organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*R*)-4-Phenyl-2-[(*S*)-1,2,3,4-tetrahydroisoquinolin-3-yl]-4,5-dihydro-1,3-oxazole

Sai K. Chakka,^a Thavendran Govender,^b Hendrik G. Kruger^a and Glenn E. M. Maguire^a*

^aSchool of Chemistry, University of KwaZulu-Natal, Durban, South Africa, and ^bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban, South Africa

Correspondence e-mail: maguireg@ukzn.ac.za

Received 27 May 2010; accepted 9 June 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.076; data-to-parameter ratio = 8.0.

The asymmetric unit cell of the title compound, $C_{18}H_{18}N_2O$, contains four molecules. In the crystal structure, an intermolecular N-H···N hydrogen bond helps to establish the packing.

Related literature

For the assymetric synthetic applications of oxazoline, see: Hargaden *et al.* (2009). For tetraisoquinolines and their biological significance, see: Scott *et al.* (2002). For ligand catalysis activity, see: Chakka *et al.* (2010).

Experimental

a = 5.4023 (3) Å
b = 10.0999 (6) Å
c = 26.2205 (17) Å

 $V = 1430.66 (15) \text{ Å}^3$ Z = 4Cu K\alpha radiation

Data collection

```
Bruker Kappa DUO APEXII
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
T_{min} = 0.682, T_{max} = 0.753
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.076$ S = 1.051552 reflections 195 parameters 1 restraint $\mu = 0.64 \text{ mm}^{-1}$ T = 173 K $0.22 \times 0.21 \times 0.10 \text{ mm}$

6634 measured reflections 1552 independent reflections 1479 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.14 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.12 \text{ e } \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdot \cdot \cdot N2^{i}$	0.96 (1)	2.20 (1)	3.139 (2)	165 (2)
Summatry and (i) y	1 1 1 7			

Symmetry code: (i) x + 1, y, z.

Data collection: *SAINT* (Bruker, 2006); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97*.

The authors would like to thank Dr Hong Su (University of Cape Town) for the data collection and structure refinement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2694).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). *Eur. J. Org. Chem.* pp. 972–980.
- Hargaden, G. C. & Guiry, P. J. (2009). Chem. Rev. 109, 2505-2550.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Scott, J. D. & Williams, R. M. (2002). Chem. Rev. 102, 1669-1730.
- Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o1818 [doi:10.1107/S1600536810022130]

(R)-4-Phenyl-2-[(S)-1,2,3,4-tetrahydroisoquinolin-3-yl]-4,5-dihydro-1,3-oxazole

Sai K. Chakka, Thavendran Govender, Hendrik G. Kruger and Glenn E. M. Maguire

S1. Comment

