metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4-Aminobenzenesulfonato)heptaaquagadolinium(III) 4-aminobenzenesulfonate nitrate 4,4'-bipyridyl tetrasolvate dihydrate

Lujiang Hao,* Xiaofei Zhang and Jiangkui Chen

Shandong Provincial Key Laboratory of Microbial Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China Correspondence e-mail: lujianghao001@vahoo.com.cn

Received 17 May 2010; accepted 30 May 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.010 Å; R factor = 0.036; wR factor = 0.088; data-to-parameter ratio = 12.9.

In the title compound, $[Gd(C_6H_6O_3S)(H_2O)_7](C_6H_6O_3S)(NO_3)\cdot 4C_{10}H_8N_2\cdot 2H_2O$, the Gd^{III} ion is octacoordinated by seven water molecules and one O-bonded 4-aminobenzene-sulfonate anion in a square-antiprismatic arrangement. In the crystal, the components are linked by $N-H\cdots O$, $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds.

Related literature

For background to lanthanide coordination networks, see: Karthikeyan *et al.* (1989).

Experimental

Crystal data

 $\begin{array}{l} [\mathrm{Gd}(\mathrm{C_6H_6O_3S})(\mathrm{H_2O})_7](\mathrm{C_6H_6O_3S}) \\ (\mathrm{NO_3})\cdot 4\mathrm{C_{10}H_8N_2}\cdot 2\mathrm{H_2O} \\ M_r = 1350.50 \\ \mathrm{Orthorhombic}, Aba2 \\ a = 33.529 \ (2) \ \mathrm{\AA} \\ b = 23.3375 \ (10) \ \mathrm{\AA} \\ c = 15.2046 \ (10) \ \mathrm{\AA} \end{array}$

 $V = 11897.3 (12) Å^3$ Z = 8Mo K α radiation $\mu = 1.26 \text{ mm}^{-1}$ T = 296 K $0.12 \times 0.10 \times 0.08 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\rm min} = 0.863, T_{\rm max} = 0.906$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.088$ S = 1.0010477 reflections 811 parameters 27 restraints 41191 measured reflections 10477 independent reflections 8881 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.045$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
5009 Friedel pairs
Flack parameter: 0.002 (1)

 Table 1

 Selected bond lengths (Å).

Gd1-O6W	2.375 (4)	Gd1-O7W	2.391 (4)
Gd1 - O2W	2.373 (4)	Gd1-O5W	2.401 (4)
Gd1 - O1W	2.389 (4)	Gd1-O1	2.434 (4)
Gd1 - O3W	2.392 (4)	Gd1-O4W	2.440 (4)

Table 2 Hydrogen bond geome

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1W\cdots N6$	0.82 (2)	2.12 (2)	2.770 (7)	136 (3)
$O1W - H2W \cdots O5$	0.82 (2)	2.13 (1)	2.759 (6)	134 (3)
$O2W - H3W \cdot \cdot \cdot O8W$	0.82(2)	1.93 (1)	2.657 (7)	147 (2)
$O3W - H6W \cdot \cdot \cdot N8$	0.82(2)	1.99 (1)	2.728 (7)	149 (2)
O4W−H8W···N9 ⁱ	0.82(2)	2.19 (2)	2.807 (7)	133 (1)
O5W−H9W···N4 ⁱⁱ	0.82(1)	1.86(1)	2.647 (7)	159 (2)
O5W−H10W···O3	0.82(2)	2.51 (2)	3.236 (6)	148 (4)
O5W-H10WO1	0.82(2)	2.50 (3)	2.931 (5)	114 (2)
O6W−H11W···O3 ⁱⁱⁱ	0.82(3)	1.95 (3)	2.765 (6)	175 (5)
$O6W - H12W \cdot \cdot \cdot N3$	0.82(1)	1.90 (1)	2.719 (7)	178 (8)
$O7W - H13W \cdot \cdot \cdot N1^{iv}$	0.82(3)	2.19 (2)	2.902 (7)	145 (3)
O7W−H14W···N5 ⁱⁱ	0.82(1)	2.37 (4)	2.758 (7)	110 (3)
$O7W - H14W \cdot \cdot \cdot O3W$	0.82(1)	2.29(1)	2.709 (6)	112 (3)
$O8W - H16W \cdot \cdot \cdot N11^{v}$	0.82 (3)	1.98 (3)	2.798 (9)	176 (6)
O9W−H17W···O20	0.82 (3)	2.06 (4)	2.873 (7)	169 (6)
$O9W-H18WO2^{vi}$	0.82(4)	2.24 (5)	3.028 (7)	161 (7)
$N1-H1A\cdots O6^{vi}$	0.86	2.22	2.972 (7)	146
$N1 - H1B \cdot \cdot \cdot O2^{vi}$	0.86	2.14	2.958 (6)	159
$N7 - H7B \cdot \cdot \cdot O14^{vii}$	0.86	2.51	3.289 (12)	151
$N7 - H7A \cdots O15^{viii}$	0.86	2.63	3.345 (12)	141
$N7-H7A\cdots O16^{viii}$	0.86	2.46	3.302 (13)	167

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, \overline{z} ; (ii) x, y, z - 1; (iii) -x + 2, -y + 1, z; (iv) $-x + 2, -y + \frac{3}{2}$, $z - \frac{1}{2}$; (v) $-x + \frac{3}{2}$, $y, z - \frac{1}{2}$; (vi) $-x + 2, -y + \frac{3}{2}$, $z + \frac{1}{2}$; (vii) $x, y + \frac{1}{2}$, $z + \frac{1}{2}$; (viii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Financial support from the International Cooperation Program for Excellent Lectures of 2008 by Shandong Provincial Education Department is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5454).

References

Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Bruker (2001). Differ Finds and Difference. Diaker Finds Inc., Ma Wisconsin, USA.
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Karthikeyan, S., Ryan, R. R. & Paine, R. T. (1989). Inorg. Chem. 28, 2783-2789.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, m740-m741 [doi:10.1107/S1600536810020520]

(4-Aminobenzenesulfonato)heptaaquagadolinium(III) 4-aminobenzenesulfonate nitrate 4,4'-bipyridyl tetrasolvate dihydrate

Lujiang Hao, Xiaofei Zhang and Jiangkui Chen

S1. Comment

The design and synthesis of metal-organic compounds has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Karthikeyan *et al.*, 1989). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, Gd(III) is octacoordinated by serven water molecules and one *p*-amino-benzenesulfonate anion. The Gd—O bond lengths are in the range of 2.370 (4)—2.439 (4) Å. In the molecule, one *p*-amino-benzenesulfonate, one nitrate, and two water molecules disassociate. N—H···O2, N—H···S, O—H···N, O—H···N, O—H···O hydrogen bonding between the cationic and anionic moieties and the uncoordinated water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

S2. Experimental

A mixture of 4-aminobenzene sulfonic acid (1 mmol 0.17 g), gadolinium(III) nitrate hexahydrate (0.5 mmol, 0.17 g), and 4,4-bipyridine (1 mmol, 0.14 g) in 10 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Colourless blocks of (I) were obtained upon cooling. Anal. $C_{52}H_{62}GdN_{11}O_{18}S_2$: C, 46.22; H, 4.59; N, 11.41. Found: C, 46.01; H, 4.48; N, 11.23%.

