Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[bis(µ-3-aminopyrazine-2carboxylato)- $\kappa^3 N^1$, O:O; $\kappa^3 O: N^1$, O)dilithium]-di-*µ*-aqua]

Wojciech Starosta and Janusz Leciejewicz*

Institute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

Received 21 May 2010; accepted 31 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.147; data-to-parameter ratio = 16.6.

The title compound, $[Li(C_5H_4N_3O_2)(H_2O)]_n$, is composed of centrosymmetric dinuclear units, in which the Li^I ions are bridged by two carboxylate O atoms donated by two ligands. The dinuclear unit is nearly planar [r.m.s. deviation = 0.0125 (2) Å]. The Li^I ion is coordinated by an N,O-chelating ligand, a bridging carboxylate O atom from another ligand and two bridging water O atoms in a distorted trigonal-bipyramidal geometry. The water O atoms bridge the dinuclear units into a polymeric molecular column along [010]. The columns are held together by $O-H\cdots O$ and $N-H\cdots N$ hydrogen bonds. An intramolecular N-H···O interaction also occurs.

Related literature

For the structures of metal (M) complexes with the 3-aminopyrazine-2-carboxylate ligand, see: Leciejewicz et al. (1997 [M = Ca(II)], 1998 [M = Sr(II)]; Ptasiewicz-Bąk & Leciejewicz (1997 [M = Mg(II)], 1999 [M = Ni(II)]); Tayebee *et al.* (2008) [M = Na(I)]. For the structure of an Li(I) complex with pyrazine-2,3-dicarboxylate and aqua ligands, see: Tombul et al. (2008).

 $V = 655.7 (2) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.26 \times 0.21 \times 0.04 \text{ mm}$

 $\mu = 0.13 \text{ mm}^{-1}$

T = 293 K

Z = 4

Experimental

Crystal data [Li(C₅H₄N₃O₂)(H₂O)] $M_r = 163.07$ Monoclinic, $P2_1/c$ a = 14.279 (3) Å b = 3.6000 (7) Å c = 13.300 (3) Å $\beta = 106.43 (3)^{\circ}$

Data collection

Kuma KM-4 four-circle	1913 independent reflections
diffractometer	1297 reflections with $I > 2\sigma(I)$
Absorption correction: analytical	$R_{\rm int} = 0.017$
(CrysAlis RED; Oxford	3 standard reflections every 20
Diffraction, 2006)	reflections
$T_{\min} = 0.980, \ T_{\max} = 0.994$	intensity decay: 7.3%
1997 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of
$wR(F^2) = 0.147$	independent and constrained
S = 1.04	refinement
1913 reflections	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
115 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1

Selected bond lengths (Å).

Li1-N1	2.118 (3)	Li1-O3	2.065 (3)
Li1-01	1.999 (3)	Li1-O3 ⁱⁱ	2.201 (3)
Li1-O1 ⁱ	1.995 (3)		

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z.

m744 Starosta and Leciejewicz

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
O3-H31···O2 ⁱⁱⁱ	0.88(1)	1.83 (1)	2.7028 (16)	175 (2)
$O3-H32\cdots O1^{iv}$	0.84(2)	2.54 (2)	2.9083 (17)	108 (2)
$N3-H1\cdots O2$	0.86	2.08	2.7229 (17)	131
$N3\!-\!H2\!\cdots\!N2^v$	0.86	2.30	3.1278 (19)	162
C	()	13 11 (°)	. 1	1.1. 63

Symmetry codes: (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$, (iv) -x + 1, -y + 2, -z + 1; (v) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *KM-4 Software* (Kuma, 1996); cell refinement: *KM-4 Software*; data reduction: *DATAPROC* (Kuma, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2312).

References

Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.

- Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.
- Leciejewicz, J., Ptasiewicz-Bąk, H. & Paluchowska, B. (1997). *Pol. J. Chem.* **71**, 1339–1364.
- Leciejewicz, J., Ptasiewicz-Bąk, H. & Zachara, J. (1998). Pol. J. Chem. 72, 1994–1998.
- Oxford Diffraction (2006). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Ptasiewicz-Bąk, H. & Leciejewicz, J. (1997). Pol. J. Chem. 71, 1350-1358.
- Ptasiewicz-Bąk, H. & Leciejewicz, J. (1999). Pol. J. Chem. 73, 717-725.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tayebee, R., Amani, V. & Khavasi, H. P. (2008). Chin. J. Chem. 26, 500–504.
 Tombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491– m492.

supporting information

Acta Cryst. (2010). E66, m744-m745 [doi:10.1107/S1600536810020647]

catena-Poly[[bis(μ -3-aminopyrazine-2-carboxylato)- $\kappa^3 N^1$, O:O; $\kappa^3 O:N^1$, O)dilithium]-di- μ -aqua]

Wojciech Starosta and Janusz Leciejewicz

S1. Comment

Structural studies of divalent metal ion complexes with 3-aminopyrazine-2-carboxylate ligand have shown that the structures of Mg(II) and Ni(II) complexes consist of $ML_2(H_2O)_2$ monomers. In the Mg(II) complex, the ligand adopts a *cis* configuration (Ptasiewicz-Bąk & Leciejewicz, 1997), while in the Ni(II) complex, a *trans* configuration (Ptasiewicz-Bąk & Leciejewicz, 1997). Catenated polymeric molecular patterns have been reported in the structures of a Ca(II) complex (Leciejewicz *et al.*, 1997) and a Sr(II) complex (Leciejewicz *et al.*, 1998), in which metal ions are bridged by ligand carboxylate groups acting as bidentate. On the other hand, the structure of a Na(I) complex with the title ligand (Tayebee *et al.*, 2008) is three-dimensional polymeric with Na(I) ions linked by an extended bridging system formed mainly by coordinated water O atoms.

The title compound is composed of centrosymmetric dinuclear units, in which each of the two Li¹ ions is cheletated by a ligand *via* an N,O-bonding group. Its O atom acts as bidentate and bridges the other Li¹ ion (Fig. 1). The dinuclear unit is nearly planar with r.m.s. of 0.0125 (2) Å. The Li¹ ion is also coordinated by two water O atoms, which bridge the dinuclear units into molecular columns along two bridging pathways propagating in the *b*-axis direction (Fig. 2). The coordination geometry of the Li¹ ion is trigonal bipyramidal, with the equatorial plane formed by O1, O3, O3ⁱⁱ and with N1 and O1ⁱ at the axial positions [symmetry codes: (i) 1-x, 1-y, 1-z; (ii) x, y-1, z]. The Li—O and Li—N bond distances (Table 1) and bond angles are typical for Li(I) complexes with carboxylate ligands (see, for example, Tombul *et al.*, 2008). The columns are linked by a network of hydrogen bonds, in which water O atoms are donors and the non-bonded carboxylate O atoms in adjacent columns act as acceptors. A weak hydrogen bond links an amino N atom with a heteroring N atom in the adjacent column. An intramolecular hydrogen bond which operates between the amino N3 atom and the non-bonding carboxylate O2 atom is also observed (Table 2).

S2. Experimental

The title compound was synthesized by reacting 50 ml of boiling aqueous solutions, one containing 1 mmol of 3-aminopyrazine-2-carboxylic acid (Aldrich), the other containing 1 mmol of lithium hydroxide (Aldrich). The mixture was boiled under reflux for 3 h and after cooling to room temperature, filtered and left to crystallize. A few days later, colourless single crystals in the form of flat needles were found after evaporation to dryness. They were extracted, washed with cold ethanol and dried in air. A crystal used for X-ray data collection was cut to adopt the shape of a flat plate.

S3. Refinement

Water H atoms were found from difference Fourier maps and their coordinates were refined with $U_{iso}(H) = 1.2U_{eq}(O)$. H atoms attached to C and N atoms were positioned geometrically and refined as riding, with C—H = 0.93 and N—H =

0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figure 1

The dinuclear unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) x, -1+y, z; (iii) 1-x, 2-y, 1-z.]