Heterocyclic rings play roles in a number of key areas of organic and inorganic chemistry. As part of an ongoing study into the asymmetric hydrogen transfer reactions we made a series of ligands (Chakka *et al.*, 2010). The title compound (I) is one such molecule (Fig 1). It combines for the first time two important heterocyclic rings into a single structure, namely oxazoline (Hargaden *et al.*, 2009) and tetraisoquinoline (TIQ), (Scott *et al.*, 2002). The asymmetric unit cell contains four molecules. There are inter-molecular N(1)—H···N(1) bond interactions (2.212 Å) that hold the structure in two dimensional planes. The intermolecular distance value between ring centroids in the *b* axis direction (5.402 Å), suggests that there is no π -stacking interaction between parallel molecules (Fig 2).

S2. Experimental

A solution of Cbz-protected TIQ–oxazoline (1.0 g, 2.89 mmol) in methanol (30 ml) was added to a suspension of 10 wt. % Pd/C (0.5 g) in methanol (10 ml). The reaction mixture was connected to an H₂ source at atmospheric pressure and stirred at room temperature for 3 h. Completion of the reaction was monitored by TLC using hexane/ethyl acetate (7:3) with the R_f = 0.6. The Pd/C was filtered off over a celite pad and the filtrate was concentrated under reduced pressure to afford crude (**I**). The title compound was purified on a deactivated silica gel column packed with a suspension of silica gel in 20% Et₃N/CH₂Cl₂. The silica was washed with 1% Et₃N/CH₂Cl₂. The chromatography was then performed using 0– 2% MeOH/1%Et₃N/CH₂Cl₂ as the eluent to afford TIQ-oxazoline product. *M*.p: 304 – 306 K.

¹H NMR (400 MHz, CDCl₃): δ 7.37–7.23 (m, 3H), 7.23–7.10 (m, 5H), 7.05 (m, 1H), 5.23 (t, *J* = 18.21 Hz, 1H), 4.68 (q, *J* = 10.10, 8.26 Hz, 1H), 4.16 (m, 3H), 3.92 (m, 1H), 3.10–3.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 168.9, 142.0, 135.0, 133.3, 129.2, 128.7, 127.6, 126.5, 126.2, 126.1, 126.0, 69.4, 51.5, 47.6, 32.4.

IR (neat): 3225, 1663, 1493, 1108, 957, 907, 916, 740, 749, 697 cm⁻¹.

HR ESI MS: 279.1492 $[M + H]^+$ (calcd. for C₁₈H₁₉N₂O 279.1512).

S3. Refinement

All hydrogen atoms, except H1N on N1, were positioned geometrically with C—H = 0.95 - 1.00 Å and refined as riding on their parent atoms with U_{iso} (H) = 1.2 - 1.5 U_{eq} (C). The hydrogen atoms H1N were located in the difference electron density maps and refined with simple bond length constraint.

Figure 1

Molecular structure of (I) showing numbering scheme. All non-hydrogen atoms are shown as ellipsoids with probability level of 50%.

Figure 2

Projection viewed along [010]. All hydrogen atoms except the hydrogen H1N on N1 are omitted. The hydrogen bonds are shown as dotted lines.

(R)-4-Phenyl-2-[(S)-1,2,3,4-tetrahydroisoquinolin-3-yl]-4,5- dihydro-1,3-oxazole

Crystal data	
