organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-{[4-(4-Methoxybenzenesulfonamido)phenyl]sulfonyl}acetamide

Ghulam Mustafa,^a Mehmet Akkurt,^b* Islam Ullah Khan,^c Rahat Naseem^a and Beenish Sajjad^a

^aDepartment of Chemistry, University of Gujrat, H. H. Campus, Gujrat 50700, Pakistan, ^bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan Correspondence e-mail: akkurt@erciyes.edu.tr, iukhan.gcu@gmail.com

Received 16 June 2010; accepted 20 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; R factor = 0.084; wR factor = 0.189; data-to-parameter ratio = 16.7.

In the title compound, $C_{15}H_{16}N_2O_6S_2$, the dihedral angle between the benzene rings is 83.2 (3)°. The molecular conformation is stabilized by an intramolecular $C-H\cdots O$ interaction. In the crystal structure, molecules are linked by $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds and additional stabilization is provided by weak $C-H\cdots \pi$ interactions.

Related literature

For previous studies on the synthesis of sulfonamide derivatives with phenyl glycine, see: Ashfaq *et al.* (2009, 2010).

Experimental

Crystal data

$C_{15}H_{16}N_2O_6S_2$
$M_r = 384.44$
Monoclinic, P21/c
$a = 5.3651 (10) \text{\AA}$
b = 20.551 (3) Å
c = 15.034 (2) Å
$\beta = 94.040 \ (7)^{\circ}$

 $V = 1653.5 (4) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.36 \text{ mm}^{-1}$ T = 296 K $0.25 \times 0.08 \times 0.07 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer 13678 measured reflections

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.084 & 226 \text{ parameters} \\ wR(F^2) = 0.189 & H\text{-atom parameters constrained} \\ S = 0.89 & \Delta\rho_{\max} = 0.83 \text{ e } \text{\AA}^{-3} \\ 3771 \text{ reflections} & \Delta\rho_{\min} = -0.32 \text{ e } \text{\AA}^{-3} \end{array}$

3771 independent reflections

 $R_{\rm int} = 0.114$

1608 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C8-C13 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O4^{i}$	0.86	2.09	2.932 (5)	168
$N2-H2\cdots O5^{ii}$	0.86	2.26	3.071 (5)	157
$C13-H13\cdots O2$	0.93	2.35	2.986 (6)	126
$C15-H15C\cdots O6^{ii}$	0.96	2.45	3.348 (7)	156
$C15 - H15B \cdots Cg1^{iii}$	0.96	2.79	3.722 (6)	164
$C15 - H15A \cdots Cg2^{iii}$	0.96	2.79	3.589 (6)	141

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x + 1, y, z; (iii) -x + 2, -y, -z + 2.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

GM greatly acknowledge the Vice Chancellor, University of Gujrat, Professor Dr Nizam Uddin, for creating a healthy research environment in the University of Gujrat.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5502).

References

- Ashfaq, M., Khan, I. U., Arshad, M. N., Ahmad, H. & Asghar, M. N. (2010). Acta Cryst. E66, 0299.
- Ashfaq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Saeed-ul-Hassan, S. (2009). Acta Cryst. E65, o1180.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o1768 [doi:10.1107/S1600536810023925]

N-{[4-(4-Methoxybenzenesulfonamido)phenyl]sulfonyl}acetamide

Ghulam Mustafa, Mehmet Akkurt, Islam Ullah Khan, Rahat Naseem and Beenish Sajjad

S1. Comment

Sulphacetamide sodium is an antibiotic which is being used for eye infections. Because the antiobiotics lose their efficacy after long term used, so there is a need to derivatize them to get better therapeutic result. In this paper, a new derivative of it is being reported. Previously this drug has also been derivatized by other researchers (Ashfaq *et al.*, 2009, 2010). Here we present the crystal structure of the title compound (I), (Fig. 1).

In (I), the benzene rings (C1–C6) and (C8–C13) are twisted with a dihedral angle of 83.2 (3) ° to each other. Molecular conformation is stabilized by intramolecular C–H···O interactions. Intermolecular N–H···O and C–H···O hydrogen bonds and C–H··· π interactions contribute to the stabilization of the crystal structure (Table 1, Fig. 2).