Figure 2

Packing diagram of the title compound.

catena-Poly[[bis(μ -3-aminopyrazine-2-carboxylato)- $\kappa^3 N^1$,O:O; $\kappa^3 O$: N^1 ,O)dilithium]-di- μ -aqua]

Crystal data

[Li(C₅H₄N₃O₂)(H₂O)] $M_r = 163.07$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.279 (3) Å b = 3.6000 (7) Å c = 13.300 (3) Å $\beta = 106.43$ (3)° V = 655.7 (2) Å³ Z = 4

Data collection

Kuma KM-4 four-circle diffractometer Radiation source: fine-focus sealed tube Graphite monochromator profile data from ω -2 θ scans Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2006) $T_{\min} = 0.980, T_{\max} = 0.994$ 1997 measured reflections F(000) = 336 $D_x = 1.652 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 6-15^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 293 KPlate, colourless $0.26 \times 0.21 \times 0.04 \text{ mm}$

1913 independent reflections 1297 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 30.1^{\circ}, \ \theta_{min} = 1.5^{\circ}$ $h = -19 \rightarrow 19$ $k = -5 \rightarrow 0$ $l = 0 \rightarrow 18$ 3 standard reflections every 200 reflections intensity decay: 7.3% Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.147$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
1913 reflections	and constrained refinement
115 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1051P)^2 + 0.022P]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\min} = -0.39 \text{ e} \text{ Å}^{-3}$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C2	0.25443 (8)	0.4711 (3)	0.39664 (9)	0.0184 (3)
O2	0.32090 (8)	0.2294 (4)	0.26435 (8)	0.0336 (3)
N1	0.27984 (8)	0.6065 (3)	0.49343 (8)	0.0216 (3)
N2	0.08397 (8)	0.5364 (4)	0.38343 (10)	0.0285 (3)
N3	0.12597 (9)	0.2931 (4)	0.24154 (10)	0.0320 (3)
H2	0.0649	0.2745	0.2090	0.038*
H1	0.1690	0.2235	0.2115	0.038*
O1	0.42229 (7)	0.4275 (4)	0.41421 (8)	0.0352 (3)
C7	0.33887 (9)	0.3657 (4)	0.35429 (10)	0.0218 (3)
C3	0.15415 (9)	0.4307 (4)	0.33936 (10)	0.0217 (3)
C6	0.20958 (10)	0.7070 (4)	0.53653 (11)	0.0254 (3)
H6	0.2262	0.8010	0.6044	0.030*
C5	0.11268 (10)	0.6720 (4)	0.48077 (12)	0.0284 (3)
Н5	0.0653	0.7459	0.5123	0.034*
Li1	0.43334 (19)	0.6091 (9)	0.5591 (2)	0.0370 (6)
O3	0.44058 (8)	1.0866 (3)	0.64699 (9)	0.0338 (3)
H32	0.4986 (11)	1.117 (6)	0.6825 (15)	0.041*
H31	0.4047 (13)	1.146 (6)	0.6882 (14)	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³	
C2	0.0170 (5)	0.0153 (5)	0.0223 (6)	-0.0007 (4)	0.0048 (4)	0.0018 (4)	
O2	0.0301 (5)	0.0450 (7)	0.0277 (5)	-0.0089(5)	0.0114 (4)	-0.0120 (5)	
N1	0.0209 (5)	0.0192 (5)	0.0242 (5)	0.0012 (4)	0.0057 (4)	-0.0006 (4)	
N2	0.0194 (5)	0.0264 (6)	0.0390 (6)	0.0012 (4)	0.0071 (4)	0.0025 (5)	
N3	0.0227 (5)	0.0401 (7)	0.0290 (6)	-0.0056 (5)	0.0002 (4)	-0.0052 (5)	
01	0.0183 (5)	0.0522 (7)	0.0338 (5)	0.0004 (5)	0.0052 (4)	-0.0142 (5)	
C7	0.0202 (6)	0.0209 (6)	0.0242 (5)	-0.0021 (4)	0.0064 (4)	-0.0015 (5)	
C3	0.0199 (5)	0.0171 (5)	0.0262 (6)	-0.0019 (4)	0.0033 (4)	0.0034 (5)	
C6	0.0282 (6)	0.0225 (7)	0.0273 (6)	0.0020 (5)	0.0108 (5)	-0.0020 (5)	
C5	0.0238 (6)	0.0237 (7)	0.0408 (8)	0.0031 (5)	0.0140 (5)	0.0006 (6)	
Li1	0.0256 (12)	0.0484 (17)	0.0355 (13)	0.0016 (11)	0.0060 (10)	-0.0120 (12)	