$C_{18}H_{18}N_{2}O$ $M_{r} = 278.34$ Orthorhombic, $P2_{1}2_{1}2_{1}$ Hall symbol: P 2ac 2ab $a = 5.4023 (3) \text{ Å}$ $b = 10.0999 (6) \text{ Å}$ $c = 26.2205 (17) \text{ Å}$ $V = 1430.66 (15) \text{ Å}^{3}$ $Z = 4$	F(000) = 592 $D_x = 1.292 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 6634 reflections $\theta = 4.7-69.2^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 173 K Needle, colourless $0.22 \times 0.21 \times 0.10 \text{ mm}$
Data collection	
Bruker Kappa DUO APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: n/a pixels mm ⁻¹ $0.5^{\circ} \varphi$ scans and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1997) $T_{min} = 0.682$, $T_{max} = 0.753$ 6634 measured reflections 1552 independent reflections 1479 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$

$\theta_{\text{max}} = 69.2^{\circ}, \ \theta_{\text{min}} = 4.7^{\circ}$	$k = -11 \rightarrow 12$
$h = -6 \rightarrow 6$	$l = -15 \rightarrow 30$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of independent
$wR(F^2) = 0.076$	and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0436P)^2 + 0.1838P]$
1552 reflections	where $P = (F_o^2 + 2F_c^2)/3$
195 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
1 restraint	$\Delta ho_{ m max} = 0.14 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.0039 (5)

Special details

Experimental. Half sphere of data collected using *SAINT* strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of φ and ω scans of 0.5°, 30 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.4184 (2)	0.79986 (13)	0.19408 (5)	0.0306 (3)	
N1	0.5780 (3)	1.06125 (15)	0.15598 (6)	0.0272 (3)	
H1N	0.702 (3)	1.0028 (18)	0.1694 (7)	0.033 (6)*	
N2	0.0533 (3)	0.90911 (15)	0.19216 (6)	0.0285 (4)	
C1	0.6813 (4)	1.15005 (18)	0.11756 (7)	0.0324 (4)	
H1A	0.8214	1.1991	0.1329	0.039*	
H1B	0.5533	1.2157	0.1080	0.039*	
C2	0.7714 (3)	1.08180 (18)	0.06969 (7)	0.0269 (4)	
C3	0.9535 (4)	1.13952 (18)	0.03901 (7)	0.0322 (4)	
H3	1.0184	1.2238	0.0480	0.039*	
C4	1.0408 (4)	1.0762 (2)	-0.00419 (7)	0.0363 (5)	
H4	1.1656	1.1162	-0.0245	0.044*	
C5	0.9444 (4)	0.9538 (2)	-0.01748 (7)	0.0382 (5)	
H5	1.0025	0.9096	-0.0471	0.046*	
C6	0.7634 (4)	0.89605 (19)	0.01249 (7)	0.0356 (5)	
H6	0.6978	0.8123	0.0031	0.043*	
C7	0.6755 (4)	0.95876 (18)	0.05633 (7)	0.0285 (4)	
C8	0.4854 (4)	0.89025 (19)	0.08944 (7)	0.0350 (5)	
H8A	0.5606	0.8097	0.1043	0.042*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H8B	0.3448	0.8621	0.0678	0.042*
С9	0.3869 (3)	0.97793 (18)	0.13282 (7)	0.0272 (4)
Н9	0.2567	1.0374	0.1183	0.033*
C10	0.2691 (3)	0.89535 (18)	0.17416 (7)	0.0260 (4)
C11	0.2612 (3)	0.72424 (17)	0.22836 (7)	0.0279 (4)
H11A	0.3444	0.7089	0.2615	0.033*
H11B	0.2159	0.6378	0.2132	0.033*
C12	0.0312 (3)	0.81315 (17)	0.23493 (7)	0.0258 (4)
H12	-0.1226	0.7592	0.2308	0.031*
C13	0.0251 (3)	0.88531 (17)	0.28547 (6)	0.0247 (4)
C14	-0.1619 (3)	0.86228 (18)	0.32043 (7)	0.0288 (4)
H14	-0.2902	0.8014	0.3124	0.035*