S3. Refinement

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C— H distance of 0.93 Å and $U_{iso} = 1.2U_{eq}(C)$. The hydrogen atoms bound to N atoms were refined in calculated positions using a riding model with a N—H distance of 0.86 Å and $U_{iso} = 1.2U_{eq}(C)$. Water molecules are refined by using the '*DFIX*' command with the hydrogen atoms were separated with 1.38 Å, and the lengths of bond H—O were constrained with 0.82 Å with error 0.02 and $U_{iso} = 1.5U_{eq}(O)$. The location of the water H atoms should be regarded as less certain that those of the other H atoms.

Figure 1

The building blocks of (I) with displacement ellipsoids drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.

Figure 2

The crystal packing of (I), displayed with N—H…O and O—H…O hydrogen bonds as dashed lines.

(4-Aminobenzenesulfonato)heptaaquagadolinium(III) 4-aminobenzenesulfonate nitrate 4,4'-bipyridyl tetrasolvate dihydrate

Crystal data

$[Gd(C_6H_6O_3S)(H_2O)_7](C_6H_6O_3S)$	F(000) = 5528
$(NO_3) \cdot 4C_{10}H_8N_2 \cdot 2H_2O$	$D_{\rm x} = 1.508 {\rm Mg} {\rm m}^{-3}$
$M_r = 1350.50$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Orthorhombic, Aba2	Cell parameters from 10477 reflections
Hall symbol: A 2 -2ac	$\theta = 2.4 - 25.0^{\circ}$
a = 33.529 (2) Å	$\mu = 1.26 \text{ mm}^{-1}$
b = 23.3375 (10) Å	T = 296 K
c = 15.2046 (10) Å	Block, colourless
$V = 11897.3 (12) Å^3$	$0.12 \times 0.10 \times 0.08 \text{ mm}$
Z = 8	
Data collection	
Bruker APEXII CCD	41191 measured reflections
diffractometer	10477 independent reflections
Radiation source: fine-focus sealed tube	8881 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.045$
phi and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -39 \rightarrow 39$
(SADABS; Bruker, 2001)	$k = -27 \rightarrow 25$
$T_{\min} = 0.863, T_{\max} = 0.906$	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of independent
$wR(F^2) = 0.088$	and constrained refinement
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.044P)^2 + 12.9607P]$
10477 reflections	where $P = (F_o^2 + 2F_c^2)/3$
811 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
27 restraints	$\Delta ho_{ m max} = 0.35$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.53 \text{ e} \text{ Å}^{-3}$
direct methods	Absolute structure: Flack (1983), 5009 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.002 (1)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.01881 (15)	0.6735 (2)	0.4126 (3)	0.0317 (11)	
C2	1.04516 (16)	0.6502 (2)	0.4716 (3)	0.0373 (12)	
H2	1.0613	0.6198	0.4545	0.045*	
C3	1.04792 (18)	0.6714 (3)	0.5561 (4)	0.0423 (14)	
H3	1.0658	0.6549	0.5955	0.051*	
C4	1.02425 (16)	0.7174 (2)	0.5830 (3)	0.0366 (13)	
C5	0.99778 (17)	0.7407 (2)	0.5226 (3)	0.0391 (14)	
H5	0.9818	0.7714	0.5391	0.047*	
C6	0.99492 (16)	0.7190 (2)	0.4389 (4)	0.0392 (13)	
H6	0.9768	0.7350	0.3995	0.047*	
C7	0.9597 (2)	0.5837 (3)	0.5639 (5)	0.065 (2)	
H7	0.9668	0.6149	0.5294	0.078*	
C8	0.9629 (2)	0.5891 (3)	0.6540 (5)	0.058 (2)	
H8	0.9726	0.6230	0.6781	0.069*	
C9	0.9520 (2)	0.5445 (3)	0.7085 (4)	0.0402 (16)	
C10	0.9388 (3)	0.4959 (3)	0.6658 (4)	0.069 (2)	
H10	0.9316	0.4638	0.6983	0.083*	
C11	0.9361 (3)	0.4947 (4)	0.5753 (5)	0.083 (3)	
H11	0.9259	0.4618	0.5492	0.099*	
C12	0.95518 (19)	0.5476 (3)	0.8045 (4)	0.0364 (15)	
C13	0.9811 (2)	0.5832 (3)	0.8464 (5)	0.065 (2)	
H13	0.9976	0.6072	0.8139	0.077*	
C14	0.9829 (3)	0.5837 (4)	0.9365 (5)	0.077 (3)	

