

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Cyclohexylbenzamide

Islam Ullah Khan,^a \ddagger Rashid Javaid,^a Shahzad Sharif^a and Edward R. T. Tiekink^{b*}

^aMaterials Chemistry Laboratory, Department of Chemistry, Government College, University, Lahore 54000, Pakistan, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 11 June 2010; accepted 12 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.163; data-to-parameter ratio = 10.2.

The structure of the title compound, $C_{13}H_{17}NO$, features an *anti* disposition of the N-H and carbonyl groups. The amide group is twisted with respect to the benzene ring [N-C(=O)-C-C torsion angle = $-30.8 (4)^{\circ}$]. In the crystal, C(4) chains propagating in [100] are formed by intermolecular N-H···O hydrogen bonds. Weak C-H··· π interactions link the chains into sheets.

Related literature

For biological applications of benzamides, see: Clark *et al.* (1988); Leander *et al.* (1988); Diouf *et al.* (1997).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{17}\text{NO} \\ M_r = 203.28 \\ \text{Monoclinic, } P_{2_1} \\ a = 5.2372 \ (3) \\ \text{Å} \\ b = 6.5841 \ (4) \\ \text{Å} \\ c = 16.6029 \ (12) \\ \text{Å} \\ \beta = 91.176 \ (2)^{\circ} \end{array}$

 $V = 572.38 (6) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K $0.28 \times 0.17 \times 0.12 \text{ mm}$ 1423 independent reflections

Data collection

Bruker APEXII CCD diffractometer 5479 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.163$ S = 1.071423 reflections 140 parameters 1 restraint 1105 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.033$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.22 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.21 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2-C7 ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1n \cdots O1^{i}$ $C13 - H13a \cdots Cg1^{ii}$ $C5 - H5 \cdots Cg1^{iii}$	0.80 (3) 0.97 0.93	2.32 (3) 2.82 2.96	3.065 (3) 3.722 (4) 3.729 (4)	157 (3) 154 141

Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z; (iii) $-x + 1, y + \frac{1}{2}, -z$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We are thankful to Mr Munawar Hussain, Engineering Cell Government College University, Lahore, for providing supportive services to the Materials Chemistry Laboratory.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5496).

References

- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 & SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clark, C. R. (1988). Epilepsia, 29, 198-203.
- Diouf, O., Bourhim, M., Lambert, D. M., Poupaert, J. H., Stables, J. P. & Vamecq, J. (1997). Biomed. Pharmacother. 51, 131–136.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Leander, J. D., Robertson, D. W., Clark, C. R., Lawson, R. R. & Rathbun, R. C. (1988). *Epilepsia*, **29**, 83–90.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

[‡] Additional correspondence author, e-mail: iuklodhi@yahoo.com.

supporting information

Acta Cryst. (2010). E66, o1687 [doi:10.1107/S1600536810022609]

N-Cyclohexylbenzamide

Islam Ullah Khan, Rashid Javaid, Shahzad Sharif and Edward R. T. Tiekink

S1. Comment

Benzamides are frequently used in the synthesis of new and potent anti-convulsant agents (Clark *et al.*, 1988; Leander *et al.*, 1988; Diouf *et al.*, 1997). The structure of the title compound, (I), a benzamide derivative, is reported herein (Fig. 1).

The benzene ring, adjacent to the carbonyl group, twisted with respect to the plane formed through the central amide group; the N1–C1–C2–C3 torsion angle = -30.8 (4) °. In the same way, the putative mirror plane through the cyclohexyl ring (having a chair conformation) is twisted away from the central plane; the O1–N1–C8–C11 torsion angle is 151.3 (4) °. The anti-disposition of the NH and carbonyl groups allows for the formation of N–H…O hydrogen bonds which leads to the formation supramolecular chains aligned along the *a* axis, Fig. 2 and Table 1. These are connected into layers in the *ab* plane *via* C–H… π interactions, Fig. 2 and Table 1.

