Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,3,6,7-Tetrakis(bromomethyl)naphthalene

Maciej Skibiński, ${ }^{\text {a }}$ Vladimir A. Azov ${ }^{\text {a }}$ and Peter G. Jones ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, University of Bremen, Leobener Strasse NW 2C, 28359 Bremen, Germany, and ${ }^{\mathbf{b}}$ Institute of Inorganic and Analytical Chemistry, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany Correspondence e-mail: p.jones@tu-bs.de

Received 3 June 2010; accepted 22 June 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.016 ; w R$ factor $=0.034 ;$ data-to-parameter ratio $=25.9$.

The title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{4}$, crystallizes with imposed inversion symmetry. In the crystal, the molecules pack in layers parallel to $(10 \overline{1})$. The layers involve two $\mathrm{Br} \cdots \mathrm{Br}$ and one $\mathrm{H} \cdots \mathrm{Br}$ contact. Between the layers, one contact each of types $\mathrm{Br} \cdots \mathrm{Br}, \mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{Br} \cdots \pi$ is observed.

Related literature

For the use of 2,3,6,7-tetrakis(bromomethyl)naphthalene in the preparation of cyclophanes, see: Otsubo et al. $(1983,1989)$; Yano et al. (1999); Skibiński et al. (2009). For its applications in the synthesis of hydrogen-bonded molecular capsules, see: Valdes et al. (1995); Rivera et al. (2001). For reviews on halogen-halogen contacts and 'weak' hydrogen bonding, see: Desiraju \& Steiner (1999); Metrangolo \& Resnati (2001); Metrangolo et al. (2008); Rissanen (2008). For the X-ray structures of the full series of ten isomeric bis(bromomethyl)naphthalenes, see: Jones \& Kuś (2010). For the X-ray structures of two isomeric tetrakis(bromomethyl)benzene derivatives, see: Jones \& Kuś (2007).

Experimental

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{4}$
$M_{r}=499.88$
Triclinic, $P \overline{1}$
$a=6.6144$ (2) \AA
$b=7.1770$ (2) \AA
$c=8.7761$ (3) \AA
$\alpha=84.744$ (3) $^{\circ}$
$\beta=78.251(3)^{\circ}$

Data collection

Oxford Diffraction Xcalibur Eos diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) $T_{\text {min }}=0.356, T_{\text {max }}=1.000$

17701 measured reflections 2122 independent reflections 1716 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016 \quad 82$ parameters
$w R\left(F^{2}\right)=0.034$
H -atom parameters constrained
$S=0.92$
$\Delta \rho_{\text {max }}=0.50 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.49 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{Br}^{2}{ }^{\mathrm{i}}$	0.99	2.96	$3.7967(17)$	143
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{Br}^{\text {ii }}$	0.99	2.98	$3.7359(16)$	134
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 5 \cdots \mathrm{Br} 1^{\text {iii }}$	0.95	3.11	$3.9399(16)$	147

Symmetry codes: (i) $x, y-1, z$; (ii) $-x,-y+1,-z+1$; (iii) $-x+1,-y+1,-z$.

Table 2
Bromine-bromine and related contacts and angles ($\left(\AA,{ }^{\circ}\right.$).
$C g$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 5, \mathrm{C} 1(-x, 1-y,-z)$ ring.

System $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}-\mathrm{C}$ or $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Cg}$	$\mathrm{Br} \cdots \mathrm{Br}$ or $\mathrm{Br} \cdots \mathrm{Cg}$	$\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$ (or $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Cg}$), $\mathrm{Br} \cdots \mathrm{Br}-\mathrm{C}$	Operator
$\mathrm{C} 6-\mathrm{Br} 1 \cdots \mathrm{Br} 2-\mathrm{C} 7$	$3.8972(3)$	$76.45(5), 134.79(5)$	$1-x, 1-y, 1-z$
$\mathrm{C} 7-\mathrm{Br} 2 \cdots \mathrm{Br} 2-\mathrm{C} 7$	$3.8873(4)$	$134.93(5) \times 2$	$-x, 2-y, 1-z$
$\mathrm{C} 7-\mathrm{Br} 2 \cdots \mathrm{Br} 2-\mathrm{C} 7$	$3.8913(4)$	$76.72(5) \times 2$	$1-x, 1-y, 1-z$
$\mathrm{C} 6-\mathrm{Br} 1 \cdots \mathrm{Cg}$	3.89	158	$1+x,-1+y, z$

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: $X P$ (Siemens, 1994); software used to prepare material for publication: SHELXL97.

