

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2,6-bis[(5-bromo-4,6-dimethoxypyrimidin-2-yl)oxy]benzoate

Hoong-Kun Fun,^a*‡ Jia Hao Goh,^a§ Sankappa Rai,^b Arun M. Isloor^c and Prakash Shetty^d

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, ^bDepartment of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104, India, ^cOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and ^dDepartment of Printing, Manipal Institute of Technology, Manipal University, Manipal 576 104, India Correspondence e-mail: hkfun@usm.my

Received 23 June 2010; accepted 24 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.064; wR factor = 0.254; data-to-parameter ratio = 27.6.

In the title compound, $C_{20}H_{18}Br_2N_4O_8$, the interplanar angle of the pyrimidine rings is 75.1 $(2)^{\circ}$. The central benzene ring is inclined at interplanar angles of 66.5 (2) and 71.9 (2) $^{\circ}$ with respect to the two pyrimidine rings. In the crystal structure, adjacent molecules are connected into two-molecule-thick arrays parallel to the *bc* plane *via* short $Br \cdots Br$ [3.5328 (12) Å] and Br···O [3.206 (3) and 3.301 (4) Å] interactions. A weak intermolecular π - π aromatic stacking interaction [centroid–centroid distance = 3.526(3)Å] is also observed.

Related literature

For general background to and applications of the title compound, see: Koichiro et al. (1988); He et al. (2007); Li et al. (2006); Gerorge (1983). For closely related structures, see: Fun et al. (2010); Li & Luo (2006).

organic compounds

Experimental

Crystal data

$C_{20}H_{18}Br_2N_4O_8$	
$M_r = 602.20$	
Monoclinic, C2/c	
a = 29.972 (5) Å	
b = 8.1392 (12) Å	
c = 23.061 (3) Å	
$\beta = 123.120 \ (3)^{\circ}$	

Data collection

Bruker APEXII DUO CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.549, \ T_{\max} = 0.640$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.254$ S = 1.028438 reflections

 $V = 4711.8 (12) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 3.49 \text{ mm}^{-1}$ T = 293 K $0.20 \times 0.18 \times 0.14~\mathrm{mm}$

25204 measured reflections 8438 independent reflections 4458 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.066$

306 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 1.32 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -1.56$ e Å⁻³

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/ PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship. AMI is grateful to the Head of the Chemistry Department and the Director, National Institute of Technology-Karnataka for their encouragement. AMI also thanks USM for a partially sponsored research visit to the X-ray Crystallography Unit, School of Physics, USM.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5519).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Goh, J. H., Rai, S., Isloor, A. M. & Shetty, P. (2010). Acta Cryst. E66. ci5115.
- Gerorge, L. (1983). US Patent No. 4 394 506.
- He, Y.-Z., Li, Y.-X., Zhu, X.-L., Xi, Z., Niu, C., Wan, J., Zhang, L. & Yang, G.-F. (2007). J. Chem. Inf. Model. 47, 2335-2344.
- Koichiro, S., Shoji, K., Yasubumi, T., Takeshige, M. & Ryo, Y. (1988). Japan Patent 88-132167 (CA112:216956, 1998).
- Li, Y.-X. & Luo, Y.-P. (2006). Acta Cryst. E62, 01323-01325.
- Li, Y.-X., Luo, Y.-P., Xi, Z., Niu, C., He, Y.-Z. & Yang, G.-F. (2006). J. Agric. Food Chem. 54, 9135-9139.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Thomson Reuters ResearcherID: C-7576-2009.

supporting information

Acta Cryst. (2010). E66, o1871 [doi:10.1107/S1600536810024724]

