organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-[(2,7-Dibromofluorene-9,9-diyl)dimethylene]dipyridinium bis(perchlorate)

Zongwei Xuan,^a* Shanshan Zhao,^b Lude Lu,^a Xin Wang^a and Xujie Yang^a

^aMaterials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China, and ^bNew Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao Shandong 266042, People's Republic of China Correspondence e-mail: zhaopusu@163.com, xzwqd@163.com

Received 13 May 2010; accepted 8 June 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.103; data-to-parameter ratio = 16.5.

In the crystal of the title compound, $C_{25}H_{20}Br_2N_2^{2+}\cdot 2ClO_4^{-}$, intermolecular N-H···O and C-H···O hydrogen bonds, along with C-H··· π interactions, stabilize the crystal structure.

Related literature

A variety of ligands of different molecular dimensions and functional properties have been utilized in the preparation of numerous supramolecular assemblies with exotic architectures, see: Applegarth *et al.*, (2005). For related structures, see: Meerssche *et al.* (1979, 1980).

b = 11.267 (2) Å

c = 16.318 (3) Å

V = 2542.6 (11) Å³

 $\beta = 117.60 \ (3)^{\circ}$

Experimental

Crystal data

$C_{25}H_{20}Br_2N_2^{2+}\cdot 2ClO_4^{-}$	
$M_r = 707.15$	
Monoclinic, $C2/c$	
a = 15.605 (3) Å	