We are grateful to Dr P. Kuś, Silesian University, Katowice, Poland, for crystallizing the title compound.

[^0]
organic compounds

Rissanen, K. (2008). CrystEngComm, 10, 1107-1113.
Rivera, J. M., Martin, T. \& Rebek, J. Jr (2001). J. Am. Chem. Soc. 123, 52135220.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Skibiński, M., Gómez, R., Lork, E. \& Azov, V. A. (2009). Tetrahedron, 65, 10348-10354.
Valdes, C., Spitz, U. P., Toledo, L. M., Kubik, S. W. \& Rebek, J. Jr (1995). J. Am. Chem. Soc. 117, 12733-12745.
Yano, K., Matsuda, S., Tani, K., Yamamoto, K. \& Matsubara, H. (1999). Bull. Chem. Soc. Jpn, 72, 2111-2114.

supporting information

Acta Cryst. (2010). E66, o1846-o1847 [doi:10.1107/S1600536810024311]

2,3,6,7-Tetrakis(bromomethyl)naphthalene

Maciej Skibiński, Vladimir A. Azov and Peter G. Jones

S1. Comment

The title compound is a symmetric rigid molecule with four bromomethyl groups. The bromine atoms can be easily substituted by other nucleophiles, which offers the opportunity of employing the compound as a building block for construction of various functional architectures. The title compound was prepared to serve as a spacer between two tetrathiafulvalene (TTF) groups in TTF-containing molecular tweezers (Skibiński et al., 2009). It was first employed as an intermediate in the preparation of triple-layered [2.2]naphthalenophane (Otsubo et al., 1983), and several other triplelayered cyclophanes (Otsubo et al., 1983; Yano et al., 1999). It was also used as an intermediate in the synthesis of Hbonded molecular capsules (Valdes et al., 1995; Rivera et al., 2001).
The molecule of the title compound is shown in Fig. 1. It displays crystallographic inversion symmetry (operator \#1-x, $1-y, 1-z$); for this reason, the crystallographic numbering does not correspond to the IUPAC numbering scheme. Bond lengths and angles may be considered normal; the bromine atoms are directed to opposite sides of the ring system, with $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{Br}(1) 92.22(16), \mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{Br} 2-79.86(17)^{\circ}$, which leads to a $+/ /-/+$ pattern of Br atoms about the ring plane for the IUPAC-numbered $\mathrm{C} 2,3,6,7$; this contrasts with the $-/ /+/+$ pattern in 1,2,4,5-tetrakis(bromomethyl)benzene (Jones \& Kuś, 2007), which is also inversion-symmetric.
Details of the packing interactions are given in the Tables. The molecules pack in layers parallel to ($10 \overline{1}$). Within the layers, the contacts $\mathrm{Br} 1 \cdots \mathrm{Br} 2$, the longer $\mathrm{Br} 2 \cdots \mathrm{Br} 2$ and the shorter $\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{Br} 2$ are observed. These combine to form columns of interactions parallel to the b axis; chains of molecules parallel to [101] (horizontal in Fig. 2) are also formed. The contacts $\mathrm{Br} 2 \cdots \mathrm{Br} 2$ (the shorter), $\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{Br} 2$ (the longer) and $\mathrm{Br} 1 \cdots C g(C g=$ centre of gravity of the ring $\mathrm{C} 1-5$ and $\mathrm{C} 1 \# 1$) link the layers (Fig. 3). H5 $\cdots \operatorname{Br} 13.11 \AA$ between the layers is a borderline interaction. The $\mathrm{Br} \cdots C g$ interaction could alternatively be interpreted as $\mathrm{Br} \cdots \mathrm{C} 5$, which at 3.450 (2) \AA is by far the shortest of the six $\mathrm{Br} \cdots \mathrm{C}$ contacts; it is often unclear which is the better interpretation in such systems (Jones \& Kuś, 2010). Despite the presence of the naphthalene ring systems, there are no significant $C g \cdots C g$ interactions. The shortest $\mathrm{H} \cdots C g$ contact is $\mathrm{H} 7 \mathrm{~A} \cdots C g(1-x, 1-$ $y,-z) 3.10 \AA$ between layers, but this is both long and has a narrow angle $\left(124^{\circ}\right)$. We can conclude that the crystal packing of the title compound is dominated by the contacts involving bromomethylene groups.