Methyl 2,6-bis[(5-bromo-4,6-dimethoxypyrimidin-2-yl)oxy]benzoate

Hoong-Kun Fun, Jia Hao Goh, Sankappa Rai, Arun M. Isloor and Prakash Shetty

S1. Comment

Methyl-2,6-bis[(5-bromo-4,6-dimethoxypyrimidin-2-yl)oxy]benzoate is a derivative of herbicide showing excellent herbicidal effects on annual and perennial weeds and high-safety crops, especially rice and wheat and is applied to paddy fields, ploughed fields and non-agricultural land (Koichiro *et al.*, 1988). Most sulphonylurea herbicides and all pyrimidinylbenzoate herbicides (He *et al.*, 2007) such as nicofulfuron, amidosulfuron, halopyrazosulfuron, ethoxy-sulfuron, pyriminobac-methyl and pyriftalid, possess 4,6-dimethoxypyrimidin-2-yl groups (Li *et al.*, 2006), while sulfometuron-methyl, a kind of sulfonylurea, contains 4,6-dimethylpyrimidin-2-yl groups, which suggests that the two disubstituted pyrimidin-2-yl groups possess high biological activity (Gerorge, 1983).

In the title compound (Fig. 1), the two pyrimidine rings with atom sequences N1/C1/C2/C3/N2/C4 and C11/N3/C12/C13/C14/N4 are essentially planar, with maximum deviations of -0.028 (6) and 0.010 (5) Å, respectively, at atoms C1 and N4. An interplanar angle of 75.1 (2)° is formed between these two pyrimidine rings. The central phenyl ring (C5-C10) is inclined at interplanar angles of 66.5 (2) and 71.9 (2)°, respectively, with respect to the N1/C1/C2/C3/N2/C4 and C11/N3/C12/C13/C14/N4 pyrimidine rings. The geometric parameters agree well with those observed in closely related structures (Fun *et al.*, 2010; Li & Luo, 2006).

In the crystal structure, no classical hydrogen bond is observed. The interesting features of the crystal structure are the intermolecular short Br···Br [Br1···Br2ⁱ = 3.5328 (12) Å; (i) -x+1/2, y-1/2, -z+1/2] and Br···O [Br1···O8ⁱ = 3.301 (4) and Br2···O1ⁱⁱ = 3.206 (3) Å; (ii) x, -y+2, z+1/2] interactions, which are shorter than the sum of the Van der Waals radii of the relevant atoms, interconnecting adjacent molecules into two-molecule-thick arrays parallel to the *bc* plane. Weak intermolecular π - π aromatic stacking interactions [*Cg*1···*Cg*1ⁱⁱⁱ = 3.526 (3) Å; (iii): -x, y, -z+1/2] involving the C11/N3/C12/C13/C14/N4 pyrimidine ring further stabilize the crystal structure.

S2. Experimental

To a stirred solution of methyl-2,6-dihydroxybenzoate (0.50 g, 0.0026 mol) in acetonitrile (10 ml) was added potassium carbonate (1.00 g, 0.0070 mol) and 5-bromo-4,6-dimethoxy-2-(methylsulfonyl)pyrimidine (1.78 g, 0.0050 mol). The reaction mixture was heated to reflux for 4 h. Mass analysis showed completion of the reaction. The reaction mixture was filtered and filtrate was concentrated. The residue was recrystallized using dichloromethane to obtain brown blocks of (I) (Yield: 67 %, *M.p.* 440–443 K).

S3. Refinement

All H atoms were placed in their calculated positions, with C—H = 0.93 - 0.96 Å, and refined using a riding model with $U_{iso} = 1.2$ or 1.5 $U_{eq}(C)$. The rotating group model was used for the methyl groups.

The molecular structure of (I), showing 20 % probability displacement ellipsoids for non-H atoms.

