 |

# Geometric parameters (Å, °)

| Mn1—O5              | 2.137 (4)  | O7—H7D              | 0.8500    |
|---------------------|------------|---------------------|-----------|
| Mn1—O7              | 2.161 (3)  | O8—H8C              | 0.8500    |
| Mn1—O7 <sup>i</sup> | 2.161 (3)  | C1—C2               | 1.506 (6) |
| Mn1—O6 <sup>i</sup> | 2.187 (3)  | C2—C3               | 1.381 (6) |
| Mn1—O6              | 2.187 (3)  | C2—C7               | 1.384 (6) |
| Mn1—O4              | 2.225 (4)  | C3—C4               | 1.390 (6) |
| O1—C1               | 1.265 (5)  | С3—НЗА              | 0.9300    |
| O2—C1               | 1.248 (6)  | C4—C5               | 1.375 (6) |
| O3—C8               | 1.419 (5)  | C4—H4               | 0.9300    |
| O3—H3               | 0.8200     | C5—C6               | 1.387 (6) |
| O4—H4C              | 0.8500     | C5—C8               | 1.520 (6) |
| O5—H5C              | 0.8500     | C6—C7               | 1.388 (6) |
| O5—H5D              | 0.8500     | С6—Н6               | 0.9300    |
| O6—H6C              | 0.8500     | С7—Н7               | 0.9300    |
| O6—H6D              | 0.8500     | C8—C8 <sup>ii</sup> | 1.548 (8) |
| O7—H7C              | 0.8500     | C8—H8               | 0.9800    |
|                     |            |                     |           |
| O5—Mn1—O7           | 91.37 (12) | O2—C1—C2            | 117.7 (4) |

| $O5$ — $Mn1$ — $O7^{i}$       | 91.37 (12)  | 01—C1—C2                  | 118.8 (4)  |
|-------------------------------|-------------|---------------------------|------------|
| $O7$ — $Mn1$ — $O7^{i}$       | 95.3 (2)    | C3—C2—C7                  | 118.6 (4)  |
| O5-Mn1-O6 <sup>i</sup>        | 94.52 (13)  | C3—C2—C1                  | 121.1 (4)  |
| $O7$ — $Mn1$ — $O6^{i}$       | 171.61 (14) | C7—C2—C1                  | 120.2 (4)  |
| $O7^{i}$ —Mn1—O6 <sup>i</sup> | 90.57 (14)  | C2—C3—C4                  | 120.6 (4)  |
| O5—Mn1—O6                     | 94.52 (13)  | С2—С3—НЗА                 | 119.7      |
| O7—Mn1—O6                     | 90.57 (14)  | С4—С3—НЗА                 | 119.7      |
| O7 <sup>i</sup> —Mn1—O6       | 171.61 (14) | C5—C4—C3                  | 120.7 (4)  |
| O6 <sup>i</sup> —Mn1—O6       | 83.01 (19)  | С5—С4—Н4                  | 119.6      |
| O5—Mn1—O4                     | 178.63 (17) | C3—C4—H4                  | 119.6      |
| O7—Mn1—O4                     | 87.71 (11)  | C4—C5—C6                  | 119.0 (4)  |
| O7 <sup>i</sup> —Mn1—O4       | 87.71 (11)  | C4—C5—C8                  | 119.9 (4)  |
| O6 <sup>i</sup> —Mn1—O4       | 86.50 (12)  | C6—C5—C8                  | 121.1 (4)  |
| O6—Mn1—O4                     | 86.50 (12)  | C5—C6—C7                  | 120.1 (4)  |
| С8—О3—Н3                      | 109.5       | С5—С6—Н6                  | 119.9      |
| Mn1—O4—H4C                    | 121.4       | С7—С6—Н6                  | 119.9      |
| Mn1—O5—H5C                    | 112.2       | C2—C7—C6                  | 120.9 (4)  |
| Mn1—O5—H5D                    | 139.5       | С2—С7—Н7                  | 119.5      |
| H5C—O5—H5D                    | 108.3       | С6—С7—Н7                  | 119.5      |
| Mn1—O6—H6C                    | 113.5       | O3—C8—C5                  | 111.9 (3)  |
| Mn1—O6—H6D                    | 109.4       | O3—C8—C8 <sup>ii</sup>    | 105.9 (4)  |
| H6C—O6—H6D                    | 108.4       | C5—C8—C8 <sup>ii</sup>    | 111.9 (4)  |
| Mn1—O7—H7C                    | 125.7       | O3—C8—H8                  | 109.0      |
| Mn1—O7—H7D                    | 117.3       | С5—С8—Н8                  | 109.0      |
| H7C—O7—H7D                    | 108.4       | C8 <sup>ii</sup> —C8—H8   | 109.0      |
| 02—C1—O1                      | 123.5 (4)   |                           |            |
| O2—C1—C2—C3                   | 176.5 (4)   | C4—C5—C6—C7               | 0.3 (7)    |
| O1—C1—C2—C3                   | -3.0 (6)    | C8—C5—C6—C7               | 179.7 (4)  |
| O2—C1—C2—C7                   | -1.2 (6)    | C3—C2—C7—C6               | -0.5 (7)   |
| O1—C1—C2—C7                   | 179.3 (4)   | C1—C2—C7—C6               | 177.3 (4)  |
| C7—C2—C3—C4                   | 0.1 (7)     | C5—C6—C7—C2               | 0.3 (7)    |
| C1—C2—C3—C4                   | -177.6 (4)  | C4—C5—C8—O3               | -128.0 (4) |
| C2—C3—C4—C5                   | 0.5 (7)     | C6—C5—C8—O3               | 52.5 (6)   |
| C3—C4—C5—C6                   | -0.7 (7)    | C4—C5—C8—C8 <sup>ii</sup> | 113.3 (6)  |
| C3—C4—C5—C8                   | 179.9 (4)   | C6C5C8C8 <sup>ii</sup>    | -66.1 (6)  |
|                               |             |                           |            |

Symmetry codes: (i) x, -y+3/2, z; (ii) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

| D—H···A                            | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|------------------------------------|-------------|-------|--------------|---------|
| O3—H3…O1 <sup>iii</sup>            | 0.82        | 2.02  | 2.830 (5)    | 172     |
| O4— $H4C$ ···O1 <sup>iv</sup>      | 0.85        | 1.86  | 2.712 (4)    | 177     |
| O5—H5 <i>C</i> ⋯O4 <sup>v</sup>    | 0.85        | 1.93  | 2.777 (6)    | 175     |
| O5—H5 <i>D</i> ···O8 <sup>v</sup>  | 0.85        | 1.88  | 2.728 (7)    | 175     |
| O6—H6 <i>C</i> ···O3 <sup>ii</sup> | 0.85        | 1.99  | 2.840 (5)    | 178     |
| O6—H6 <i>D</i> ···O8               | 0.85        | 2.19  | 3.040 (6)    | 178     |
|                                    |             |       |              |         |

# supporting information

| O7—H7 <i>C</i> ⋯O1 <sup>vi</sup> | 0.85 | 1.95 | 2.799 (5) | 180 |  |
|----------------------------------|------|------|-----------|-----|--|
| O7—H7D····O2 <sup>iv</sup>       | 0.85 | 1.82 | 2.673 (4) | 180 |  |
| O8—H8C⋯O2 <sup>vii</sup>         | 0.85 | 1.92 | 2.767 (5) | 172 |  |

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+2, -*y*+1, -*z*+2; (iv) *x*-1, *y*, *z*-1; (v) *x*+1, *y*, *z*; (vi) *x*, *y*, *z*-1; (vii) *x*-1, *y*, *z*.