S2. Experimental

The title compound was prepared as described by Rivera et al. (2001) by treatment of a solution of 2,3-bis[\{[(1,1-dimethylethyl)dimethylsilyl]oxy\} methyl]- 6,7-bis[(phenylmethoxy)methyl]-naphthalene in chloroform with gaseous HBr . The compound was obtained as a colourless microcrystalline solid. Yield: 87\%. Crystals suitable for X-ray diffraction were grown by slow evaporation of a solution in $\mathrm{EtOH} / \mathrm{hexane} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. M.p. (decomp.) $230-231^{\circ} \mathrm{C}$ (lit. $230^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta=7.83(\mathrm{~s}, 4 \mathrm{H}), 4.84(\mathrm{~s}, 8 \mathrm{H})$ p.p.m..

The title compound is poorly soluble $(<1 \mathrm{~g} / L)$ in most organic solvents at room temperature, but is much more soluble in aromatic solvents, such as toluene or chlorobenzene, upon reflux.

S3. Refinement

Hydrogen atoms were included at calculated positions using a riding model with aromatic $\mathrm{C}-\mathrm{H} 0.95$, methylene $\mathrm{C}-\mathrm{H}$ $0.99 \AA$. The $U(\mathrm{H})$ values were fixed at $1.2 \times U_{\mathrm{eq}}(\mathrm{C})$ of the parent C atom.

Figure 1
Structure of the title compound in the crystal. Ellipsoids represent 50% probability levels. Only the asymmetric unit is numbered.

Figure 2
Molecular packing of the title compound as a layer parallel to $(10 \overline{1}) . \mathrm{Br} \cdots \mathrm{Br}$ and $\mathrm{H} \cdots \mathrm{Br}$ contacts are shown as thick dashed bonds.

Figure 3

Linking between the layers of the title compound. $\mathrm{Br} \cdots \mathrm{Br}$ and $\mathrm{H} \cdots \mathrm{Br}$ contacts are shown as thick dashed bonds. One representative $\mathrm{Br} \cdots C g$ contact is shown as a thin dashed bond (top left).

2,3,6,7-Tetrakis(bromomethyl)naphthalene

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{4}$
$M_{r}=499.88$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.6144$ (2) \AA
$b=7.1770$ (2) \AA
$c=8.7761$ (3) \AA
$\alpha=84.744(3)^{\circ}$
$\beta=78.251(3)^{\circ}$
$\gamma=64.555(3)^{\circ}$
$V=368.32(2) \AA^{3}$

Data collection

Oxford Diffraction Xcalibur Eos
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1419 pixels mm^{-1}
ω-scan
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
$T_{\min }=0.356, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.034$
$S=0.92$
2122 reflections
82 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$Z=1$
$F(000)=236$
$D_{\mathrm{x}}=2.254 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 503 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9533 reflections
$\theta=2.4-30.7^{\circ}$
$\mu=10.91 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colourless
$0.20 \times 0.06 \times 0.04 \mathrm{~mm}$