Z = 4Mo $K\alpha$ radiation $\mu = 3.45 \text{ mm}^{-1}$

Data collection

```
Enraf-Nonius CAD-4
diffractometer
Absorption correction: \psi scan
(North et al., 1968)
T_{\min} = 0.441, T_{\max} = 0.537
11835 measured reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.103$ S = 1.062915 reflections $R_{\rm int} = 0.062$ 3 standard reflections every 100 reflections

intensity decay: none

2915 independent reflections

2611 reflections with $I > 2\sigma(I)$

T = 295 K

 $0.25 \times 0.20 \times 0.18 \; \mathrm{mm}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg3 is the centroid of the C1-C6 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O3$	0.86	2.24	2.997 (3)	148
C11−H11A···O1	0.93	2.57	3.196 (3)	125
$C12 - H12A \cdots O4^{i}$	0.93	2.44	3.193 (3)	138
$C13-H13A\cdotsO1^{ii}$	0.93	2.47	3.376 (3)	164
$C10-H10A\cdots Cg3$	0.93	2.93	3.688 (2)	140

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) x, -y + 1, $z + \frac{1}{2}$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors would like to thank the Natural Science Foundation of Shandong Province (No. Y2007B14).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2685).

References

- Applegarth, L., Goetra, A. E. & Steed, J. W. (2005). Chem. Commun. 18, 2405– 2406.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
 Meerssche, M., Germain, G., Declercq, J. P. & Touillaux, R. (1979). Cryst.
- Struct. Commun. 8, 119–122.
 Meerssche, M., Germain, G., Declercq, J. P., Touillaux, R., Roberfroid, M. &
- Razzouk, C. (1980). Cryst. Struct. Commun. 9, 515–518.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o1718 [doi:10.1107/S1600536810021859]

4,4'-[(2,7-Dibromofluorene-9,9-diyl)dimethylene]dipyridinium bis(perchlorate)

Zongwei Xuan, Shanshan Zhao, Lude Lu, Xin Wang and Xujie Yang

S1. Comment

A variety of ligands of different molecular dimensions and functional properties were utilized for the preparation of numerous supramolecular assemblies of exotic architectures as reported in the recent literature (Applegarth *et al.*, 2005). Herein, we report a new bipyridine derivative of 2,7-dibromo-9,9-(4-pyridyl-methyl) fluorene [DBPMF]. scheme I

The structure of the title compound contains a protonated 2,7-dibromo-9,9-bis(4-pyridinium-methyl) fluorene dications $DBPMFH_2^{2+}$ and two perchlorate anions ClO_4^- . All the bond lengths and bond angles in the phenyl ring and fivemembered ring are corresponding with those observed in 2-acetylaminofluorene (Meerssche *et al.*, 1980) and 4-acetylamino-fluorene (Meerssche *et al.*, 1979). Two bromine atoms along with the thirteen atoms of fluorenyl ring are coplanar (P1) and the biggest deviation is 0.038Å for C6 atom. The dihedral angle between the plane P1 and the pyridyl ring containing N1 atom is 72.11 (2)°.

In the crystal lattice, there are four types of supramolecular interactions (Table 1), including N—H···O hydrogen bonds, C—H···O potential hydrogen bonds, C—H··· π supramolecular interaction and π - π stacking interactions. Among these supramolecular interactions, the two types N—H···O hydrogen bonds link two DBPMFH₂²⁺ cations with two ClO₄⁻ anions to construct one-dimensional chains, then the other supramolecular interactions help the 1D chains to form three-dimensional net-works, which stabilize the crystal structure.