H14	1.0010	0.6084	0.9630	0.092*
C15	0.9355 (3)	0.5184 (4)	0.9479 (5)	0.074 (3)
H15	0.9195	0.4950	0.9826	0.089*
C16	0.9307 (2)	0.5152 (3)	0.8572 (5)	0.063 (2)
H16	0.9114	0.4915	0.8327	0.075*
C17	0.8646 (2)	0.6318 (3)	0.9382 (5)	0.056 (2)
H17	0.8504	0.6059	0.9726	0.067*
C18	0.8591 (2)	0.6306 (3)	0.8485 (5)	0.053 (2)
H18	0.8414	0.6042	0.8245	0.064*
C19	0.87929 (19)	0.6675 (3)	0.7936 (4)	0.0357 (16)
C20	0.9046 (2)	0.7060 (3)	0.8358 (5)	0.055 (2)
H20	0.9189	0.7329	0.8036	0.066*
C21	0.9079 (2)	0.7037 (4)	0.9264 (5)	0.063 (2)
H21	0.9250	0.7300	0.9529	0.076*
C22	0.87594 (19)	0.6666 (3)	0.6959 (5)	0.0395 (17)
C23	0.8567 (2)	0.6225 (3)	0.6532 (4)	0.056 (2)
H23	0.8445	0.5933	0.6850	0.067*
C24	0.8556 (3)	0.6222 (4)	0.5622 (6)	0.068 (2)
H24	0.8428	0.5918	0.5345	0.081*
C25	0.8918 (2)	0.7093 (3)	0.6430 (5)	0.0504 (18)
H25	0.9044	0.7407	0.6685	0.060*
C26	0.8890 (2)	0.7054 (3)	0.5529 (5)	0.058 (2)
H26	0.9000	0.7347	0.5191	0.070*
C27	0.7098 (2)	0.7503 (4)	0.9084 (5)	0.077 (2)
H27	0.6825	0.7551	0.9003	0.092*
C28	0.7333 (2)	0.7988 (3)	0.9122 (5)	0.066 (2)
H28	0.7220	0.8349	0.9062	0.079*
C29	0.77372 (19)	0.7930 (3)	0.9250 (4)	0.0522 (16)
C30	0.7882 (2)	0.7383 (3)	0.9354 (5)	0.069 (2)
H30	0.8153	0.7322	0.9454	0.083*
C31	0.7622 (2)	0.6925 (3)	0.9310(6)	0.083 (3)
H31	0.7725	0.6559	0.9396	0.099*
C32	0.80115 (18)	0.8427 (3)	0.9256 (4)	0.0506 (15)
C33	0.7922 (2)	0.8937 (3)	0.9665 (5)	0.072 (2)
H33	0.7683	0.8983	0.9969	0.087*
C34	0.8197 (3)	0.9385 (3)	0.9614 (6)	0.078 (2)
H34	0.8135	0.9725	0.9903	0.094*
C35	0.8615 (2)	0.8864 (3)	0.8783 (5)	0.0587 (18)
H35	0.8851	0.8836	0.8464	0.070*
C36	0.8371 (2)	0.8394 (3)	0.8811 (5)	0.0566 (18)
H36	0.8446	0.8055	0.8534	0.068*
C37	0.7417 (2)	0.7246 (3)	0.1777 (6)	0.071 (2)
H37	0.7148	0.7151	0.1814	0.086*
C38	0.7696 (2)	0.6819 (3)	0.1772 (6)	0.081 (2)
H38	0.7609	0.6442	0.1805	0.097*
C39	0.8195 (2)	0.7462 (4)	0.1683 (5)	0.072 (2)
H39	0.8466	0.7542	0.1654	0.087*
C40	0.79343 (19)	0.7909 (3)	0.1685 (5)	0.0617 (18)
	× /			· /

H40	0.8031	0.8282	0.1655	0.074*
C41	0.75276 (18)	0.7816 (3)	0.1729 (4)	0.0501 (15)
C42	0.72368 (16)	0.8286 (3)	0.1737 (4)	0.0444 (14)
C43	0.68574 (18)	0.8222 (3)	0.1372 (4)	0.0564 (17)
H43	0.6784	0.7881	0.1101	0.068*
C44	0.6595 (2)	0.8671 (4)	0.1419 (5)	0.063 (2)
H44	0.6344	0.8620	0.1170	0.075*
C45	0.73194 (17)	0.8813 (3)	0.2124 (4)	0.0541 (17)
H45	0.7568	0.8881	0.2376	0.065*
C46	0.7029 (2)	0.9237 (3)	0.2131 (5)	0.063 (2)
H46	0.7090	0.9587	0.2389	0.075*
C47	0.87083 (17)	0.8856 (2)	0.3376 (4)	0.0432 (14)
C48	0.86031 (16)	0.9022 (2)	0.2554 (6)	0.0486 (14)
H48	0.8721	0.8845	0.2072	0.058*
C49	0.83240 (17)	0.9449 (3)	0.2418 (7)	0.0632 (16)
H49	0.8256	0.9552	0.1847	0.076*
C50	0.81468 (18)	0.9721 (3)	0.3113 (6)	0.0602 (18)
C51	0.8256 (2)	0.9552 (3)	0.3948 (5)	0.0631 (19)
H51	0.8140	0.9730	0.4432	0.076*
C52	0.8533 (2)	0.9124 (3)	0.4081(4)	0.0557 (17)
H52	0.8602	0.9016	0.4650	0.067*
Gd1	0.914673 (6)	0.583155 (8)	0.24786 (4)	0.02827 (7)
N1	1.02869 (15)	0.7404(2)	0.6662(3)	0.0519(13)
H1A	1.0461	0.7264	0.7017	0.062*
H1B	1.0140	0.7687	0.6824	0.062*
N2	0.7594(2)	0.5425 (3)	0.0739(6)	0.0738(19)
N3	0.9470(2)	0.5368(3)	0.5235(4)	0.0637 (19)
N4	0.9609(2)	0.5518(3)	0.9875(4)	0.0626(17)
N5	0.88924(17)	0.6679(3)	0.9780 (4)	0.0525(17)
N6	0.87160(17)	0.6673(3)	0.5119(4)	0.0528(15)
N7	0.3776(18)	1.0158(3)	0.2970(5)	0.088(2)
H7A	0.7820	1.0262	0.2442	0.106*
H7B	0.7767	1.0328	0.3409	0.106*
N8	0.80819(19)	0.6914(3)	0.1722 (5)	0.0732(17)
N9	0.66714 (17)	0.09169(2)	0.1722(3) 0.1790(4)	0.0752(17) 0.0606(14)
N10	0.8535(2)	0.9358(3)	0.1790(1) 0.9186(5)	0.0000(11) 0.0723(17)
N11	0.0000(2)	0.9930(3) 0.6974(3)	0.9154(5)	0.0725(17) 0.0815(19)
01	0.72303(1)) 0.97175(11)	0.64181(16)	0.2889(3)	0.0015(1)
02	1.03318(10)	0.68583(14)	0.2669(3) 0.2462(4)	0.0483(8)
03	1.03391(12)	0.59050 (14)	0.2402(4) 0.3044(3)	0.0405(0)
05	0.88950(15)	0.77808(18)	0.3359(4)	0.0797 (16)
06	0.00900(13) 0.93894(13)	0.84568 (19)	0.2913(3)	0.0678 (13)
014	0.7721(3)	0.5527(4)	0.2919(3) 0.0030(7)	0.0070(15) 0.185(5)
015	0.7793(2)	0.5406(3)	0.1387(7)	0.155(4)
016	0.7249(2)	0.5362(4)	0.0840 (6)	0.123(3)
020	0.72 + 7(2) 0.92070(18)	0.3302(7) 0.8376(2)	0.4442(3)	0.143(3) 0.0874(17)
01W	0.88775(12)	0.65990(2)	0.3333(2)	0.0074(17)
02W	0.86855(12)	0.54534(19)	0.3511(3)	0.0533(11)
5411	0.000000 (12)	0.01007(17)	0.0011 (0)	0.00000 (11)