S2. Experimental

Sodium sulphacetamide (0.5 g, 2.32 mmol) was taken in 50 ml round bottom flask and dissolved in 20 ml of distilled water. Then, methoxy benzene sulfonyl chloride (0.46 g, 2.32 mmol) was added with continuous stirring at ambient temperature. The pH of this solution was strictly maintained between 8 and 9 by using NaHCO₃ (3 *M*). The consumption of suspended methoxy benzene sulfonyl chloride was an indication of reaction completion. Then pH was adjusted to 2-3 using HCl (3 N). The precipitates formed were filtered, washed three to four times with distilled water and recrystallised using methanol to yield colourless rods of (I).

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(N-H) = 0.86 Å, $U_{iso} = 1.2U_{eq}(N)$ for NH, 0.93 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic and 0.96 Å, $U_{iso} = 1.5U_{eq}(C)$ for CH₃ hydrogen atoms.

Figure 1

The title molecule with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Figure 2

The packing and hydrogen bonding of (I) viewed down *a* axis. H atoms not participating in hydrogen bonding have been omitted for clarity.

$N-\{[4-(4-Methoxybenzenesulfonamido)phenyl]sulfonyl\}acetamide$

a 11	
Crystal data	
$C_{15}H_{16}N_2O_6S_2$	F(000) = 800
$M_r = 384.44$	$D_{\rm x} = 1.544 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1463 reflections
a = 5.3651 (10) Å	$\theta = 2.9 - 20.1^{\circ}$
b = 20.551(3)Å	$\mu = 0.36 \text{ mm}^{-1}$
c = 15.034 (2) Å	T = 296 K
$\beta = 94.040(7)^{\circ}$	Rod, colourless
V = 1653.5 (4) Å ³	$0.25 \times 0.08 \times 0.07 \text{ mm}$
Z=4	
Data collection	
Bruker Kappa APEXII CCD	1608 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.114$
Radiation source: sealed tube	$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
Graphite monochromator	$h = -7 \rightarrow 7$
phi and ω scans	$k = -27 \rightarrow 26$
13678 measured reflections	$l = -20 \rightarrow 20$
3771 independent reflections	
*	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: Iuli	map
$R[F^2 > 2\sigma(F^2)] = 0.084$	Hydrogen site location: inferred from
$wR(F^2) = 0.189$	neighbouring sites
S = 0.89	H-atom parameters constrained
3771 reflections	$w = 1/[\sigma^2(F_o^2) + (0.068P)^2]$
226 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.83 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.3465 (3)	0.17871 (7)	0.68802 (9)	0.0373 (5)
S2	0.7590 (2)	0.14262 (6)	1.14309 (8)	0.0290 (4)
01	0.7672 (11)	-0.0692 (3)	0.5765 (3)	0.082 (2)
O2	0.1176 (7)	0.16711 (19)	0.7264 (2)	0.0455 (14)
O3	0.3551 (7)	0.2208 (2)	0.6128 (2)	0.0515 (16)
O4	0.8828 (6)	0.19627 (17)	1.1877 (2)	0.0386 (11)
05	0.5388 (6)	0.11632 (18)	1.1764 (2)	0.0377 (11)
O6	0.7458 (7)	0.00642 (18)	1.0809 (3)	0.0444 (14)
N1	0.5446 (8)	0.2099 (2)	0.7634 (2)	0.0348 (14)
N2	0.9779 (7)	0.0863 (2)	1.1487 (3)	0.0335 (14)
C1	0.4677 (10)	0.1033 (3)	0.6585 (3)	0.0373 (19)
C2	0.6748 (11)	0.1020 (3)	0.6078 (4)	0.051 (2)
C3	0.7658 (13)	0.0438 (4)	0.5824 (4)	0.060 (3)
C4	0.6569 (12)	-0.0140 (4)	0.6055 (4)	0.055 (2)
C5	0.4498 (13)	-0.0129 (3)	0.6561 (4)	0.054 (2)
C6	0.3601 (11)	0.0463 (3)	0.6810 (4)	0.0450 (19)
C7	0.671 (2)	-0.1301 (4)	0.5999 (5)	0.102 (4)
C8	0.5896 (9)	0.1915 (2)	0.8531 (3)	0.0274 (16)
C9	0.7968 (9)	0.2181 (3)	0.8989 (3)	0.0345 (17)
C10	0.8521 (9)	0.2034 (3)	0.9879 (3)	0.0353 (17)
C11	0.6938 (9)	0.1611 (2)	1.0304 (3)	0.0278 (16)
C12	0.4918 (9)	0.1342 (2)	0.9844 (3)	0.0322 (17)
C13	0.4361 (10)	0.1492 (3)	0.8956 (3)	0.0345 (17)
C14	0.9434 (9)	0.0225 (3)	1.1177 (3)	0.0310 (17)
C15	1.1613 (10)	-0.0206 (3)	1.1364 (4)	0.0426 (17)

