organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Acetyl-3-[2-(2,3,5,6-tetrafluorophenyl)hydrazin-1-ylidene]indolin-2-one

Humayun Pervez,^a Muhammad Yagub,^a Magbool Ahmad,^a M. Nawaz Tahir^{b*} and Robina Akhtar^a

^aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 11 June 2010; accepted 12 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; R factor = 0.046; wR factor = 0.080; data-to-parameter ratio = 6.4.

In the title compound, $C_{16}H_9F_4N_3O_2$, the dihedral angle between the aromatic ring systems is $4.10(14)^{\circ}$ and a bifurcated intramolecular N-H···(O,F) hydrogen bond generates an S(6) ring for the O-atom acceptor and an S(5)ring for the F-atom acceptor. A short C-H···O conact also occurs. In the crystal, molecules are linked by C-H···O interactions.

Related literature

For background on related isatin derivatives, see: Pervez et al. (2007, 2008, 2010a). For related structures, see: Abad et al. (2006); Pervez et al. (2010b). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

 $C_{16}H_9F_4N_3O_2$ $M_r = 351.26$ Monoclinic, P21 a = 9.8993 (19) Å b = 4.7740 (6) Å c = 16.066 (3) Å $\beta = 104.807 \ (8)^{\circ}$

V = 734.0 (2)	${\rm \AA}^3$
Z = 2	
Mo Kα radia	tion
$\mu = 0.14 \text{ mm}$	-1
T = 296 K	
$0.32 \times 0.24 \times$	< 0.22 mm

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.942, \ T_{\rm max} = 0.952$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	1 restraint
$wR(F^2) = 0.080$	H-atom parameters constrained
S = 0.96	$\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$
1462 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
227 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2−H2···O2	0.86	1.99	2.694 (5)	139
$N2 - H2 \cdot \cdot \cdot F1$	0.86	2.29	2.658 (5)	106
$C6 - H6 \cdots O1$	0.93	2.33	2.857 (8)	116
C14−H14···O1 ⁱ	0.93	2.32	3.217 (7)	163

6095 measured reflections

 $R_{\rm int} = 0.087$

1462 independent reflections

749 reflections with $I > 2\sigma(I)$

Symmetry code: (i) x + 1, y - 2, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

MA gratefully acknowledges the Higher Education Commission (HEC), Islamabad, Pakistan, for providing him with a Scholarship under the Indigenous PhD Program and also for partial funding of this research work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5498).

References

Abad, A., Agulló, C., Cuñat, A. C., Vilanova, C. & de Arellano, M. C. R. (2006). Cryst. Growth Des. 6, 46-57.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Pervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178-1186.
- Pervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I. & Khan, K. M. & Yaqub, M. (2008). J. Enz. Inhib. Med. Chem. 23, 848-854.
- Pervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010a). Lett. Drug Des. Discov. 7, 102-108.
- Pervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010b). Acta Crvst. E66, 01018.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o1686 [doi:10.1107/S1600536810022580]

1-Acetyl-3-[2-(2,3,5,6-tetrafluorophenyl)hydrazin-1-ylidene]indolin-2-one

Humayun Pervez, Muhammad Yaqub, Maqbool Ahmad, M. Nawaz Tahir and Robina Akhtar

S1. Comment

In continuation of our previous work on the synthesis of isatin derivatives having physiological properties (Pervez *et al.*, 2007, 2008, 2010*a*, 2010*b*), we report herein the synthesis and crystal structure of the title compound (I), (Fig. 1).

The crystal structure of N-(2-chloropyrid-4-yl)-N-(2,3,5,6-tetrafluorophenyl)urea (Abad *et al.*, 2006) has been published which contains the same flouro substituted phenyl group as in (I).