O3W	0.85363 (11)	0.59444 (18)	0.1683 (3)	0.0483 (10)
O4W	0.89860 (12)	0.49138 (17)	0.1797 (3)	0.0485 (10)
O5W	0.96918 (11)	0.54819 (17)	0.1606 (2)	0.0418 (9)
O6W	0.95002 (14)	0.52250 (18)	0.3461 (2)	0.0468 (10)
O7W	0.91889 (12)	0.66144 (19)	0.1469 (3)	0.0490 (11)
O8W	0.7948 (2)	0.5832 (3)	0.3771 (5)	0.0923 (19)
O9W	0.94198 (16)	0.8969 (2)	0.6030 (3)	0.0660 (13)
S2	1.01437 (4)	0.64533 (6)	0.30545 (9)	0.0351 (3)
S5	0.90793 (5)	0.83258 (7)	0.35428 (12)	0.0509 (4)
H1W	0.8955 (12)	0.6538 (11)	0.3835 (6)	0.076*
H2W	0.8968 (11)	0.68906 (11)	0.3108 (18)	0.076*
H3W	0.8467 (2)	0.5584 (15)	0.3374 (17)	0.076*
H6W	0.8437 (6)	0.6238 (9)	0.1882 (18)	0.076*
H8W	0.8762 (5)	0.4857 (9)	0.199 (2)	0.076*
H9W	0.9625 (6)	0.5555 (17)	0.1100 (2)	0.076*
H10W	0.9884 (2)	0.5665 (14)	0.178 (2)	0.076*
H11W	0.955 (2)	0.4895 (9)	0.331 (3)	0.076*
H12W	0.950 (2)	0.527 (2)	0.3995 (6)	0.076*
H14W	0.89570 (17)	0.6682 (13)	0.133 (2)	0.076*
H16W	0.789 (2)	0.6161 (9)	0.390 (4)	0.076*
H17W	0.937 (2)	0.884 (2)	0.5539 (16)	0.076*
H18W	0.943 (2)	0.8730 (18)	0.642 (3)	0.076*
H15W	0.793 (2)	0.5599 (18)	0.417 (3)	0.06 (3)*
H5W	0.8410 (5)	0.5651 (7)	0.179 (2)	0.14 (4)*
H4W	0.8703 (9)	0.51038 (19)	0.347 (2)	0.22 (7)*
H7W	0.9160 (8)	0.4709 (4)	0.201 (2)	0.15 (5)*
H13W	0.9299 (13)	0.6871 (7)	0.1746 (11)	0.15 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.031 (3)	0.034 (3)	0.030 (3)	-0.004 (2)	-0.001 (2)	-0.001 (2)
C2	0.038 (3)	0.038 (3)	0.036 (3)	0.010 (2)	-0.001 (2)	0.000 (2)
C3	0.044 (3)	0.049 (4)	0.034 (3)	0.001 (3)	-0.014 (3)	0.003 (3)
C4	0.039 (3)	0.038 (3)	0.033 (3)	-0.006 (3)	0.003 (2)	-0.004 (2)
C5	0.040 (3)	0.036 (3)	0.041 (4)	0.006 (3)	-0.001 (3)	-0.009 (3)
C6	0.038 (3)	0.038 (3)	0.042 (3)	0.005 (2)	-0.005 (2)	0.000 (3)
C7	0.062 (5)	0.076 (6)	0.057 (5)	-0.003 (4)	0.009 (4)	0.022 (4)
C8	0.064 (5)	0.069 (5)	0.040 (4)	-0.021 (4)	-0.001 (4)	-0.001 (4)
C9	0.041 (4)	0.040 (4)	0.039 (3)	-0.002 (3)	0.009 (3)	0.005 (3)
C10	0.124 (7)	0.049 (5)	0.035 (4)	-0.016 (4)	0.002 (4)	0.003 (3)
C11	0.142 (8)	0.058 (5)	0.049 (5)	-0.013 (5)	-0.007(5)	-0.005 (4)
C12	0.038 (3)	0.045 (4)	0.027 (3)	0.005 (3)	-0.001 (3)	0.001 (3)
C13	0.063 (5)	0.080 (6)	0.051 (4)	-0.030 (4)	0.003 (4)	-0.008(4)
C14	0.072 (5)	0.108 (7)	0.050 (5)	-0.028 (5)	-0.012 (4)	-0.021 (5)
C15	0.110 (7)	0.078 (7)	0.034 (5)	-0.015 (5)	0.009 (4)	0.001 (4)
C16	0.075 (5)	0.072 (5)	0.041 (4)	-0.029 (4)	0.006 (4)	-0.006 (4)
C17	0.070 (5)	0.057 (5)	0.041 (4)	-0.012 (4)	0.001 (3)	0.017 (4)