Figure 2

The crystal structure of (I), viewed along the b axis, showing two-molecule-wide arrays parallel to the bc plane. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Methyl 2,6-bis[(5-bromo-4,6-dimethoxypyrimidin-2-yl)oxy]benzoate

Crystal data	
$C_{20}H_{18}Br_2N_4O_8$	$V = 4711.8 (12) Å^3$
$M_r = 602.20$	Z = 8
Monoclinic, C2/c	F(000) = 2400
Hall symbol: -C 2yc	$D_{\rm x} = 1.698 {\rm ~Mg} {\rm ~m}^{-3}$
a = 29.972 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 8.1392 (12) Å	Cell parameters from 2909 reflections
c = 23.061 (3) Å	$\theta = 2.7 - 25.5^{\circ}$
$\beta = 123.120 \ (3)^{\circ}$	$\mu = 3.49 \text{ mm}^{-1}$

T = 293 KBlock, brown

Data collection

Bruker APEXII DUO CCD diffractometer	25204 measured reflections 8438 independent reflections
Radiation source: fine-focus sealed tube	4458 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.066$
φ and ω scans	$\theta_{\text{max}} = 32.5^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -45 \rightarrow 45$
(SADABS; Bruker, 2009)	$k = -12 \rightarrow 12$
$T_{\min} = 0.549, \ T_{\max} = 0.640$	$l = -34 \rightarrow 34$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.064$	Hydrogen site location: inferred from
$wR(F^2) = 0.254$	neighbouring sites
S = 1.02	H-atom parameters constrained

 $0.20 \times 0.18 \times 0.14 \text{ mm}$

S = 1.02	H-atom parameters constrained
8438 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1449P)^2]$
306 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.32 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.56 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.30639 (2)	0.57188 (7)	0.09822 (4)	0.0594 (2)	
Br2	0.08330 (2)	0.91910 (6)	0.40182 (3)	0.04252 (17)	
01	0.11548 (12)	0.9112 (3)	0.04513 (18)	0.0337 (7)	
O2	0.05069 (15)	0.5753 (3)	0.15875 (19)	0.0372 (7)	
03	0.28301 (15)	0.9322 (4)	0.0904 (3)	0.0563 (11)	
O4	0.20456 (14)	0.4280 (4)	0.0769 (2)	0.0459 (9)	
05	0.16295 (15)	0.8884 (5)	0.1855 (2)	0.0568 (10)	
06	0.16019 (17)	0.6258 (6)	0.2086 (3)	0.0729 (14)	
07	0.07542 (16)	0.5580 (4)	0.3707 (2)	0.0422 (8)	
08	0.06803 (15)	1.0608 (4)	0.27029 (19)	0.0409 (8)	
N1	0.19889 (16)	0.9262 (4)	0.0691 (2)	0.0377 (9)	
N2	0.15798 (13)	0.6659 (4)	0.0595 (2)	0.0324 (8)	
N3	0.06285 (16)	0.5635 (4)	0.2625 (2)	0.0334 (8)	
N4	0.05992 (14)	0.8206 (4)	0.21251 (19)	0.0320 (7)	