In (I), the 2-oxoindolin-3-hydrazono group A (N3/C1–C8/O2/N1/N2) and tetrafluorophenyl B (C11—C16/F1–F4) are planar with r. m. s. deviations of 0.0197 and 0.0121 Å, respectively. The dihedral angle between A/B is 4.10 (14)°. The acetyl moiety (O1/C9/C10) is oriented at 6.21 (83)° with its parent group A. One S(5) ring motif (Bernstein *et al.*, 1995) is formed due to intramolecular H-bonding of N—H…F type, two S(6) ring motifs due to N—H…O and C—H…O interactions (Table 1, Fig. 1) are formed. The molecules are stabilized in the form of one dimensional polymeric chains extending along the *a* axis (Fig. 2).

S2. Experimental

A solution of 1-acetylisatin (0.95 g, 5.0 mmol) in ethanol (50 ml) was added to the solution of 2,3,5,6-tetrafluorophenyl hydrazine (0.90 g, 5.0 mmol) made in concentrated sulfuric acid (8 ml) and diluted with ethanol (50 ml). The reaction mixture was then refluxed for 30 min. The bright yellow crystalline solid formed during refluxing was collected by suction filtration. Thorough washing with hot ethanol furnished the desired compound (I) in pure form (0.40 g, 23%), m.p. 445 K. Bright yellow prisms of (I) were grown in chloroform by slow evaporation method at room temperature.

S3. Refinement

In the absence of anamolous scattering, the Friedal pairs were merged before refinement. The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93–0.96 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figure 1

View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted lines indicate the intra-molecular H-bondings.

Figure 2

The partial packing of (I), which shows that molecules form one-dimensional polymeric chains extending along the a axis.

1-Acetyl-3-[2-(2,3,5,6-tetrafluorophenyl)hydrazin-1-ylidene]indolin-2-one

Crystal data	
$C_{16}H_9F_4N_3O_2$	$V = 734.0 (2) Å^3$
$M_r = 351.26$	Z = 2
Monoclinic, <i>P</i> 2 ₁	F(000) = 356
Hall symbol: P 2yb	$D_{\rm x} = 1.589 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.8993 (19) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 4.7740 (6) Å	Cell parameters from 749 reflections
c = 16.066 (3) Å	$\theta = 2.6 - 25.3^{\circ}$
$\beta = 104.807 \ (8)^{\circ}$	$\mu = 0.14 \text{ mm}^{-1}$

T = 296 KPrism, yellow

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.10 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.942, T_{\max} = 0.952$	6095 measured reflections 1462 independent reflections 749 reflections with $I > 2\sigma(I)$ $R_{int} = 0.087$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -11 \rightarrow 11$ $k = -5 \rightarrow 5$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.080$	neighbouring sites
S = 0.96	H-atom parameters constrained
1462 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0218P)^2]$
227 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\text{max}} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{\text{max}} = 0.14 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{\text{min}} = -0.18 \text{ e} \text{ Å}^{-3}$

 $0.32 \times 0.24 \times 0.22 \text{ mm}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.3005 (3)	-0.4142 (6)	0.06872 (17)	0.0638 (12)	
F2	0.4748 (3)	-0.8205 (7)	0.0458 (2)	0.0791 (16)	
F3	0.7604 (3)	-0.6503 (7)	0.3236 (2)	0.0843 (14)	
F4	0.5877 (3)	-0.2576 (8)	0.34942 (19)	0.0820 (14)	
01	-0.1264 (4)	0.8071 (9)	0.2007 (3)	0.0780 (17)	
02	0.1041 (3)	0.1514 (8)	0.1326 (2)	0.0613 (14)	
N1	0.3432 (4)	0.0297 (9)	0.2843 (3)	0.0520 (17)	
N2	0.3382 (4)	-0.1238 (9)	0.2140 (3)	0.0492 (17)	
N3	0.0446 (4)	0.4800 (9)	0.2270 (3)	0.0472 (17)	
C1	0.2424 (5)	0.2126 (11)	0.2794 (3)	0.045 (2)	
C2	0.2254 (6)	0.3936 (11)	0.3472 (3)	0.048 (2)	
C3	0.3062 (6)	0.4269 (12)	0.4321 (4)	0.067 (3)	
C4	0.2608 (7)	0.6204 (15)	0.4832 (4)	0.085 (3)	
C5	0.1400 (8)	0.7727 (13)	0.4520 (4)	0.082 (3)	