S2. Experimental

A solution of cyclohexyl amine (0.458 μ l, 4 mmol) in dichloromethane (15 ml) was treated dropwise with benzoyl chloride (0.463 μ l, 4 mmol) in the presence of triethanol amine (5 ml) as a catalyst. The resulting mixture was stirred for 1 h. The precipitates that formed were filtered, dried and crystallized from methanol to yield colourless blocks of (I).

S3. Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93-0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The N-bound H atom was refined freely. In the absence of significant anomalous scattering effects, 1130 Friedel pairs were averaged in the final refinement.

Figure 1

The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.

Figure 2

A view in projection down the *b* axis of the unit-cell contents for (I), highlighting the formation of layers in the *ab* plane. The N–H···O and C–H··· π interactions are shown as orange and purple dashed lines, respectively. Colour code: O, red; N, blue; C, grey; and H, green.

N-Cyclohexylbenzamide

Crystal data	
C ₁₃ H ₁₇ NO	$\beta = 91.176 \ (2)^{\circ}$
$M_r = 203.28$	V = 572.38 (6) Å ³
Monoclinic, $P2_1$	Z = 2
Hall symbol: P 2yb	F(000) = 220
a = 5.2372 (3) Å	$D_{\rm x} = 1.179 {\rm ~Mg} {\rm ~m}^{-3}$
b = 6.5841 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 16.6029 (12) Å	$\mu=0.07~\mathrm{mm^{-1}}$

T = 293 KBlock, colourless

Data collection

Dulu conection	
Bruker APEXII CCD diffractometer	1105 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 1.2^{\circ}$
Graphite monochromator	$h = -6 \rightarrow 6$
φ and ω scans	$k = -8 \longrightarrow 8$
5479 measured reflections	$l = -21 \rightarrow 21$
1423 independent reflections	
Refinement	
Refinement on F^2	Secondary atom site location: difference
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.163$	neighbouring sites
S = 1.07	H atoms treated by a mixture of indepen
1423 reflections	and constrained refinement
140 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1083P)^2]$
-	

 Primary atom site location: structure-invariant direct methods

$0.28 \times 0.17 \times 0.12 \text{ mm}$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1083P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³ Absolute structure: unk

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.7158 (3)	0.9885 (4)	0.23591 (14)	0.0636 (8)	
N1	0.2952 (5)	0.9238 (4)	0.24441 (15)	0.0424 (6)	
H1n	0.157 (6)	0.969 (6)	0.2345 (18)	0.045 (9)*	
C1	0.4923 (5)	1.0267 (4)	0.21584 (18)	0.0415 (7)	
C2	0.4362 (5)	1.1979 (5)	0.15919 (15)	0.0381 (6)	
C3	0.2245 (5)	1.2004 (6)	0.10682 (16)	0.0460 (7)	
H3	0.1077	1.0941	0.1071	0.055*	
C4	0.1894 (6)	1.3614 (7)	0.05468 (18)	0.0575 (9)	
H4	0.0488	1.3620	0.0195	0.069*	
C5	0.3571 (6)	1.5201 (6)	0.05375 (19)	0.0602 (10)	
H5	0.3321	1.6270	0.0179	0.072*	
C6	0.5654 (6)	1.5203 (6)	0.1069 (2)	0.0586 (9)	
H6	0.6785	1.6292	0.1076	0.070*	
C7	0.6038 (6)	1.3593 (6)	0.15818 (19)	0.0495 (8)	