C18	0.056 (4)	0.047 (4)	0.057 (5)	-0.019 (4)	-0.011 (4)	0.001 (4)
C19	0.041 (4)	0.038 (4)	0.029 (3)	-0.001 (3)	-0.008(3)	0.006 (3)
C20	0.058 (4)	0.067 (5)	0.041 (4)	-0.024 (4)	0.000 (3)	0.010 (3)
C21	0.070 (5)	0.073 (5)	0.047 (4)	-0.027 (4)	-0.018 (4)	0.003 (4)
C22	0.036 (4)	0.040 (4)	0.042 (4)	0.011 (3)	-0.003 (3)	0.001 (4)
C23	0.080 (5)	0.060 (5)	0.028 (4)	-0.022 (4)	-0.002(3)	-0.001(3)
C24	0.081 (6)	0.071 (6)	0.051 (5)	-0.028(5)	0.003 (4)	-0.009(4)
C25	0.066 (5)	0.043 (4)	0.042 (4)	-0.010 (3)	0.000 (3)	0.004 (3)
C26	0.075 (5)	0.055 (5)	0.045 (4)	0.002 (4)	0.006 (4)	0.011 (4)
C27	0.044 (4)	0.108 (7)	0.078 (5)	-0.015 (5)	-0.005 (4)	0.012 (5)
C28	0.048 (4)	0.067 (5)	0.081 (5)	0.006 (4)	0.008 (4)	0.019 (4)
C29	0.051 (4)	0.048 (4)	0.057 (4)	0.003 (3)	0.004 (3)	0.004 (3)
C30	0.050 (4)	0.054 (4)	0.103 (6)	-0.007 (3)	-0.016 (4)	0.012 (4)
C31	0.067 (5)	0.057 (5)	0.123 (8)	-0.014 (4)	-0.013 (5)	0.013 (5)
C32	0.047 (4)	0.047 (4)	0.058 (4)	0.000 (3)	-0.001 (3)	0.018 (3)
C33	0.080 (5)	0.052 (4)	0.085 (6)	0.005 (4)	0.028 (4)	0.007 (4)
C34	0.106 (6)	0.047 (4)	0.081 (5)	-0.002 (4)	0.017 (5)	-0.003 (4)
C35	0.051 (4)	0.059 (5)	0.066 (5)	0.005 (4)	-0.004(3)	0.013 (4)
C36	0.047 (4)	0.047 (4)	0.075 (5)	0.004 (3)	-0.012 (3)	-0.002 (4)
C37	0.045 (4)	0.060 (5)	0.109 (6)	0.004 (3)	0.004 (4)	-0.007 (4)
C38	0.068 (5)	0.055 (5)	0.119 (7)	0.010 (4)	-0.010 (5)	-0.010 (5)
C39	0.042 (4)	0.086 (6)	0.089 (6)	0.006 (4)	-0.010 (4)	-0.014 (5)
C40	0.046 (4)	0.049 (4)	0.090 (5)	0.006 (3)	-0.017 (4)	-0.001 (4)
C41	0.046 (4)	0.054 (4)	0.050 (4)	0.001 (3)	-0.007 (3)	-0.006 (3)
C42	0.039 (3)	0.053 (4)	0.041 (3)	0.002 (3)	-0.005 (3)	0.003 (3)
C43	0.044 (4)	0.065 (5)	0.061 (4)	0.007 (3)	-0.006 (3)	-0.008 (3)
C44	0.041 (4)	0.078 (6)	0.069 (5)	0.008 (4)	-0.008 (3)	0.008 (4)
C45	0.041 (3)	0.049 (4)	0.073 (4)	-0.005 (3)	-0.002 (3)	0.006 (3)
C46	0.058 (4)	0.045 (4)	0.084 (5)	0.005 (3)	0.001 (3)	0.001 (3)
C47	0.047 (3)	0.036 (3)	0.047 (4)	-0.008 (3)	0.006 (3)	0.000 (3)
C48	0.055 (3)	0.046 (3)	0.045 (3)	-0.005 (2)	-0.001 (4)	0.003 (4)
C49	0.060 (3)	0.057 (4)	0.073 (4)	-0.001 (3)	-0.016 (5)	-0.008 (5)
C50	0.040 (3)	0.041 (4)	0.099 (6)	-0.007 (3)	-0.002 (4)	-0.012 (4)
C51	0.061 (4)	0.058 (5)	0.070 (5)	-0.004 (4)	0.017 (4)	-0.009 (4)
C52	0.059 (4)	0.058 (4)	0.049 (4)	-0.006 (3)	0.012 (3)	0.007 (3)
Gd1	0.03323 (11)	0.02543 (11)	0.02617 (10)	-0.00137 (9)	0.00040 (18)	-0.00023 (17)
N1	0.067 (3)	0.053 (3)	0.036 (3)	0.003 (3)	-0.008(2)	-0.011 (2)
N2	0.064 (4)	0.056 (4)	0.101 (6)	0.008 (3)	-0.026 (4)	-0.001 (4)
N3	0.093 (5)	0.069 (5)	0.028 (3)	0.011 (4)	0.002 (3)	0.005 (3)
N4	0.069 (4)	0.077 (5)	0.042 (3)	0.011 (3)	-0.006 (3)	-0.008 (3)
N5	0.056 (3)	0.058 (4)	0.043 (3)	-0.007 (3)	-0.009 (3)	0.011 (3)
N6	0.063 (4)	0.070 (4)	0.035 (3)	-0.005 (3)	0.004 (3)	-0.006 (3)
N7	0.078 (4)	0.063 (4)	0.124 (6)	0.023 (4)	-0.013 (4)	-0.020 (4)
N8	0.065 (4)	0.067 (4)	0.087 (5)	0.022 (3)	-0.015 (3)	-0.005 (4)
N9	0.059 (4)	0.056 (4)	0.067 (4)	0.010 (3)	0.003 (3)	0.008 (3)
N10	0.081 (4)	0.055 (4)	0.081 (4)	-0.014 (3)	0.009 (4)	0.010 (3)
N11	0.064 (4)	0.076 (5)	0.104 (5)	-0.019 (4)	-0.007 (4)	0.011 (4)
01	0.042 (2)	0.044 (2)	0.047 (2)	-0.0058 (18)	-0.0118 (17)	-0.0100 (18)

O2	0.056 (2)	0.052 (2)	0.0373 (17)	-0.0096 (16)	0.003 (3)	0.003 (3)
03	0.063 (3)	0.041 (2)	0.051 (2)	0.012 (2)	0.000 (2)	-0.0114 (19)
05	0.081 (3)	0.033 (3)	0.125 (5)	-0.003 (2)	-0.007 (3)	-0.002 (3)
06	0.054 (3)	0.068 (3)	0.082 (3)	0.004 (2)	0.013 (2)	-0.004 (3)
O14	0.277 (14)	0.140 (7)	0.136 (7)	0.073 (7)	0.105 (9)	0.027 (7)
015	0.138 (6)	0.094 (5)	0.232 (10)	-0.034 (5)	-0.109 (7)	0.059 (6)
016	0.073 (5)	0.174 (8)	0.181 (8)	-0.017 (5)	-0.017 (5)	-0.019 (7)
O20	0.109 (5)	0.089 (4)	0.064 (3)	0.024 (3)	-0.029 (3)	-0.009 (3)
O1W	0.069 (3)	0.039 (2)	0.031 (2)	-0.001 (2)	0.010 (2)	-0.0043 (17)
O2W	0.053 (3)	0.041 (3)	0.066 (3)	0.004 (2)	0.020 (2)	0.015 (2)
O3W	0.039 (2)	0.036 (2)	0.070 (3)	0.0021 (19)	-0.010 (2)	0.000 (2)
O4W	0.040 (2)	0.039 (2)	0.066 (3)	-0.002 (2)	0.005 (2)	-0.010 (2)
O5W	0.038 (2)	0.052 (3)	0.036 (2)	-0.0039 (19)	-0.0014 (17)	-0.0115 (19)
O6W	0.066 (3)	0.046 (3)	0.028 (2)	0.010 (2)	-0.002 (2)	0.0045 (18)
O7W	0.055 (3)	0.052 (3)	0.040 (2)	-0.012 (2)	-0.017 (2)	0.016 (2)
O8W	0.078 (4)	0.086 (5)	0.113 (5)	0.030 (4)	0.004 (4)	-0.014 (5)
O9W	0.078 (3)	0.069 (3)	0.052 (3)	0.009 (3)	0.004 (3)	0.004 (2)
S2	0.0392 (7)	0.0337 (7)	0.0324 (7)	-0.0002 (6)	-0.0037 (6)	-0.0052 (6)
S5	0.0543 (9)	0.0388 (9)	0.0594 (10)	-0.0008 (7)	-0.0002 (8)	-0.0030 (7)