S2. Experimental

DBPMF was synthesized by the reaction of 2,7-dibromofluorene (3.24 g, 0.01 mol) and 4-chloromethyl pyridine hydrochloride (1.64 g, 0.02 mol) in DMSO (70 ml). The title compound was obtained by the reaction of DBPMF (2.55 g, 5.0 mmol) and HClO₄ (0.26 ml, 5.0 mmol) in EtOH (50 ml). Single crystals suitable for x-ray measurements were obtained by recrystallization at room temperature.

S3. Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.93-0.97 Å, N—H distance=0.86Å and with U_{iso} =1.2-1.5U_{eq}.

Figure 1

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

4,4'-[(2,7-Dibromofluorene-9,9-diyl)dimethylene]dipyridinium bis(perchlorate)

Crystal data

 $C_{25}H_{20}Br_{2}N_{2}^{2+}.2ClO_{4}^{-}$ $M_{r} = 707.15$ Monoclinic, C2/c Hall symbol: -C 2yc a = 15.605 (3) Å b = 11.267 (2) Å c = 16.318 (3) Å $\beta = 117.60$ (3)° V = 2542.6 (11) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.441, T_{\max} = 0.537$ 11835 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.103$ S = 1.062915 reflections 177 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1408 $D_x = 1.847 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 25 reflections $\theta = 4-14^{\circ}$ $\mu = 3.45 \text{ mm}^{-1}$ T = 295 KBlock, yellow $0.25 \times 0.20 \times 0.18 \text{ mm}$

2915 independent reflections 2611 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -20 \rightarrow 20$ $k = -14 \rightarrow 14$ $l = -21 \rightarrow 21$ 3 standard reflections every 100 reflections intensity decay: none

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0681P)^2 + 0.5103P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.01$ e Å⁻³ $\Delta\rho_{min} = -0.79$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	-0.201221 (15)	0.319251 (18)	-0.114789 (15)	0.01844 (12)
N1	0.33006 (13)	0.39368 (16)	0.24329 (14)	0.0178 (4)
H1A	0.3819	0.3707	0.2418	0.021*
C1	-0.13197 (15)	0.2901 (2)	0.01439 (16)	0.0153 (4)
C2	-0.11455 (16)	0.17300 (17)	0.04368 (17)	0.0162 (5)
H2A	-0.1377	0.1115	0.0009	0.019*
C3	-0.06207 (15)	0.14838 (19)	0.13788 (15)	0.0154 (4)
H3A	-0.0500	0.0704	0.1589	0.019*
C4	-0.02836 (14)	0.24228 (18)	0.19940 (15)	0.0140 (4)
C5	-0.04692 (14)	0.36049 (18)	0.16834 (16)	0.0141 (4)
C6	-0.09989 (14)	0.38606 (18)	0.07490 (15)	0.0146 (4)
H6A	-0.1134	0.4638	0.0536	0.017*
C7	0.0000	0.4457 (2)	0.2500	0.0123 (5)
C8	0.07543 (14)	0.52981 (17)	0.24235 (15)	0.0136 (4)
H8A	0.0429	0.5737	0.1849	0.016*
H8B	0.0965	0.5870	0.2924	0.016*
C9	0.16421 (14)	0.47237 (18)	0.24518 (15)	0.0133 (4)
C10	0.16000 (15)	0.39694 (18)	0.17545 (15)	0.0157 (4)
H10A	0.1004	0.3722	0.1290	0.019*
C11	0.24415 (15)	0.35912 (19)	0.17540 (16)	0.0175 (4)
H11A	0.2413	0.3098	0.1285	0.021*
C12	0.33797 (15)	0.46320 (19)	0.31370 (16)	0.0183 (4)
H12A	0.3986	0.4841	0.3605	0.022*
C13	0.25553 (15)	0.50303 (18)	0.31584 (15)	0.0152 (4)
H13A	0.2606	0.5505	0.3645	0.018*
C11	0.41022 (4)	0.31707 (4)	0.05644 (4)	0.01488 (15)
O1	0.31184 (11)	0.35890 (17)	0.01812 (12)	0.0258 (4)
O2	0.41264 (16)	0.19359 (15)	0.03767 (15)	0.0321 (5)
O3	0.45717 (12)	0.33505 (14)	0.15648 (12)	0.0213 (4)
O4	0.46088 (12)	0.38494 (16)	0.01772 (12)	0.0286 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02330 (17)	0.01761 (16)	0.01334 (17)	-0.00066 (7)	0.00760 (12)	-0.00009 (7)
N1	0.0150 (8)	0.0174 (9)	0.0236 (10)	0.0018 (7)	0.0112 (8)	0.0021 (8)