C6	0.0581 (6)	0.7417 (12)	0.3682 (4)	0.064 (3)
C7	0.1054 (5)	0.5532 (10)	0.3168 (3)	0.046 (2)
C8	0.1251 (5)	0.2667 (11)	0.2034 (3)	0.047 (2)
C9	-0.0694 (6)	0.6214 (14)	0.1721 (4)	0.057 (2)
C10	-0.1145 (5)	0.5317 (13)	0.0791 (3)	0.078 (3)
C11	0.4358 (5)	-0.3222 (11)	0.2091 (3)	0.0415 (19)
C12	0.4162 (5)	-0.4726 (11)	0.1331 (3)	0.046 (2)
C13	0.5063 (6)	-0.6775 (12)	0.1212 (4)	0.055 (2)
C14	0.6244 (6)	-0.7476 (12)	0.1850 (4)	0.058 (3)
C15	0.6455 (6)	-0.5977 (13)	0.2589 (4)	0.055 (2)
C16	0.5565 (6)	-0.3921 (11)	0.2732 (3)	0.052 (2)
H2	0.26986	-0.09659	0.16945	0.0589*
H3	0.38710	0.32286	0.45329	0.0808*
H4	0.31279	0.64831	0.53964	0.1016*
H5	0.11238	0.90027	0.48823	0.0984*
H6	-0.02410	0.84251	0.34781	0.0768*
H10A	-0.19107	0.64643	0.04892	0.1164*
H10B	-0.14341	0.33917	0.07589	0.1164*
H10C	-0.03772	0.55230	0.05320	0.1164*
H14	0.68534	-0.88833	0.17772	0.0692*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
F1	0.059 (2)	0.066 (2)	0.058 (2)	0.0084 (17)	-0.0006 (16)	0.0018 (17)
F2	0.096 (3)	0.066 (2)	0.078 (3)	0.010 (2)	0.027 (2)	-0.013 (2)
F3	0.062 (2)	0.101 (3)	0.083 (2)	0.018 (2)	0.006 (2)	0.024 (2)
F4	0.077 (2)	0.098 (3)	0.060 (2)	0.013 (2)	-0.0025 (19)	-0.010 (2)
01	0.075 (3)	0.076 (3)	0.083 (3)	0.029 (3)	0.020 (2)	0.002 (2)
O2	0.061 (2)	0.070 (3)	0.052 (2)	0.010 (2)	0.013 (2)	-0.010 (2)
N1	0.062 (3)	0.047 (3)	0.048 (3)	-0.006 (3)	0.016 (2)	-0.002 (3)
N2	0.042 (3)	0.055 (3)	0.048 (3)	0.008 (2)	0.007 (2)	-0.001 (3)
N3	0.048 (3)	0.039 (3)	0.055 (3)	0.008 (2)	0.014 (3)	0.006 (2)
C1	0.048 (4)	0.038 (4)	0.051 (4)	0.003 (3)	0.015 (3)	0.008 (3)
C2	0.058 (4)	0.043 (4)	0.045 (4)	-0.004 (3)	0.018 (3)	0.002 (3)
C3	0.075 (4)	0.069 (5)	0.055 (4)	0.010 (4)	0.011 (4)	-0.004 (4)
C4	0.105 (6)	0.083 (6)	0.062 (5)	0.003 (5)	0.014 (4)	-0.015 (4)
C5	0.112 (6)	0.068 (5)	0.073 (5)	0.001 (5)	0.035 (4)	-0.020 (4)
C6	0.067 (4)	0.056 (4)	0.074 (5)	0.007 (3)	0.027 (4)	-0.003 (4)
C7	0.053 (4)	0.037 (4)	0.050 (4)	-0.004 (3)	0.016 (3)	-0.001 (3)
C8	0.049 (4)	0.042 (4)	0.051 (4)	-0.003 (3)	0.017 (3)	0.006 (3)
C9	0.051 (4)	0.057 (4)	0.066 (4)	0.005 (3)	0.022 (3)	0.008 (3)
C10	0.072 (4)	0.095 (5)	0.057 (4)	0.019 (4)	0.000 (3)	0.000 (4)
C11	0.040 (3)	0.037 (3)	0.051 (4)	-0.001 (3)	0.018 (3)	0.010 (3)
C12	0.046 (4)	0.040 (4)	0.052 (4)	0.006 (3)	0.013 (3)	0.006 (3)
C13	0.068 (4)	0.045 (4)	0.055 (4)	0.001 (3)	0.020 (4)	-0.002 (3)
C14	0.057 (4)	0.044 (4)	0.078 (5)	0.008 (3)	0.028 (4)	0.012 (4)
C15	0.044 (4)	0.057 (4)	0.064 (4)	0.009 (3)	0.012 (3)	0.021 (4)