Geometric parameters (Å, °)

C1—C2	1.371 (7)	С35—Н35	0.9300
C1—C6	1.389 (7)	С36—Н36	0.9300
C1—S2	1.763 (5)	C37—C38	1.367 (9)
С2—С3	1.380 (8)	C37—C41	1.384 (9)
С2—Н2	0.9300	С37—Н37	0.9300
С3—С4	1.396 (8)	C38—N8	1.314 (9)
С3—Н3	0.9300	C38—H38	0.9300
C4—N1	1.382 (7)	C39—N8	1.335 (9)
C4—C5	1.388 (8)	C39—C40	1.361 (9)
С5—С6	1.372 (8)	С39—Н39	0.9300
С5—Н5	0.9300	C40—C41	1.382 (9)
С6—Н6	0.9300	C40—H40	0.9300
C7—N3	1.324 (10)	C41—C42	1.468 (8)
С7—С8	1.380 (11)	C42—C43	1.396 (8)
С7—Н7	0.9300	C42—C45	1.391 (8)
С8—С9	1.380 (9)	C43—C44	1.369 (9)
С8—Н8	0.9300	C43—H43	0.9300
C9—C10	1.380 (10)	C44—N9	1.317 (9)
С9—С12	1.465 (8)	C44—H44	0.9300
C10-C11	1.379 (10)	C45—C46	1.389 (9)
С10—Н10	0.9300	C45—H45	0.9300
C11—N3	1.312 (10)	C46—N9	1.316 (9)
C11—H11	0.9300	C46—H46	0.9300
C12—C13	1.361 (9)	C47—C48	1.355 (10)
C12—C16	1.373 (9)	C47—C52	1.372 (8)
C13—C14	1.372 (11)	C47—S5	1.773 (6)

С13—Н13	0.9300	C48—C49	1.382 (8)
C14—N4	1.302 (10)	C48—H48	0.9300
C14—H14	0.9300	C49—C50	1.369 (11)
C15—N4	1.302 (10)	C49—H49	0.9300
C15—C16	1.391 (10)	C50—N7	1.381 (8)
C15—H15	0.9300	C50—C51	1.378 (10)
C16—H16	0.9300	C51—C52	1.381 (10)
C17—N5	1.325 (9)	C51—H51	0.9300
C17—C18	1.376 (10)	С52—Н52	0.9300
С17—Н17	0.9300	Gd1—O6W	2.375 (4)
C18—C19	1.377 (9)	Gd1—O2W	2.373 (4)
C18—H18	0.9300	Gd1—O1W	2.389 (4)
C19-C20	1 392 (9)	Gd1—O3W	2,392 (4)
C19 - C22	1 489 (6)	Gd1—O7W	2.392 (1)
C_{20} C_{21}	1.103(0) 1.383(10)	Gd1—O5W	2.391(1) 2 401(4)
C20 H20	0.0300		2.401(4)
C21 N5	1 307 (0)	Gd1 O4W	2.434(4)
$C_{21} = N_{3}$	0.0300		2.440 (4)
C_{21} C_{22} C_{25}	1,299 (0)		0.8000
	1.388 (9)	NI—HIB	0.8600
$C_{22} = C_{23}$	1.377 (9)	N2-016	1.176 (8)
C23—C24	1.384 (10)	N2-014	1.184 (10)
C23—H23	0.9300	N2-015	1.190 (9)
C24—N6	1.322 (10)	N/—H/A	0.8600
C24—H24	0.9300	N7—H7B	0.8600
C25—C26	1.376 (9)	O1—S2	1.453 (4)
C25—H25	0.9300	O2—S2	1.450 (4)
C26—N6	1.320 (9)	O3—S2	1.438 (4)
C26—H26	0.9300	O5—S5	1.441 (5)
C27—N11	1.322 (10)	O6—S5	1.446 (5)
C27—C28	1.381 (10)	O20—S5	1.437 (5)
C27—H27	0.9300	O1W—H1W	0.819 (17)
C28—C29	1.375 (9)	O1W—H2W	0.820 (19)
C28—H28	0.9300	O2W—H3W	0.820 (17)
C29—C30	1.376 (9)	O2W—H4W	0.820 (7)
C29—C32	1.481 (9)	O3W—H6W	0.82 (2)
C30—C31	1.380 (10)	O3W—H5W	0.821 (18)
С30—Н30	0.9300	O4W—H8W	0.82 (2)
C31—N11	1.321 (9)	O4W—H7W	0.82 (2)
C31—H31	0.9300	O5W—H9W	0.819 (11)
C32—C36	1.385 (9)	O5W—H10W	0.82 (2)
C32—C33	1.377 (10)	O6W—H11W	0.82 (3)
C33—C34	1.395 (10)	O6W—H12W	0.819 (12)
С33—Н33	0.9300	O8W—H16W	0.82 (3)
C34—N10	1.310 (10)	O8W—H15W	0.82 (4)
C34—H34	0.9300	O9W—H17W	0.82 (3)
C35—N10	1,335 (9)	O9W—H18W	0.82 (4)
C35—C36	1.369 (9)		0.02(1)