03	0.0256 (5)	0.0411 (7)	0.0352 (6)	-0.0012 (5)	0.0092 (4)	-0.0069 (5)
Geomei	ric parameters (2	Å, [•])				
C2—N	1	1.3274	(16)	C6—C5		1.378 (2)
C2—C	3	1.4263	(17)	С6—Н6		0.9300
C2—C	7	1.5164	(17)	С5—Н5		0.9300
O2—C	7	1.2505	(17)	Li1—N1		2.118 (3)
N1-C	6	1.3385	(17)	Li1—O1		1.999 (3)
N2-C	5	1.335	(2)	Li1—O1 ⁱ		1.995 (3)
N2C	3	1.3510	(18)	Li1—O3		2.065 (3)
N3—C	3	1.3431	(18)	Li1—O3 ⁱⁱ		2.201 (3)
N3—H	2	0.8600		Li1—Li1 ⁱ		2.900 (5)
N3—H	1	0.8600		O3—H32		0.837 (15)
01—C	7	1.2515	(17)	O3—H31		0.875 (14)
N1—C	2—С3	120.87	(11)	N2—C5—H5		118.6
N1-C	2—С7	115.10	(11)	С6—С5—Н5		118.6
C3—C2	2—С7	124.03	(11)	Ol ⁱ —Li1—Ol		86.88 (11)
C2—N	1—C6	118.83	(11)	O1 ⁱ —Li1—O3		94.05 (12)
C2—N	1—Li1	111.64	(11)	01—Li1—O3		142.73 (18)
C6—N	1—Li1	129.48	(11)	O1 ⁱ —Li1—N1		165.94 (15)
C5—N2	2—С3	117.50	(11)	O1—Li1—N1		79.08 (10)
C3—N	3—Н2	120.0		O3—Li1—N1		96.74 (12)
C3—N	3—H1	120.0		O1 ⁱ —Li1—O3 ⁱⁱ		87.61 (12)
H2—N	3—H1	120.0		O1—Li1—O3 ⁱⁱ		102.21 (14)
С7—О	1—Li1 ⁱ	148.32	(12)	O3—Li1—O3 ⁱⁱ		115.07 (14)
С7—О	1—Li1	118.26	(11)	N1—Li1—O3 ⁱⁱ		95.90 (13)
Li1 ⁱ —C	01—Li1	93.13	(11)	Ol ⁱ —Lil—Lil ⁱ		43.49 (8)
O2—C	7—01	125.43	(12)	O1—Li1—Li1 ⁱ		43.38 (8)
O2—C	7—С2	118.94	(12)	O3—Li1—Li1 ⁱ		126.66 (18)
01—C	7—С2	115.63	(11)	N1—Li1—Li1 ⁱ		122.46 (16)
N3—C	3—N2	117.93	(12)	O3 ⁱⁱ —Li1—Li1 ⁱ		96.72 (16)
N3—C	3—С2	122.37	(12)	Li1—O3—Li1 ⁱⁱⁱ		115.07 (14)
N2-C	3—С2	119.69	(12)	Li1—O3—H32		108.2 (15)
N1-C	6—C5	120.32	(12)	Li1 ⁱⁱⁱ —O3—H32		94.4 (16)
N1-C	6—H6	119.8		Li1—O3—H31		127.7 (15)
С5—С	6—Н6	119.8		Li1 ⁱⁱⁱ —O3—H31		100.2 (15)
N2—C	5—C6	122.78	(13)	H32—O3—H31		106.0 (15)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H31···O2 ^{iv}	0.88 (1)	1.83 (1)	2.7028 (16)	175 (2)
O3—H32…O1 ^v	0.84 (2)	2.54 (2)	2.9083 (17)	108 (2)

supporting information

			supporting information		
N3—H1…O2	0.86	2.08	2.7229 (17)	131	
N3—H2…N2 ^{vi}	0.86	2.30	3.1278 (19)	162	

Symmetry codes: (iv) *x*, -*y*+3/2, *z*+1/2; (v) -*x*+1, -*y*+2, -*z*+1; (vi) -*x*, *y*-1/2, -*z*+1/2.