C16	0.051 (4)	0.056 (4)	0.048 (4)	-0.009 (3)	0.013 (3)	-0.006 (3)	
Geometr	ric parameters (A	Î, ?)					
F1-C1	2	1.362	(6)	C4—C5		1.380 (10)	
F2-C1	3	1.356	(7)	C5—C6		1.391 (9)	
F3—C1	5	1.354	(7)	C6—C7		1.382 (8)	
F4—C1	6	1.347	(6)	C9—C10		1.508 (8)	
O1—C9)	1.203	(8)	C11—C16		1.404 (7)	
O2—C8	3	1.233	(6)	C11—C12		1.387 (7)	
N1—N2	2	1.337	(6)	C12—C13		1.370 (8)	
N1-C1		1.313	(7)	C13—C14		1.385 (9)	
N2-C1	1	1.370	(7)	C14—C15		1.356 (9)	
N3—C7	7	1.457	(7)	C15—C16		1.377 (8)	
N3—C8	3	1.404	(7)	С3—Н3		0.9300	
N3—C9)	1.414	(8)	C4—H4		0.9300	
N2—H2	2	0.8600	C	С5—Н5		0.9300	
C1-C8	;	1.477	(7)	С6—Н6		0.9300	
C1-C2		1.434	(7)	C10—H10A		0.9600	
C2—C7	,	1.391	(8)	C10—H10B		0.9600	
C2—C3	1	1.403	(8)	C10—H10C		0.9600	
C3—C4	Ļ	1.385	(9)	C14—H14		0.9300	
N2—N1	—C1	116.8	(4)	F1—C12—C13		119.4 (5)	
N1—N2	2—C11	123.6	(4)	C11—C12—C13		122.9 (5)	
C7—N3	S-C8	108.8	(4)	F1—C12—C11		117.7 (4)	
C7—N3	6—С9	124.4	(4)	C12—C13—C14		121.7 (5)	
C8—N3	6—С9	126.6	(5)	F2—C13—C12		118.4 (5)	
N1—N2	2—H2	118.00)	F2—C13—C14		119.9 (5)	
C11—N	2—H2	118.00)	C13—C14—C15		115.6 (6)	
N1-C1	—C2	126.2	(5)	F3—C15—C16		116.9 (5)	
N1-C1	—C8	126.2	(5)	C14—C15—C16		124.1 (6)	
C2—C1	C8	107.6	(4)	F3—C15—C14		119.1 (5)	
C1-C2	с—С3	131.2	(5)	C11—C16—C15		120.5 (5)	
C3—C2	с—С7	120.2	(5)	F4—C16—C11		120.5 (5)	
C1—C2	с—С7	108.6	(4)	F4—C16—C15		118.9 (5)	
C2—C3	—C4	117.5	(6)	С2—С3—Н3		121.00	
C3—C4	C5	121.2	(6)	С4—С3—Н3		121.00	
C4—C5	—C6	122.2	(6)	C3—C4—H4		119.00	
C5—C6	—C7	116.4	(6)	C5—C4—H4		119.00	
C2—C7	—С6	122.5	(5)	C4—C5—H5		119.00	
N3—C7	/—C2	108.4	(4)	C6—C5—H5		119.00	
N3—C7	′—С6	129.1	(5)	С5—С6—Н6		122.00	
N3—C8	3—C1	106.5	(4)	С7—С6—Н6		122.00	
O2—C8	8—N3	126.9	(5)	C9—C10—H10A		110.00	
O2—C8	3—C1	126.6	(5)	C9—C10—H10B		109.00	
O1—C9)—N3	119.4	(6)	C9—C10—H10C		109.00	
O1—C9	D-C10	122.6	(6)	H10A—C10—H10I	В	109.00	