C2—C1—C6	119.1 (5)	C39—C40—C41	120.9 (7)
C2C1S2	120.7 (4)	C39—C40—H40	119.5
C6—C1—S2	120.2 (4)	C41—C40—H40	119.5
C1—C2—C3	120.6 (5)	C37—C41—C40	114.7 (6)
C1—C2—H2	119.7	C37—C41—C42	122.7 (6)
С3—С2—Н2	119.7	C40—C41—C42	122.6 (6)
C2—C3—C4	120.7 (5)	C43—C42—C45	116.4 (6)
С2—С3—Н3	119.6	C43—C42—C41	121.5 (6)
C4—C3—H3	119.6	C45 - C42 - C41	122.1(5)
N1 - C4 - C3	120 4 (5)	C44-C43-C42	1122.1(3) 118.8(7)
N1 - C4 - C5	120.1(5) 121.5(5)	C44-C43-H43	120.6
C_{3} C_{4} C_{5}	121.3(5) 1181(5)	C42 - C43 - H43	120.6
C_{5} C_{5} C_{4}	120.9(5)	N9 C44 C43	120.0 125.0(7)
C6 C5 H5	120.9 (5)	NO C 44 H 44	123.0 (7)
C4 C5 H5	119.5	$C_{44} = C_{44} = H_{44}$	117.5
C4 - C3 - H3	119.5	C45 - C44 - H44	117.5
	120.3 (3)	C40 - C43 - C42	119.0 (0)
С5—С6—Н6	119.7	C40—C45—H45	120.2
	119.7	C42—C45—H45	120.2
N3	124.3 (7)	N9—C46—C45	123.3 (/)
N3—C7—H7	117.9	N9—C46—H46	118.3
С8—С7—Н7	117.9	C45—C46—H46	118.3
C7—C8—C9	120.4 (7)	C48—C47—C52	118.6 (6)
С7—С8—Н8	119.8	C48—C47—S5	120.9 (5)
С9—С8—Н8	119.8	C52—C47—S5	120.4 (5)
C8—C9—C10	115.0 (6)	C47—C48—C49	121.3 (8)
C8—C9—C12	122.8 (7)	C47—C48—H48	119.3
C10—C9—C12	122.2 (7)	C49—C48—H48	119.3
С11—С10—С9	120.5 (7)	C50—C49—C48	120.9 (9)
C11-C10-H10	119.8	C50—C49—H49	119.6
C9—C10—H10	119.8	C48—C49—H49	119.6
N3—C11—C10	124.4 (8)	C49—C50—N7	120.4 (8)
N3—C11—H11	117.8	C49—C50—C51	117.6 (7)
C10-C11-H11	117.8	N7—C50—C51	122.0 (7)
C13—C12—C16	116.4 (6)	C52—C51—C50	121.3 (7)
C13—C12—C9	122.8 (7)	C52—C51—H51	119.3
C16—C12—C9	120.7(7)	C50—C51—H51	119.3
C12—C13—C14	120.0 (7)	C51—C52—C47	120.2 (6)
C12—C13—H13	120.0	C51—C52—H52	119.9
C_{14} C_{13} H_{13}	120.0	C47 - C52 - H52	119.9
N4-C14-C13	120.0	06W - Gd1 - 02W	71.80 (15)
$N_{4} = C_{14} = C_{15}$ $N_{4} = C_{14} = H_{14}$	117.8	06W - Gd1 - 01W	107.07(14)
C13 C14 H14	117.8	O2W Gd1 O1W	70.03 (15)
N4-C15-C16	124 5 (8)	O6W Gd1 O3W	$144 \ 17 \ (16)$
NA C15 H15	127.3 (0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70 51 (15)
107 - 013 - 1113 016 - 015 - 1115	11/./	$O_2 W = O_1 = O_2 W$	77.31(13)
C10-C13-C15	11/./	O(W = Cd1 = OW	02.40(14)
C_{12} C_{10} C_{13} C_{12} C_{16} U_{16}	110.0(/)	$O_{0}W = G_{1}U = O_{1}W$	140.10(13) 129.26(14)
C_{12} — C_{10} — Π_{10}	120.7	02 w - 001 - 07 w	138.30 (14)
UI3-UI0-HI0	120.7	UIW—Gal—U/W	/8.38 (14)

N5-C17-H17 118.4 O6W-Gd1-O5W C18-C17-H17 118.4 O2W-Gd1-O5W	76.42 (13)
C18—C17—H17 118.4 O2W—Gd1—O5W	127 20 (14)
	13/.30(14)
C17—C18—C19 121.5 (7) O1W—Gd1—O5W	147.41 (14)
C17—C18—H18 119.2 O3W—Gd1—O5W	114.14 (14)
C19—C18—H18 119.2 O7W—Gd1—O5W	81.94 (14)
C20-C19-C18 115.0 (6) O6W-Gd1-O1	77.38 (15)
C20—C19—C22 121.0 (7) O2W—Gd1—O1	123.49 (14)
C18—C19—C22 124.0 (7) O1W—Gd1—O1	74.70 (13)
C21—C20—C19 118.9 (7) O3W—Gd1—O1	137.76 (14)
C21—C20—H20 120.5 O7W—Gd1—O1	71.85 (14)
C19—C20—H20 120.5 O5W—Gd1—O1	74.60 (13)
N5—C21—C20 125.7 (7) O6W—Gd1—O4W	81.63 (15)
N5—C21—H21 117.2 O2W—Gd1—O4W	79.08 (15)
C20—C21—H21 117.1 O1W—Gd1—O4W	143.66 (14)
C25—C22—C23 116.3 (7) O3W—Gd1—O4W	72.10(15)
C25—C22—C19 122.6 (7) O7W—Gd1—O4W	114.26 (15)
C23—C22—C19 121.1 (7) O5W—Gd1—O4W	68.59 (13)
C24—C23—C22 119.1 (7) O1—Gd1—O4W	140.92 (13)
C24—C23—H23 120.4 C4—N1—H1A	120.0
C22—C23—H23 120.4 C4—N1—H1B	120.0
N6-C24-C23 124.4 (8) H1A-N1-H1B	120.0
N6-C24-H24 117.8 016-N2-014	119.8 (10)
C23—C24—H24 117.8 O16—N2—O15	116.1 (10)
C22—C25—C26 120.2 (7) 014—N2—O15	124.0 (10)
C22—C25—H25 119.9 C7—N3—C11	115.4 (7)
C26—C25—H25 119.9 C14—N4—C15	115.8 (7)
N6-C26-C25 123.4 (7) C21-N5-C17	115.6 (6)
N6-C26-H26 118.3 C26-N6-C24	116.5 (6)
C25—C26—H26 118.3 C50—N7—H7A	120.0
N11—C27—C28 124.1 (7) C50—N7—H7B	120.0
N11—C27—H27 118.0 H7A—N7—H7B	120.0
C28—C27—H27 118.0 C38—N8—C39	116.3 (6)
C29—C28—C27 119.2 (7) C38—N8—H14W	158.5 (9)
C29—C28—H28 120.4 C39—N8—H14W	83.6(7)
C27—C28—H28 120.4 C46—N9—C44	116.9 (6)
C30—C29—C28 117.1 (6) C34—N10—C35	116.3 (7)
C_{30} C_{29} C_{32} C_{29} C_{30} C_{27} N_{11} C_{31} C_{27} N_{11} C_{31}	116.1(7)
C28 - C29 - C32 $122.4 (6)$ $S2 - O1 - Gd1$	148.1(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.1 (2)
C31—C30—H30 120.4 Gd1—O1W—H1W	105 (2)
C29—C30—H30 120.4 Gd1—O1W—H2W	104.8 (18)
N11—C31—C30 124.1 (8) H1W—O1W—H2W	115 (3)
N11—C31—H31 118.0 Gd1—O2W—H3W	106.0 (19)
C30—C31—H31 118.0 Gd1—O2W—H4W	106 (2)
C36—C32—C33 117.4 (6) H3W—O2W—H4W	115 (3)
C36—C32—C29 119.6 (6) Gd1—O3W—H6W	104.7 (17)
C33—C32—C29 123.0 (6) Gd1—O3W—H5W	104.4 (16)