supporting information

H1	0.63300	0.24180	0.74610	0.0420*	
H2	1.12300	0.09690	1.17230	0.0400*	
H2A	0.75010	0.14060	0.59160	0.0610*	
Н3	0.90470	0.04290	0.54880	0.0720*	
H5	0.37410	-0.05130	0.67260	0.0650*	
H6	0.22080	0.04750	0.71450	0.0540*	
H7A	0.66710	-0.13270	0.66350	0.1520*	
H7B	0.77580	-0.16400	0.57940	0.1520*	
H7C	0.50490	-0.13500	0.57270	0.1520*	
H9	0.90000	0.24620	0.86980	0.0420*	
H10	0.99190	0.22120	1.01900	0.0420*	
H12	0.39030	0.10540	1.01310	0.0380*	
H13	0.29670	0.13110	0.86470	0.0420*	
H15A	1.12360	-0.06320	1.11290	0.0640*	
H15B	1.19890	-0.02350	1.19970	0.0640*	
H15C	1.30280	-0.00320	1.10880	0.0640*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0361 (8)	0.0443 (9)	0.0310 (7)	0.0051 (6)	-0.0015 (6)	0.0047 (6)
S2	0.0303 (7)	0.0313 (7)	0.0256 (6)	0.0004 (5)	0.0039 (5)	-0.0046 (5)
01	0.110 (4)	0.070 (4)	0.066 (3)	0.033 (3)	0.003 (3)	-0.024 (3)
O2	0.032 (2)	0.054 (3)	0.050(2)	0.0047 (18)	-0.0006 (17)	-0.0042 (19)
O3	0.061 (3)	0.058 (3)	0.034 (2)	0.008 (2)	-0.0071 (19)	0.0161 (19)
O4	0.045 (2)	0.034 (2)	0.0362 (19)	-0.0048 (17)	-0.0013 (17)	-0.0108 (17)
O5	0.0298 (19)	0.050 (2)	0.0343 (19)	0.0003 (17)	0.0090 (15)	-0.0001 (17)
O6	0.034 (2)	0.035 (2)	0.063 (3)	-0.0026 (17)	-0.0055 (18)	-0.0050 (19)
N1	0.040 (2)	0.036 (3)	0.028 (2)	-0.006 (2)	-0.0013 (19)	0.0099 (19)
N2	0.027 (2)	0.038 (3)	0.034 (2)	-0.0021 (19)	-0.0081 (18)	0.001 (2)
C1	0.033 (3)	0.048 (4)	0.030 (3)	-0.001 (3)	-0.005 (2)	-0.002 (2)
C2	0.046 (4)	0.056 (4)	0.050 (4)	-0.010 (3)	0.003 (3)	-0.011 (3)
C3	0.050 (4)	0.083 (5)	0.048 (4)	0.006 (4)	0.010 (3)	-0.018 (4)
C4	0.054 (4)	0.067 (5)	0.042 (3)	0.019 (4)	-0.014 (3)	-0.015 (3)
C5	0.072 (5)	0.045 (4)	0.043 (3)	0.007 (3)	-0.010 (3)	0.002 (3)
C6	0.048 (3)	0.052 (4)	0.035 (3)	0.003 (3)	0.004 (3)	0.003 (3)
C7	0.189 (10)	0.054 (5)	0.060 (5)	0.039 (6)	-0.002 (6)	-0.005 (4)
C8	0.029 (3)	0.025 (3)	0.028 (2)	0.004 (2)	0.001 (2)	0.005 (2)
C9	0.036 (3)	0.033 (3)	0.035 (3)	-0.014 (2)	0.007 (2)	0.005 (2)
C10	0.033 (3)	0.036 (3)	0.037 (3)	-0.004(2)	0.003 (2)	-0.004 (2)
C11	0.033 (3)	0.026 (3)	0.025 (2)	0.002 (2)	0.006 (2)	-0.002 (2)
C12	0.034 (3)	0.029 (3)	0.033 (3)	-0.009(2)	-0.001 (2)	0.003 (2)
C13	0.031 (3)	0.039 (3)	0.033 (3)	-0.004(2)	-0.002(2)	0.004 (2)
C14	0.026 (3)	0.037 (3)	0.030 (3)	-0.004 (2)	0.002 (2)	0.003 (2)
C15	0.037 (3)	0.041 (3)	0.050 (3)	0.013 (3)	0.004 (2)	-0.002 (3)