C1	0.24118 (18)	0.8474 (6)	0.0787 (3)	0.0378 (10)
C2	0.24567 (18)	0.6781 (6)	0.0836 (3)	0.0389 (10)
C3	0.20209 (17)	0.5919 (5)	0.0728 (3)	0.0352 (9)
C4	0.15971 (16)	0.8269 (5)	0.0587 (2)	0.0311 (9)
C5	0.07637 (16)	0.8238 (5)	0.0466 (2)	0.0314 (9)
C6	0.02573 (18)	0.8241 (6)	-0.0133 (3)	0.0410 (11)
H6A	0.0198	0.8777	-0.0526	0.049*
C7	-0.01538 (19)	0.7465 (6)	-0.0153 (3)	0.0472 (12)
H7A	-0.0494	0.7494	-0.0554	0.057*
C8	-0.00662 (19)	0.6642 (6)	0.0420 (3)	0.0410 (11)
H8A	-0.0343	0.6082	0.0405	0.049*
C9	0.04382 (18)	0.6656 (5)	0.1021 (2)	0.0337 (9)
C10	0.08581 (17)	0.7468 (5)	0.1067 (2)	0.0314 (8)
C11	0.05805 (17)	0.6583 (5)	0.2136 (2)	0.0310 (8)
C12	0.06957 (17)	0.6433 (5)	0.3175 (2)	0.0315 (8)
C13	0.07150 (16)	0.8121 (5)	0.3220 (2)	0.0318 (9)
C14	0.06590 (16)	0.8963 (5)	0.2677 (2)	0.0300 (8)
C15	0.2797 (3)	1.1092 (7)	0.0878 (5)	0.068 (2)
H15A	0.3105	1.1541	0.0909	0.101*
H15B	0.2780	1.1486	0.1259	0.101*
H15C	0.2482	1.1428	0.0450	0.101*
C16	0.1604 (2)	0.3438 (6)	0.0691 (4)	0.0586 (17)
H16A	0.1653	0.2277	0.0675	0.088*
H16B	0.1285	0.3779	0.0269	0.088*
H16C	0.1575	0.3686	0.1076	0.088*
C17	0.1402 (2)	0.7456 (6)	0.1719 (3)	0.0437 (11)
C18	0.2141 (3)	0.9103 (8)	0.2484 (4)	0.0720 (14)
H18A	0.2214	1.0256	0.2574	0.108*
H18B	0.2409	0.8602	0.2438	0.108*
H18C	0.2141	0.8600	0.2860	0.108*
C19	0.0734 (3)	0.3785 (6)	0.3658 (4)	0.0590 (16)
H19A	0.0695	0.3336	0.4013	0.089*
H19B	0.1057	0.3382	0.3717	0.089*
H19C	0.0436	0.3459	0.3212	0.089*
C20	0.0691 (3)	1.1479 (9)	0.2166 (4)	0.0720 (14)
H20A	0.0732	1.2634	0.2267	0.108*
H20B	0.0364	1.1289	0.1729	0.108*
H20C	0.0985	1.1093	0.2145	0.108*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Brl	0.0381 (3)	0.0527 (3)	0.0907 (5)	0.0122 (2)	0.0374 (3)	0.0068 (3)
Br2	0.0570 (3)	0.0430 (3)	0.0376 (3)	-0.0108 (2)	0.0324 (2)	-0.0123 (2)
01	0.0330 (14)	0.0321 (15)	0.0452 (19)	0.0082 (11)	0.0272 (14)	0.0116 (13)
O2	0.058 (2)	0.0298 (15)	0.0372 (18)	-0.0026 (13)	0.0347 (17)	-0.0028 (13)
O3	0.0390 (18)	0.0438 (19)	0.096 (3)	-0.0040 (14)	0.043 (2)	-0.0001 (19)
O4	0.0391 (17)	0.0321 (16)	0.068 (3)	0.0026 (12)	0.0305 (18)	-0.0035 (16)