supporting information

C1	0.0146 (9)	0.0182 (9)	0.0130 (10)	-0.0009 (8)	0.0064 (8)	0.0001 (9)
C2	0.0211 (11)	0.0122 (10)	0.0171 (12)	-0.0033 (7)	0.0105 (10)	-0.0052 (8)
C3	0.0200 (10)	0.0111 (9)	0.0167 (11)	0.0006 (8)	0.0097 (9)	0.0000 (9)
C4	0.0152 (9)	0.0124 (9)	0.0165 (11)	0.0002 (7)	0.0090 (8)	0.0018 (8)
C5	0.0144 (9)	0.0106 (9)	0.0196 (11)	-0.0009 (7)	0.0097 (8)	-0.0020 (9)
C6	0.0158 (9)	0.0119 (9)	0.0171 (10)	-0.0002 (7)	0.0086 (8)	0.0008 (8)
C7	0.0125 (12)	0.0115 (13)	0.0135 (14)	0.000	0.0064 (11)	0.000
C8	0.0160 (9)	0.0095 (8)	0.0167 (10)	-0.0007 (7)	0.0088 (8)	0.0001 (8)
C9	0.0162 (9)	0.0108 (9)	0.0152 (10)	-0.0005 (7)	0.0091 (8)	0.0032 (8)
C10	0.0165 (9)	0.0158 (10)	0.0154 (10)	-0.0007 (8)	0.0079 (8)	0.0000 (8)
C11	0.0207 (10)	0.0148 (10)	0.0201 (12)	0.0005 (8)	0.0121 (9)	0.0000 (9)
C12	0.0153 (9)	0.0183 (10)	0.0184 (11)	-0.0014 (8)	0.0054 (8)	0.0019 (9)
C13	0.0181 (10)	0.0134 (9)	0.0135 (10)	-0.0010 (8)	0.0068 (8)	0.0017 (8)
Cl1	0.0145 (3)	0.0161 (3)	0.0132 (3)	-0.00181 (16)	0.0057 (2)	-0.00099 (17)
01	0.0162 (8)	0.0345 (9)	0.0247 (9)	0.0037 (7)	0.0077 (7)	0.0074 (8)
O2	0.0390 (10)	0.0178 (9)	0.0283 (11)	-0.0006 (7)	0.0061 (9)	-0.0061 (7)
O3	0.0210 (8)	0.0273 (8)	0.0128 (8)	-0.0003 (6)	0.0055 (7)	-0.0034 (7)
O4	0.0253 (8)	0.0390 (10)	0.0264 (9)	-0.0070 (7)	0.0161 (7)	0.0037 (8)

Geometric parameters (Å, °)

Br1—C1	1.900 (2)	С7—С8	1.561 (2)
N1-C11	1.342 (3)	C8—C9	1.510 (3)
N1-C12	1.348 (3)	C8—H8A	0.9700
N1—H1A	0.8600	C8—H8B	0.9700
C1—C2	1.387 (3)	C9—C10	1.397 (3)
C1—C6	1.392 (3)	C9—C13	1.399 (3)
C2—C3	1.394 (3)	C10-C11	1.381 (3)
C2—H2A	0.9300	C10—H10A	0.9300
C3—C4	1.384 (3)	C11—H11A	0.9300
С3—НЗА	0.9300	C12—C13	1.378 (3)
C4—C5	1.407 (3)	C12—H12A	0.9300
C4—C4 ⁱ	1.468 (4)	C13—H13A	0.9300
C5—C6	1.387 (3)	Cl1—O2	1.4289 (18)
С5—С7	1.526 (3)	Cl1—O4	1.4395 (17)
С6—Н6А	0.9300	Cl1—O1	1.4423 (16)
C7—C5 ⁱ	1.526 (3)	Cl1—O3	1.4609 (19)
C7—C8 ⁱ	1.561 (2)		
C11—N1—C12	122.30 (19)	C9—C8—C7	116.89 (17)
C11—N1—H1A	118.9	C9—C8—H8A	108.1
C12—N1—H1A	118.9	C7—C8—H8A	108.1
C2C1C6	123.1 (2)	C9—C8—H8B	108.1
C2-C1-Br1	117.84 (18)	C7—C8—H8B	108.1
C6C1Br1	119.06 (17)	H8A—C8—H8B	107.3
C1—C2—C3	119.4 (2)	C10—C9—C13	117.85 (19)
C1—C2—H2A	120.3	C10—C9—C8	122.64 (18)
С3—С2—Н2А	120.3	C13—C9—C8	119.28 (19)

C4—C3—C2	118.7 (2)	C11—C10—C9	120.1 (2)
С4—С3—Н3А	120.7	C11—C10—H10A	119.9
С2—С3—Н3А	120.7	C9—C10—H10A	119.9
C3—C4—C5	121.1 (2)	N1-C11-C10	119.8 (2)
C3-C4-C4 ⁱ	130.12 (13)	N1—C11—H11A	120.1
$C5-C4-C4^{i}$	108.75 (13)	C10-C11-H11A	120.1
C6—C5—C4	120.7 (2)	N1—C12—C13	119.5 (2)
C6—C5—C7	129.05 (19)	N1—C12—H12A	120.2
C4—C5—C7	110.21 (19)	C13—C12—H12A	120.2
C5—C6—C1	117.00 (19)	C12—C13—C9	120.3 (2)
С5—С6—Н6А	121.5	С12—С13—Н13А	119.8
С1—С6—Н6А	121.5	С9—С13—Н13А	119.8
C5C7C5 ⁱ	102.1 (2)	O2—Cl1—O4	110.40 (13)
C5C7C8 ⁱ	112.17 (11)	O2—C11—O1	110.72 (12)
$C5^{i}$ — $C7$ — $C8^{i}$	112.75 (11)	O4—C11—O1	109.07 (11)
C5—C7—C8	112.75 (11)	O2—C11—O3	108.98 (11)
C5 ⁱ —C7—C8	112.17 (11)	O4—C11—O3	108.89 (10)
C8 ⁱ —C7—C8	105.2 (2)	O1—Cl1—O3	108.74 (11)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1A····O3	0.86	2.24	2.997 (3)	148
C11—H11A…O1	0.93	2.57	3.196 (3)	125
C12—H12A····O4 ⁱⁱ	0.93	2.44	3.193 (3)	138
C13—H13A…O1 ⁱⁱⁱ	0.93	2.47	3.376 (3)	164
C10—H10 <i>A</i> ··· <i>Cg</i> 3	0.93	2.93	3.688 (2)	140

Symmetry codes: (ii) -*x*+1, *y*, -*z*+1/2; (iii) *x*, -*y*+1, *z*+1/2.