C15	-0.1639 (4)	0.92738 (19)	0.36719 (7)	0.0327 (4)
H15	-0.2932	0.9106	0.3909	0.039*
C16	0.0209 (4)	1.01606 (19)	0.37932 (7)	0.0329 (4)
H16	0.0188	1.0608	0.4112	0.040*
C17	0.2105 (4)	1.03964 (19)	0.34458 (7)	0.0330 (4)
H17	0.3394	1.0999	0.3528	0.040*
C18	0.2114 (3)	0.97527 (18)	0.29802 (7)	0.0290 (4)
H18	0.3403	0.9925	0.2743	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0268 (6)	0.0313 (6)	0.0336 (7)	0.0056 (6)	0.0025 (5)	0.0064 (5)
N1	0.0279 (7)	0.0272 (7)	0.0267 (7)	0.0012 (7)	0.0002 (6)	-0.0021 (6)
N2	0.0249 (7)	0.0349 (8)	0.0257 (7)	0.0035 (7)	-0.0025 (6)	0.0027 (7)
C1	0.0363 (11)	0.0260 (8)	0.0349 (10)	-0.0015 (8)	0.0026 (8)	-0.0034 (8)
C2	0.0281 (9)	0.0266 (8)	0.0260 (8)	0.0031 (8)	-0.0035 (7)	0.0029 (7)
C3	0.0335 (10)	0.0292 (9)	0.0338 (10)	-0.0020 (8)	-0.0014 (8)	0.0045 (8)
C4	0.0385 (10)	0.0396 (10)	0.0309 (9)	0.0013 (10)	0.0044 (8)	0.0087 (8)
C5	0.0493 (12)	0.0387 (10)	0.0267 (9)	0.0046 (10)	0.0070 (9)	0.0009 (8)
C6	0.0488 (12)	0.0302 (9)	0.0279 (9)	-0.0025 (9)	0.0006 (8)	-0.0024 (7)
C7	0.0326 (9)	0.0291 (9)	0.0237 (8)	0.0016 (8)	-0.0018 (7)	0.0029 (7)
C8	0.0437 (12)	0.0335 (9)	0.0277 (9)	-0.0099 (9)	0.0030 (8)	-0.0035 (8)
C9	0.0253 (9)	0.0310 (9)	0.0252 (9)	0.0017 (8)	-0.0027 (7)	0.0016 (7)
C10	0.0260 (9)	0.0272 (8)	0.0247 (8)	0.0024 (8)	-0.0050 (7)	-0.0001 (7)
C11	0.0297 (9)	0.0262 (8)	0.0278 (9)	0.0022 (8)	0.0005 (7)	0.0006 (7)
C12	0.0227 (8)	0.0284 (8)	0.0262 (8)	0.0007 (7)	-0.0006 (7)	-0.0002 (8)
C13	0.0232 (8)	0.0245 (8)	0.0264 (8)	0.0045 (7)	-0.0024 (7)	0.0029 (7)
C14	0.0254 (9)	0.0281 (9)	0.0329 (10)	-0.0005 (8)	0.0017 (8)	0.0027 (7)
C15	0.0311 (10)	0.0358 (10)	0.0313 (9)	0.0013 (9)	0.0059 (8)	0.0021 (8)
C16	0.0360 (11)	0.0361 (9)	0.0267 (8)	0.0044 (9)	-0.0025 (8)	-0.0049 (8)
C17	0.0320 (9)	0.0301 (9)	0.0368 (10)	-0.0044 (8)	-0.0050 (8)	-0.0035 (8)
C18	0.0244 (9)	0.0310 (9)	0.0316 (9)	-0.0010 (8)	0.0011 (7)	0.0030 (8)

Geometric parameters (Å, °)

01—C10	1.362 (2)	C8—C9	1.537 (2)	_
01—C11	1.454 (2)	C8—H8A	0.9900	
N1—C1	1.460 (2)	C8—H8B	0.9900	
N1—C9	1.464 (2)	C9—C10	1.508 (2)	
N1—H1N	0.960 (10)	С9—Н9	1.0000	
N2—C10	1.265 (2)	C11—C12	1.542 (3)	
N2—C12	1.487 (2)	C11—H11A	0.9900	
C1—C2	1.513 (2)	C11—H11B	0.9900	
C1—H1A	0.9900	C12—C13	1.513 (2)	
C1—H1B	0.9900	C12—H12	1.0000	
С2—С7	1.391 (3)	C13—C14	1.384 (2)	
C2—C3	1.398 (3)	C13—C18	1.395 (3)	
C3—C4	1.384 (3)	C14—C15	1.391 (3)	
С3—Н3	0.9500	C14—H14	0.9500	
C4—C5	1.386 (3)	C15—C16	1.378 (3)	
C4—H4	0.9500	C15—H15	0.9500	
C5—C6	1.383 (3)	C16—C17	1.391 (3)	
С5—Н5	0.9500	C16—H16	0.9500	
C6—C7	1.396 (3)	C17—C18	1.383 (3)	
С6—Н6	0.9500	C17—H17	0.9500	
C7—C8	1.512 (3)	C18—H18	0.9500	
C10 O1 C11	105 26 (13)	C10 C9 C8	111.06 (15)	
$C1_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1$	109.66 (14)	N1 - C9 - H9	108.0	
C1 - N1 - CJ	109.00(14) 111.3(13)	C10 - C9 - H9	108.0	