supporting information

05	0.048 (2)	0.067 (2)	0.040 (2)	-0.0182 (17)	0.0144 (18)	0.0008 (19)
06	0.057 (2)	0.075 (3)	0.057 (3)	0.013 (2)	0.012 (2)	0.024 (2)
07	0.062 (2)	0.0343 (17)	0.040 (2)	-0.0001 (14)	0.0346 (18)	0.0038 (14)
08	0.056 (2)	0.0282 (15)	0.038 (2)	0.0019 (13)	0.0257 (17)	-0.0022 (14)
N1	0.0375 (19)	0.0338 (19)	0.048 (2)	0.0027 (14)	0.0270 (19)	0.0063 (17)
N2	0.0304 (16)	0.0305 (17)	0.036 (2)	0.0020 (13)	0.0180 (15)	-0.0021 (15)
N3	0.0444 (19)	0.0308 (18)	0.035 (2)	-0.0017 (14)	0.0279 (18)	-0.0015 (15)
N4	0.0391 (18)	0.0312 (17)	0.0285 (19)	0.0000 (14)	0.0202 (16)	0.0004 (15)
C1	0.035 (2)	0.038 (2)	0.042 (3)	0.0017 (17)	0.022 (2)	0.000 (2)
C2	0.035 (2)	0.037 (2)	0.046 (3)	0.0058 (17)	0.023 (2)	-0.001 (2)
C3	0.034 (2)	0.031 (2)	0.040 (3)	0.0046 (15)	0.0196 (19)	0.0021 (18)
C4	0.0302 (18)	0.037 (2)	0.028 (2)	0.0081 (15)	0.0168 (17)	0.0035 (18)
C5	0.0341 (19)	0.035 (2)	0.032 (2)	0.0063 (16)	0.0225 (18)	0.0031 (18)
C6	0.037 (2)	0.052 (3)	0.037 (3)	0.0065 (19)	0.022 (2)	0.011 (2)
C7	0.033 (2)	0.060 (3)	0.040 (3)	0.002 (2)	0.015 (2)	0.000 (2)
C8	0.038 (2)	0.049 (3)	0.038 (3)	-0.0044 (19)	0.022 (2)	-0.006 (2)
C9	0.044 (2)	0.031 (2)	0.036 (2)	0.0029 (16)	0.028 (2)	-0.0070 (18)
C10	0.038 (2)	0.031 (2)	0.029 (2)	0.0024 (16)	0.0204 (18)	-0.0012 (17)
C11	0.039 (2)	0.0274 (19)	0.033 (2)	-0.0021 (15)	0.0233 (19)	-0.0040 (17)
C12	0.0352 (19)	0.035 (2)	0.030 (2)	-0.0022 (16)	0.0214 (18)	0.0028 (18)
C13	0.0311 (18)	0.037 (2)	0.032 (2)	-0.0015 (15)	0.0199 (18)	-0.0054 (18)
C14	0.0306 (18)	0.0305 (19)	0.030 (2)	-0.0004 (14)	0.0169 (17)	-0.0062 (17)
C15	0.065 (4)	0.039 (3)	0.109 (6)	-0.011 (2)	0.055 (4)	-0.006 (3)
C16	0.045 (3)	0.037 (3)	0.093 (5)	-0.001 (2)	0.037 (3)	-0.002 (3)
C17	0.042 (2)	0.055 (3)	0.033 (3)	0.000 (2)	0.020 (2)	-0.004 (2)
C18	0.073 (3)	0.073 (3)	0.053 (3)	-0.018 (2)	0.023 (2)	0.003 (2)
C19	0.104 (5)	0.032 (2)	0.054 (4)	0.000 (3)	0.052 (4)	0.006 (2)
C20	0.073 (3)	0.073 (3)	0.053 (3)	-0.018 (2)	0.023 (2)	0.003 (2)

Geometric parameters (Å, °)

Br1—C2	1.872 (4)	C5—C6	1.386 (7)	
Br2-C13	1.887 (4)	C5—C10	1.401 (6)	
O1—C4	1.368 (5)	C6—C7	1.363 (7)	
O1—C5	1.388 (5)	C6—H6A	0.9300	
O2—C11	1.342 (5)	C7—C8	1.373 (8)	
O2—C9	1.412 (6)	С7—Н7А	0.9300	
O3—C1	1.324 (6)	C8—C9	1.384 (7)	
O3—C15	1.443 (6)	C8—H8A	0.9300	
O4—C3	1.337 (5)	C9—C10	1.374 (6)	
O4—C16	1.411 (6)	C10—C17	1.496 (7)	
O5—C17	1.297 (6)	C12—C13	1.376 (6)	
O5—C18	1.433 (8)	C13—C14	1.356 (6)	
O6—C17	1.213 (7)	C15—H15A	0.9600	
O7—C12	1.336 (5)	C15—H15B	0.9600	
O7—C19	1.464 (6)	C15—H15C	0.9600	
O8—C14	1.341 (5)	C16—H16A	0.9600	
O8—C20	1.442 (8)	C16—H16B	0.9600	