Geometric parameters (Å, °)

<u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	1.413 (4)	C8—C13	1.384 (7)
S1—O3	1.427 (4)	C8—C9	1.379 (7)
S1—N1	1.629 (4)	C9—C10	1.383 (7)
S1—C1	1.750 (6)	C10—C11	1.401 (7)
S2—O4	1.430 (4)	C11—C12	1.361 (7)
S2—O5	1.422 (3)	C12—C13	1.382 (6)
S2—N2	1.647 (4)	C14—C15	1.478 (8)
S2—C11	1.747 (5)	C2—H2A	0.9300
O1—C4	1.365 (10)	С3—Н3	0.9300
O1—C7	1.408 (10)	С5—Н5	0.9300
O6—C14	1.207 (6)	С6—Н6	0.9300
N1—C8	1.405 (5)	C7—H7A	0.9600
N2—C14	1.399 (7)	C7—H7B	0.9600
N1—H1	0.8600	C7—H7C	0.9600
N2—H2	0.8600	C9—H9	0.9300
C1—C6	1.359 (9)	C10—H10	0.9300
C1 - C2	1.391 (8)	C12—H12	0.9300
$C^2 - C^3$	1.357(10)	C13—H13	0.9300
C3—C4	1.379 (11)	C15—H15A	0.9600
C4—C5	1.390 (9)	C15—H15B	0.9600
C5—C6	1.370 (9)	C15—H15C	0.9600
	110 / 0 (3)		
O2—S1—O3	120.2 (2)	S2—C11—C12	120.1 (3)
O2—S1—N1	109.0 (2)	C10-C11-C12	120.5 (4)
O2—S1—C1	107.7 (3)	C11—C12—C13	120.7 (4)
O3—S1—N1	104.9 (2)	C8—C13—C12	119.4 (5)
O3—S1—C1	107.6 (2)	O6—C14—C15	125.5 (5)
N1—S1—C1	106.8 (2)	N2-C14-C15	114.5 (4)
O4—S2—O5	119.9 (2)	O6—C14—N2	120.0 (5)
O4—S2—N2	102.2 (2)	C1—C2—H2A	120.00
O4—S2—C11	110.0 (2)	C3—C2—H2A	120.00
O5—S2—N2	108.8 (2)	С2—С3—Н3	119.00
O5—S2—C11	108.0 (2)	С4—С3—Н3	119.00
N2—S2—C11	107.2 (2)	C4—C5—H5	121.00
C4—O1—C7	119.0 (6)	С6—С5—Н5	121.00
S1—N1—C8	128.4 (3)	C1—C6—H6	119.00
S2—N2—C14	124.4 (3)	С5—С6—Н6	119.00
S1—N1—H1	116.00	O1—C7—H7A	109.00
C8—N1—H1	116.00	O1—C7—H7B	109.00
S2—N2—H2	118.00	O1—C7—H7C	109.00
C14—N2—H2	118.00	H7A—C7—H7B	110.00
S1—C1—C2	118.8 (5)	H7A—C7—H7C	110.00
S1—C1—C6	121.9 (4)	H7B—C7—H7C	110.00
C2—C1—C6	119.3 (6)	С8—С9—Н9	120.00
C1—C2—C3	119.2 (6)	С10—С9—Н9	120.00
C2—C3—C4	121.4 (6)	C9—C10—H10	121.00