C32—C33—C34	118.5 (7)	H6W—O3W—H5W	115 (2)
С32—С33—Н33	120.7	Gd1—O4W—H8W	101.1 (17)
С34—С33—Н33	120.7	Gd1—O4W—H7W	100.8 (14)
N10-C34-C33	124.4 (8)	H8W—O4W—H7W	115 (3)
N10—C34—H34	117.8	Gd1—O5W—H9W	103.9 (17)
С33—С34—Н34	117.8	Gd1—O5W—H10W	104.1 (18)
N10-C35-C36	124.0 (7)	H9W—O5W—H10W	114 (3)
N10—C35—H35	118.0	Gd1—O6W—H11W	118 (4)
С36—С35—Н35	118.0	Gd1—O6W—H12W	122 (4)
C35—C36—C32	119.4 (7)	H11W—O6W—H12W	114 (5)
С35—С36—Н36	120.3	H16W—O8W—H15W	116 (5)
С32—С36—Н36	120.3	H17W—O9W—H18W	115 (4)
C38—C37—C41	121.1 (7)	O3—S2—O2	112.1 (2)
С38—С37—Н37	119.4	O3—S2—O1	113.3 (2)
С41—С37—Н37	119.4	O2—S2—O1	110.9 (2)
N8—C38—C37	123.5 (7)	O3—S2—C1	107.7 (2)
N8—C38—H38	118.3	O2—S2—C1	107.1 (3)
С37—С38—Н38	118.3	O1—S2—C1	105.3 (2)
N8—C39—C40	123.5 (7)	O20—S5—O6	113.5 (3)
N8—C39—H39	118.3	O20—S5—O5	112.6 (4)
С40—С39—Н39	118.3	O6—S5—O5	111.5 (3)
N8—C39—H14W	71.8 (5)	O20—S5—C47	106.7 (3)
C40—C39—H14W	162.6 (6)	O6—S5—C47	105.2 (3)
H39—C39—H14W	47.3	O5—S5—C47	106.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1 <i>W</i> —H1 <i>W</i> …N6	0.82 (2)	2.12 (2)	2.770 (7)	136 (3)
O1 <i>W</i> —H2 <i>W</i> ···O5	0.82 (2)	2.13 (1)	2.759 (6)	134 (3)
O2 <i>W</i> —H3 <i>W</i> ···O8 <i>W</i>	0.82 (2)	1.93 (1)	2.657 (7)	147 (2)
O3 <i>W</i> —H6 <i>W</i> …N8	0.82 (2)	1.99 (1)	2.728 (7)	149 (2)
O4W—H8W····N9 ⁱ	0.82 (2)	2.19 (2)	2.807 (7)	133 (1)
O5 <i>W</i> —H9 <i>W</i> ···N4 ⁱⁱ	0.82 (1)	1.86(1)	2.647 (7)	159 (2)
O5 <i>W</i> —H10 <i>W</i> ···O3	0.82 (2)	2.51 (2)	3.236 (6)	148 (4)
O5 <i>W</i> —H10 <i>W</i> …O1	0.82 (2)	2.50 (3)	2.931 (5)	114 (2)
O6 <i>W</i> —H11 <i>W</i> ···O3 ⁱⁱⁱ	0.82 (3)	1.95 (3)	2.765 (6)	175 (5)
O6 <i>W</i> —H12 <i>W</i> ···N3	0.82(1)	1.90(1)	2.719 (7)	178 (8)
O7W—H13 W ···N1 ^{iv}	0.82 (3)	2.19 (2)	2.902 (7)	145 (3)
O7 <i>W</i> —H14 <i>W</i> …N5 ⁱⁱ	0.82 (1)	2.37 (4)	2.758 (7)	110 (3)
O7 <i>W</i> —H14 <i>W</i> ···O3 <i>W</i>	0.82 (1)	2.29 (1)	2.709 (6)	112 (3)
O8W—H16 W ···N11 ^v	0.82 (3)	1.98 (3)	2.798 (9)	176 (6)
O9 <i>W</i> —H17 <i>W</i> ···O20	0.82 (3)	2.06 (4)	2.873 (7)	169 (6)
O9 <i>W</i> —H18 <i>W</i> ···O2 ^{vi}	0.82 (4)	2.24 (5)	3.028 (7)	161 (7)
N1—H1A···O6 ^{vi}	0.86	2.22	2.972 (7)	146
N1—H1 B ···O2 ^{vi}	0.86	2.14	2.958 (6)	159
N7—H7 <i>B</i> ···O14 ^{vii}	0.86	2.51	3.289 (12)	151

supporting information

N7—H7A····O15 ^{viii}	0.86	2.63	3.345 (12)	141	
N7—H7A····O16 ^{viii}	0.86	2.46	3.302 (13)	167	

Symmetry codes: (i) -*x*+3/2, *y*-1/2, *z*; (ii) *x*, *y*, *z*-1; (iii) -*x*+2, -*y*+1, *z*; (iv) -*x*+2, -*y*+3/2, *z*-1/2; (v) -*x*+3/2, *y*, *z*-1/2; (vi) -*x*+2, -*y*+3/2, *z*+1/2; (vii) *x*, *y*+1/2, *z*+1/2; (viii) -*x*+3/2, *y*+1/2, *z*.