C_{1} N_{1} H_{1} N_{1}	111.3(13) 106.9(13)	C8 - C9 - H9	108.0	
$C_{10} N_{2} C_{12}$	106.9(13) 106.47(15)	N_{2} C_{10} O_{1}	118 72 (17)	
N1 - C1 - C2	114 56 (14)	$N_2 - C_{10} - C_{9}$	126 58 (17)	
N1-C1-H1A	108.6	01 - C10 - C9	114 67 (15)	
$C^2 - C^1 - H^1 A$	108.6	01 - C11 - C12	103 52 (14)	
N1—C1—H1B	108.6	01 - C11 - H11A	111.1	
C^2 — C^1 — H^1B	108.6	C12-C11-H11A	111.1	
H_{1A} $-C_{1}$ H_{1B}	107.6	01-C11-H11B	111.1	
C7 - C2 - C3	119 32 (17)	C12-C11-H11B	111.1	
C7 - C2 - C1	119.32 (17)	H11A—C11—H11B	109.0	
$C_{3} - C_{2} - C_{1}$	120.92 (17)	N2-C12-C13	110 39 (13)	
$C_{4} - C_{3} - C_{2}$	120.92(17) 121.21(18)	$N_2 - C_{12} - C_{11}$	103 33 (14)	
C4—C3—H3	119.4	C_{13} C_{12} C_{11}	113 32 (14)	
C2-C3-H3	119.1	$N^2 - C^{12} - H^{12}$	109.9	
C_{3} C_{4} C_{5}	119.33 (19)	C_{13} C_{12} H_{12}	109.9	
C3—C4—H4	120.3	$C_{11} - C_{12} - H_{12}$	109.9	
C5—C4—H4	120.3	C_{14} C_{13} C_{18}	118.68 (17)	
C6—C5—C4	119.93 (19)	C14-C13-C12	121.02 (16)	
С6—С5—Н5	120.0	C18-C13-C12	120.29 (15)	
C4—C5—H5	120.0	C_{13} C_{14} C_{15}	120.66 (17)	
C5—C6—C7	121.13 (19)	C13—C14—H14	119.7	

С5—С6—Н6	119.4	C15—C14—H14	119.7
С7—С6—Н6	119.4	C16—C15—C14	120.32 (18)
C2—C7—C6	119.08 (18)	C16—C15—H15	119.8
C2—C7—C8	121.13 (16)	C14—C15—H15	119.8
C6—C7—C8	119.76 (17)	C15—C16—C17	119.57 (17)
C7—C8—C9	113.36 (15)	C15—C16—H16	120.2
С7—С8—Н8А	108.9	C17—C16—H16	120.2
С9—С8—Н8А	108.9	C18—C17—C16	119.98 (18)
С7—С8—Н8В	108.9	С18—С17—Н17	120.0
С9—С8—Н8В	108.9	С16—С17—Н17	120.0
H8A—C8—H8B	107.7	C17—C18—C13	120.78 (17)
N1—C9—C10	108.50 (14)	C17—C18—H18	119.6
N1—C9—C8	113.21 (15)	C13—C18—H18	119.6
C9—N1—C1—C2	-52.7 (2)	C11—O1—C10—C9	-173.78 (14)
N1—C1—C2—C7	23.6 (3)	N1—C9—C10—N2	108.6 (2)
N1—C1—C2—C3	-155.27 (17)	C8—C9—C10—N2	-126.4 (2)
C7—C2—C3—C4	-0.4 (3)	N1—C9—C10—O1	-69.47 (19)
C1—C2—C3—C4	178.49 (18)	C8—C9—C10—O1	55.6 (2)
C2—C3—C4—C5	0.5 (3)	C10-01-C11-C12	-14.48 (17)
C3—C4—C5—C6	-0.3 (3)	C10—N2—C12—C13	109.57 (16)
C4—C5—C6—C7	-0.2 (3)	C10—N2—C12—C11	-11.91 (18)
C3—C2—C7—C6	-0.1 (3)	O1-C11-C12-N2	15.96 (17)
C1—C2—C7—C6	-178.97 (17)	O1—C11—C12—C13	-103.52 (16)
C3—C2—C7—C8	177.66 (17)	N2-C12-C13-C14	127.42 (17)
C1—C2—C7—C8	-1.2 (3)	C11—C12—C13—C14	-117.22 (18)
C5—C6—C7—C2	0.4 (3)	N2-C12-C13-C18	-53.6 (2)
C5—C6—C7—C8	-177.41 (18)	C11—C12—C13—C18	61.8 (2)
C2—C7—C8—C9	8.5 (3)	C18—C13—C14—C15	-0.1 (3)
C6—C7—C8—C9	-173.72 (17)	C12—C13—C14—C15	178.90 (16)
C1—N1—C9—C10	-175.40 (15)	C13—C14—C15—C16	0.1 (3)
C1—N1—C9—C8	60.83 (19)	C14—C15—C16—C17	-0.3 (3)
C7—C8—C9—N1	-38.5 (2)	C15—C16—C17—C18	0.7 (3)
C7—C8—C9—C10	-160.89 (15)	C16—C17—C18—C13	-0.7 (3)
C12—N2—C10—O1	3.0 (2)	C14—C13—C18—C17	0.4 (3)
C12—N2—C10—C9	-174.98 (16)	C12—C13—C18—C17	-178.58 (17)
C11—O1—C10—N2	8.0 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> ···N2 ⁱ	0.96 (1)	2.20 (1)	3.139 (2)	165 (2)

Symmetry code: (i) x+1, y, z.