H7	0.7455	1.3591	0.1929	0.059*
C8	0.3233 (5)	0.7589 (4)	0.30240 (17)	0.0405 (7)
H8	0.4904	0.6958	0.2945	0.049*
C9	0.3184 (8)	0.8399 (6)	0.3885 (2)	0.0611 (9)
H9A	0.4570	0.9358	0.3968	0.073*
H9B	0.1588	0.9108	0.3969	0.073*
C10	0.3452 (8)	0.6680 (7)	0.4484 (2)	0.0683 (11)
H10A	0.5140	0.6088	0.4443	0.082*
H10B	0.3296	0.7218	0.5024	0.082*
C11	0.1481 (6)	0.5051 (6)	0.4349 (2)	0.0636 (10)
H11A	-0.0198	0.5593	0.4461	0.076*
H11B	0.1814	0.3937	0.4719	0.076*
C12	0.1507 (7)	0.4266 (6)	0.3493 (2)	0.0620 (9)
H12A	0.0120	0.3306	0.3413	0.074*
H12B	0.3100	0.3556	0.3405	0.074*
C13	0.1224 (6)	0.5985 (5)	0.2888 (2)	0.0482 (8)
H13A	0.1362	0.5444	0.2347	0.058*
H13B	-0.0455	0.6591	0.2934	0.058*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0330 (10)	0.0681 (17)	0.0893 (17)	0.0023 (11)	-0.0042 (10)	0.0243 (15)
N1	0.0333 (12)	0.0437 (14)	0.0500 (14)	0.0042 (11)	-0.0005 (9)	0.0077 (11)
C1	0.0359 (13)	0.0405 (16)	0.0479 (15)	0.0036 (13)	0.0009 (11)	-0.0004 (13)
C2	0.0356 (12)	0.0421 (15)	0.0368 (14)	0.0029 (12)	0.0050 (10)	-0.0031 (13)
C3	0.0398 (14)	0.0546 (18)	0.0436 (15)	0.0001 (14)	-0.0021 (11)	0.0020 (16)
C4	0.0471 (16)	0.080(2)	0.0453 (16)	0.0045 (18)	-0.0018 (13)	0.0133 (19)
C5	0.0554 (17)	0.067 (2)	0.059 (2)	0.0138 (18)	0.0137 (15)	0.024 (2)
C6	0.0552 (17)	0.0512 (19)	0.070 (2)	-0.0060 (17)	0.0147 (15)	0.0140 (18)
C7	0.0426 (14)	0.0538 (19)	0.0523 (17)	-0.0035 (14)	0.0059 (12)	0.0047 (16)
C8	0.0354 (12)	0.0391 (15)	0.0470 (16)	0.0060 (12)	0.0010 (11)	0.0046 (13)
C9	0.084 (2)	0.051 (2)	0.0476 (17)	-0.0102 (19)	-0.0115 (16)	-0.0008 (16)
C10	0.082 (2)	0.071 (3)	0.0513 (19)	-0.001 (2)	-0.0104 (17)	0.010(2)
C11	0.0624 (19)	0.062 (2)	0.067 (2)	0.010 (2)	0.0116 (16)	0.022 (2)
C12	0.0633 (19)	0.0396 (18)	0.083 (3)	-0.0053 (16)	0.0001 (17)	0.0068 (18)
C13	0.0457 (15)	0.0427 (17)	0.0560 (19)	-0.0010 (14)	-0.0021 (13)	-0.0011 (15)

Geometric parameters (Å, °)

01—C1	1.236 (3)	С8—С9	1.526 (4)	-
N1-C1	1.331 (4)	C8—H8	0.9800	
N1—C8	1.456 (4)	C9—C10	1.511 (5)	
N1—H1n	0.80 (3)	С9—Н9А	0.9700	
C1—C2	1.493 (4)	С9—Н9В	0.9700	
С2—С7	1.379 (4)	C10-C11	1.502 (5)	
C2—C3	1.395 (4)	C10—H10A	0.9700	
C3—C4	1.379 (5)	C10—H10B	0.9700	