N1	1 327 (6)	C16—H16C	0.9600
N1 C4	1.327 (6)		0.9000
$N_{1} = C_{4}$	1.335 (0)	C18 H18R	0.9000
N2 C3	1.312(0) 1.328(5)		0.9000
$N_2 = C_3$	1.328(3)		0.9000
N3—CII	1.308 (6)	CIQ_HIQA	0.9600
N3-C12	1.339 (0)	С19—Н19В	0.9600
N4—CII	1.323 (5)	C19—H19C	0.9600
N4—C14	1.334 (6)	C20—H20A	0.9600
C1—C2	1.383 (6)	С20—Н20В	0.9600
C2—C3	1.380 (6)	С20—Н20С	0.9600
C4—O1—C5	117.6 (3)	N4—C11—O2	118.2 (4)
C11—O2—C9	118.4 (3)	07—C12—N3	119.6 (4)
C1	118.4 (4)	07-C12-C13	118.1 (4)
$C_{3} - O_{4} - C_{16}$	117.6 (4)	N3-C12-C13	122.3(4)
C17 - 05 - C18	119.2 (5)	C14-C13-C12	1171(4)
C12 - 07 - C19	119.2(0) 118.0(4)	$C14-C13-Br^2$	1221(3)
C12 = 07 = C19	118.0(4) 118.4(5)	$C12 - C13 - Br^2$	122.1(3) 120.8(4)
C1 - N1 - C4	113.4(3)	N4-C14-O8	120.0(4) 118.8(4)
$C_1 = N_1 = C_1$	113.0(4) 114.4(4)	N4 C14 C13	1222(4)
$C_{+} N_{2} C_{-} C_{3}$	114.4(4) 114.7(4)	08 C14 C13	122.2(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114.7(4) 115.3(4)	$O_3 C_{15} H_{15}$	100 5
C1 $C1$ $N1$	110.5(4)	O_{3} C_{15} H_{15R}	109.5
$O_3 = C_1 = C_2$	117.0(4)	U15A C15 H15D	109.5
03-01-02	117.7(4)	Ω_{2}^{2} Ω_{1}^{2} Π_{1}^{2} Π_{1	109.5
NI = CI = C2	122.4(4)		109.5
$C_3 = C_2 = C_1$	110.9 (4)	HISA-CIS-HISC	109.5
$C_3 = C_2 = BrI$	121.9 (3)	HISB-CIS-HISC	109.5
C1 = C2 = Br1	121.1(3)	04— $C16$ — $H16A$	109.5
N2-C3-O4	118.6 (4)	04—C16—H16B	109.5
N2—C3—C2	122.4 (4)	H16A—C16—H16B	109.5
04—C3—C2	119.0 (4)	O4—C16—H16C	109.5
N2-C4-N1	129.8 (4)	H16A—C16—H16C	109.5
N2—C4—O1	117.6 (4)	H16B—C16—H16C	109.5
N1—C4—O1	112.6 (4)	O6—C17—O5	123.8 (5)
C6—C5—O1	117.0 (4)	O6—C17—C10	124.0 (5)
C6—C5—C10	120.5 (4)	O5—C17—C10	112.2 (4)
O1—C5—C10	122.5 (4)	O5—C18—H18A	109.5
C7—C6—C5	120.6 (5)	O5—C18—H18B	109.5
С7—С6—Н6А	119.7	H18A—C18—H18B	109.5
С5—С6—Н6А	119.7	O5—C18—H18C	109.5
C6—C7—C8	120.0 (5)	H18A—C18—H18C	109.5
С6—С7—Н7А	120.0	H18B—C18—H18C	109.5
С8—С7—Н7А	120.0	O7—C19—H19A	109.5
С7—С8—С9	119.3 (4)	O7—C19—H19B	109.5
С7—С8—Н8А	120.3	H19A—C19—H19B	109.5
С9—С8—Н8А	120.3	O7—C19—H19C	109.5
C10—C9—C8	122.3 (4)	H19A—C19—H19C	109.5
С10—С9—О2	121.0 (4)	H19B—C19—H19C	109.5