O1—C4—C5	124.7 (7)	C11—C10—H10	121.00
C3—C4—C5	119.5 (7)	C11—C12—H12	120.00
O1—C4—C3	115.8 (6)	C13—C12—H12	120.00
C4—C5—C6	118.3 (6)	C8—C13—H13	120.00
C1—C6—C5	122.3 (6)	C12—C13—H13	120.00
C9—C8—C13	120.2 (4)	C14—C15—H15A	109.00
N1—C8—C9	116.8 (4)	C14—C15—H15B	109.00
N1—C8—C13	123.0 (4)	C14—C15—H15C	109.00
C8—C9—C10	120.5 (5)	H15A—C15—H15B	109.00
C9—C10—C11	118.8 (5)	H15A—C15—H15C	109.00
S2-C11-C10	119.4 (4)	H15B—C15—H15C	110.00
O2—S1—N1—C8	42.8 (5)	S2-N2-C14-O6	3.0 (7)
O3—S1—N1—C8	172.7 (4)	S2—N2—C14—C15	-175.4 (4)
C1—S1—N1—C8	-73.3 (5)	S1—C1—C2—C3	-178.1 (5)
O2—S1—C1—C2	171.0 (4)	C6—C1—C2—C3	-0.4 (8)
O2—S1—C1—C6	-6.7 (5)	S1-C1-C6-C5	178.2 (5)
O3—S1—C1—C2	40.0 (5)	C2-C1-C6-C5	0.6 (9)
O3—S1—C1—C6	-137.6 (5)	C1—C2—C3—C4	0.2 (9)
N1—S1—C1—C2	-72.1 (5)	C2-C3-C4-01	-179.5 (6)
N1—S1—C1—C6	110.2 (5)	C2—C3—C4—C5	-0.2 (10)
O4—S2—N2—C14	176.6 (4)	O1—C4—C5—C6	179.6 (6)
O5—S2—N2—C14	48.9 (5)	C3—C4—C5—C6	0.3 (9)
C11—S2—N2—C14	-67.7 (4)	C4—C5—C6—C1	-0.5 (9)
O4—S2—C11—C10	30.0 (5)	N1-C8-C9-C10	178.9 (5)
O4—S2—C11—C12	-150.4 (4)	C13—C8—C9—C10	-0.7 (8)
O5—S2—C11—C10	162.5 (4)	N1-C8-C13-C12	-179.2 (4)
O5—S2—C11—C12	-17.9 (4)	C9—C8—C13—C12	0.4 (8)
N2—S2—C11—C10	-80.4 (4)	C8—C9—C10—C11	0.0 (8)
N2—S2—C11—C12	99.2 (4)	C9—C10—C11—S2	-179.4 (4)
C7—O1—C4—C3	178.1 (6)	C9-C10-C11-C12	1.1 (8)
C7—O1—C4—C5	-1.2 (9)	S2-C11-C12-C13	179.0 (4)
S1—N1—C8—C9	169.1 (4)	C10-C11-C12-C13	-1.4 (7)
S1—N1—C8—C13	-11.4 (7)	C11—C12—C13—C8	0.7 (8)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1-C6 and C8-C13 rings, respectively.

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A	
N1—H1···O4 ⁱ	0.86	2.09	2.932 (5)	168	
N2—H2···O5 ⁱⁱ	0.86	2.26	3.071 (5)	157	
С13—Н13…О2	0.93	2.35	2.986 (6)	126	
C15—H15C···O6 ⁱⁱ	0.96	2.45	3.348 (7)	156	
C15—H15 <i>B</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.96	2.79	3.722 (6)	164	
C15—H15 <i>A</i> ··· <i>C</i> g2 ⁱⁱⁱ	0.96	2.79	3.589 (6)	141	

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*+1, *y*, *z*; (iii) -*x*+2, -*y*, -*z*+2.