С3—Н3	0.9300	C11—C12	1.512 (5)
C4—C5	1.365 (5)	C11—H11A	0.9700
C4—H4	0.9300	C11—H11B	0.9700
C5—C6	1.389 (5)	C12—C13	1.519 (5)
С5—Н5	0.9300	C12—H12A	0.9700
С6—С7	1.372 (5)	C12—H12B	0.9700
С6—Н6	0.9300	С13—Н13А	0.9700
С7—Н7	0.9300	С13—Н13В	0.9700
C8—C13	1.505 (4)		
C1—N1—C8	123.1 (2)	С10—С9—С8	110.6 (3)
C1—N1—H1N	116 (3)	С10—С9—Н9А	109.5
C8—N1—H1N	120 (2)	С8—С9—Н9А	109.5
O1-C1-N1	122.5 (3)	С10—С9—Н9В	109.5
O1—C1—C2	119.8 (2)	С8—С9—Н9В	109.5
N1—C1—C2	117.7 (2)	H9A—C9—H9B	108.1
C7—C2—C3	118.8 (3)	C11—C10—C9	112.5 (3)
C7—C2—C1	118.2 (2)	C11—C10—H10A	109.1
C3—C2—C1	123.0 (3)	C9—C10—H10A	109.1
C4—C3—C2	119.7 (3)	C11—C10—H10B	109.1
С4—С3—Н3	120.2	C9—C10—H10B	109.1
С2—С3—Н3	120.2	H10A—C10—H10B	107.8
C5—C4—C3	121.2 (3)	C10—C11—C12	111.4 (3)
C5—C4—H4	119.4	C10—C11—H11A	109.4
C3—C4—H4	119.4	C12—C11—H11A	109.4
C4—C5—C6	119.4 (3)	C10—C11—H11B	109.4
С4—С5—Н5	120.3	C12—C11—H11B	109.4
С6—С5—Н5	120.3	H11A—C11—H11B	108.0
C7—C6—C5	119.8 (3)	C11—C12—C13	111.4 (3)
С7—С6—Н6	120.1	C11—C12—H12A	109.4
С5—С6—Н6	120.1	C13—C12—H12A	109.4
C6—C7—C2	121.2 (3)	C11—C12—H12B	109.4
С6—С7—Н7	119.4	C13—C12—H12B	109.4
С2—С7—Н7	119.4	H12A—C12—H12B	108.0
N1—C8—C13	111.3 (2)	C8-C13-C12	111.4 (2)
N1—C8—C9	110.8 (3)	C8—C13—H13A	109.3
C13—C8—C9	111.1 (3)	С12—С13—Н13А	109.3
N1—C8—H8	107.8	C8—C13—H13B	109.3
C13—C8—H8	107.8	C12—C13—H13B	109.3
C9—C8—H8	107.8	H13A—C13—H13B	108.0
C8—N1—C1—O1	0.7 (5)	C3—C2—C7—C6	-0.1 (4)
C8—N1—C1—C2	-177.6 (2)	C1—C2—C7—C6	179.2 (3)
O1—C1—C2—C7	-28.3 (4)	C1—N1—C8—C13	-146.5 (3)
N1—C1—C2—C7	150.1 (3)	C1—N1—C8—C9	89.3 (3)
O1—C1—C2—C3	150.9 (3)	N1-C8-C9-C10	179.5 (3)
N1—C1—C2—C3	-30.8 (4)	C13—C8—C9—C10	55.2 (3)
C7—C2—C3—C4	1.0 (4)	C8—C9—C10—C11	-54.8 (4)

C1—C2—C3—C4	-178.2 (3)	C9—C10—C11—C12	54.6 (4)
C2—C3—C4—C5	-0.6 (5)	C10-C11-C12-C13	-54.1 (4)
C3—C4—C5—C6	-0.7 (5)	N1-C8-C13-C12	-179.8 (3)
C4—C5—C6—C7	1.6 (5)	C9—C8—C13—C12	-55.8 (3)
C5—C6—C7—C2	-1.2 (5)	C11—C12—C13—C8	55.2 (4)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>n</i> ···O1 ⁱ	0.80 (3)	2.32 (3)	3.065 (3)	157 (3)
C13—H13a··· <i>Cg</i> 1 ⁱⁱ	0.97	2.82	3.722 (4)	154
C5—H5····Cg1 ⁱⁱⁱ	0.93	2.96	3.729 (4)	141

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, *y*+1/2, -*z*.