C8—C9—O2	116.7 (4)	O8—C20—H20A	109.5
C9—C10—C5	117.2 (4)	O8—C20—H20B	109.5
C9—C10—C17	121.5 (4)	H20A—C20—H20B	109.5
C5—C10—C17	121.2 (4)	O8—C20—H20C	109.5
N3—C11—N4	128.3 (4)	H20A-C20-H20C	109.5
N3—C11—O2	113.5 (3)	H20B—C20—H20C	109.5
C15—O3—C1—N1	-4.0 (8)	C8—C9—C10—C17	-179.4 (4)
C15—O3—C1—C2	-177.8 (6)	O2—C9—C10—C17	-1.0 (6)
C4—N1—C1—O3	-179.2 (5)	C6—C5—C10—C9	3.4 (6)
C4—N1—C1—C2	-5.6 (7)	O1—C5—C10—C9	179.2 (4)
O3—C1—C2—C3	178.6 (5)	C6—C5—C10—C17	-179.9 (4)
N1—C1—C2—C3	4.9 (8)	O1—C5—C10—C17	-4.1 (6)
O3—C1—C2—Br1	-5.6 (7)	C12—N3—C11—N4	1.2 (7)
N1—C1—C2—Br1	-179.2 (4)	C12—N3—C11—O2	-179.2 (4)
C4—N2—C3—O4	177.9 (5)	C14—N4—C11—N3	-2.2 (7)
C4—N2—C3—C2	-1.0 (7)	C14—N4—C11—O2	178.3 (4)
C16—O4—C3—N2	-2.1 (7)	C9—O2—C11—N3	178.6 (4)
C16—O4—C3—C2	176.8 (5)	C9—O2—C11—N4	-1.8 (6)
C1—C2—C3—N2	-1.4 (8)	C19—O7—C12—N3	-0.9 (7)
Br1—C2—C3—N2	-177.1 (4)	C19—O7—C12—C13	-180.0 (5)
C1—C2—C3—O4	179.8 (5)	C11—N3—C12—O7	-179.3 (4)
Br1—C2—C3—O4	4.0 (7)	C11—N3—C12—C13	-0.3 (6)
C3—N2—C4—N1	0.0 (7)	O7—C12—C13—C14	179.5 (4)
C3—N2—C4—O1	179.8 (4)	N3-C12-C13-C14	0.4 (6)
C1—N1—C4—N2	3.2 (8)	O7—C12—C13—Br2	1.1 (5)
C1—N1—C4—O1	-176.5 (4)	N3—C12—C13—Br2	-178.0 (3)
C5-01-C4-N2	12.3 (6)	C11—N4—C14—O8	-179.9 (4)
C5—O1—C4—N1	-167.9 (4)	C11—N4—C14—C13	2.2 (6)
C4—O1—C5—C6	-121.7 (5)	C20	-6.1 (6)
C4—O1—C5—C10	62.4 (5)	C20-08-C14-C13	171.9 (5)
O1—C5—C6—C7	-177.4 (4)	C12-C13-C14-N4	-1.4 (6)
C10—C5—C6—C7	-1.4 (7)	Br2-C13-C14-N4	177.0 (3)
C5—C6—C7—C8	-1.4 (8)	C12-C13-C14-O8	-179.4 (4)
C6—C7—C8—C9	2.1 (8)	Br2-C13-C14-O8	-1.0 (5)
C7—C8—C9—C10	0.1 (7)	C18—O5—C17—O6	-2.0 (9)
C7—C8—C9—O2	-178.4 (4)	C18—O5—C17—C10	176.5 (5)
C11—O2—C9—C10	72.1 (5)	C9—C10—C17—O6	39.9 (7)
С11—О2—С9—С8	-109.4 (5)	C5-C10-C17-O6	-136.6 (6)
C8—C9—C10—C5	-2.8 (6)	C9—C10—C17—O5	-138.5 (5)
O2—C9—C10—C5	175.7 (4)	C5-C10-C17-O5	44.9 (6)