supporting information

N3—C9—C10	118.0 (5)	H10A—C10—H10C	109.00
N2-C11-C12	117.8 (4)	H10B-C10-H10C	109.00
C12—C11—C16	115.1 (5)	C13—C14—H14	122.00
N2-C11-C16	127.1 (5)	C15—C14—H14	122.00
C1—N1—N2—C11	179.8 (5)	C1—C2—C7—C6	177.8 (5)
N2—N1—C1—C2	178.5 (5)	C3—C2—C7—N3	178.8 (5)
N2—N1—C1—C8	-0.7 (8)	C3—C2—C7—C6	-2.1 (8)
N1—N2—C11—C12	178.2 (5)	C2—C3—C4—C5	0.6 (10)
N1-N2-C11-C16	-2.2 (8)	C3—C4—C5—C6	-0.3 (11)
C8—N3—C7—C2	2.2 (6)	C4—C5—C6—C7	-1.2 (10)
C8—N3—C7—C6	-176.7 (5)	C5-C6-C7-N3	-178.8 (5)
C9—N3—C7—C2	-172.7 (5)	C5—C6—C7—C2	2.4 (8)
C9—N3—C7—C6	8.4 (8)	N2-C11-C12-F1	-0.5 (7)
C7—N3—C8—O2	179.4 (5)	N2-C11-C12-C13	-179.4 (5)
C7—N3—C8—C1	-2.2 (5)	C16-C11-C12-F1	179.8 (4)
C9—N3—C8—O2	-5.9 (9)	C16—C11—C12—C13	0.9 (8)
C9—N3—C8—C1	172.6 (5)	N2-C11-C16-F4	-0.6 (8)
C7—N3—C9—O1	-3.7 (9)	N2-C11-C16-C15	180.0 (5)
C7—N3—C9—C10	176.2 (5)	C12-C11-C16-F4	179.1 (5)
C8—N3—C9—O1	-177.7 (5)	C12-C11-C16-C15	-0.4 (8)
C8—N3—C9—C10	2.3 (8)	F1—C12—C13—F2	-1.6 (8)
N1—C1—C2—C3	0.5 (10)	F1-C12-C13-C14	-179.1 (5)
N1—C1—C2—C7	-179.4 (5)	C11—C12—C13—F2	177.3 (5)
C8—C1—C2—C3	179.8 (6)	C11—C12—C13—C14	-0.2 (9)
C8—C1—C2—C7	0.0 (6)	F2-C13-C14-C15	-178.4 (5)
N1-C1-C8-O2	-0.8 (9)	C12—C13—C14—C15	-0.9 (9)
N1-C1-C8-N3	-179.3 (5)	C13—C14—C15—F3	-178.6 (5)
C2-C1-C8-O2	179.9 (5)	C13—C14—C15—C16	1.5 (9)
C2-C1-C8-N3	1.4 (6)	F3—C15—C16—F4	-0.2 (8)
C1—C2—C3—C4	-179.3 (6)	F3-C15-C16-C11	179.3 (5)
C7—C2—C3—C4	0.6 (9)	C14—C15—C16—F4	179.7 (5)
C1—C2—C7—N3	-1.3 (6)	C14-C15-C16-C11	-0.9 (9)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N2—H2…O2	0.86	1.99	2.694 (5)	139
N2—H2…F1	0.86	2.29	2.658 (5)	106
С6—Н6…О1	0.93	2.33	2.857 (8)	116
C14—H14…O1 ⁱ	0.93	2.32	3.217 (7)	163

Symmetry code: (i) x+1, y-2, z.