17701 measured reflections
2122 independent reflections
1716 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-11 \rightarrow 12$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0181 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.50 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.49 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.64988(3)$	$-0.00387(3)$	$0.24985(2)$	$0.01628(5)$
Br2	$0.23208(3)$	$0.72525(3)$	$0.44061(2)$	$0.01672(5)$
C1	$-0.0170(3)$	$0.4100(3)$	$0.02483(19)$	$0.0108(3)$
C2	$0.0922(3)$	$0.2877(3)$	$0.14549(19)$	$0.0122(3)$
H2	0.0699	0.1672	0.1791	0.015^{*}
C3	$0.2297(3)$	$0.3393(3)$	$0.21518(19)$	$0.0111(3)$
C4	$0.2621(3)$	$0.5223(3)$	$0.16547(19)$	$0.0110(3)$
C5	$0.1575(3)$	$0.6419(3)$	$0.04994(19)$	$0.0112(3)$
H5	0.1791	0.7633	0.0185	0.013^{*}
C6	$0.3431(3)$	$0.2029(3)$	$0.34014(19)$	$0.0136(3)$
H6A	0.2495	0.1316	0.3945	0.016^{*}
H6B	0.3563	0.2876	0.4173	0.016^{*}
C7	$0.4062(3)$	$0.5854(3)$	$0.24055(18)$	$0.0135(3)$
H7A	0.4559	0.6799	0.1704	0.016^{*}
H7B	0.5437	0.4620	0.2592	0.016^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.01360(10)$	$0.01494(10)$	$0.01724(10)$	$-0.00349(8)$	$-0.00312(7)$	$0.00232(7)$
Br 2	$0.01615(10)$	$0.01865(11)$	$0.01468(9)$	$-0.00544(8)$	$-0.00321(7)$	$-0.00581(7)$
C 1	$0.0099(8)$	$0.0112(9)$	$0.0093(8)$	$-0.0031(7)$	$0.0001(6)$	$-0.0012(6)$
C 2	$0.0130(8)$	$0.0120(9)$	$0.0105(8)$	$-0.0053(7)$	$0.0000(7)$	$-0.0003(6)$
C 3	$0.0085(8)$	$0.0127(9)$	$0.0087(8)$	$-0.0016(7)$	$-0.0006(6)$	$-0.0008(6)$
C 4	$0.0092(8)$	$0.0139(9)$	$0.0097(8)$	$-0.0050(7)$	$0.0011(6)$	$-0.0040(6)$
C 5	$0.0111(8)$	$0.0104(8)$	$0.0120(8)$	$-0.0055(7)$	$0.0012(6)$	$-0.0020(6)$
C 6	$0.0111(8)$	$0.0156(9)$	$0.0115(8)$	$-0.0033(7)$	$-0.0017(7)$	$0.0003(7)$
C 7	$0.0128(8)$	$0.0177(9)$	$0.0101(8)$	$-0.0064(7)$	$-0.0017(7)$	$-0.0023(7)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 6$	$1.9801(16)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.493(2)$
$\mathrm{Br} 2-\mathrm{C} 7$	$1.9806(16)$	$\mathrm{C} 5-\mathrm{C} 1^{\mathrm{i}}$	$1.422(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.418(2)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.420(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 1-\mathrm{C} 5^{\mathrm{i}}$	$1.422(2)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9900

C2-C3	1.377 (2)	C6-H6B	0.9900
C3-C4	1.436 (2)	C7-H7A	0.9900
C3-C6	1.494 (2)	C7-H7B	0.9900
C4-C5	1.363 (2)		
C2-C1-C1 ${ }^{\text {i }}$	118.85 (18)	C1-C2-H2	119.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5{ }^{\text {i }}$	122.57 (15)	C4-C5-H5	119.0
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 5^{\text {i }}$	118.58 (19)	C1 ${ }^{\text {i }}$ - $\mathrm{C} 5-\mathrm{H} 5$	119.0
C3-C2-C1	121.68 (15)	C3-C6-H6A	109.6
C2-C3-C4	119.29 (15)	$\mathrm{Br} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.6
C2-C3-C6	119.30 (15)	C3-C6-H6B	109.6
C4-C3-C6	121.41 (15)	$\mathrm{Br} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.6
C5-C4-C3	119.70 (15)	H6A-C6-H6B	108.1
C5-C4-C7	119.52 (15)	C4-C7-H7A	109.6
C3-C4-C7	120.77 (15)	$\mathrm{Br} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.6
C4-C5-C1 ${ }^{\text {i }}$	121.90 (15)	$\mathrm{C} 4-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.6
C3-C6-Br1	110.35 (11)	$\mathrm{Br} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.6
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{Br} 2$	110.18 (11)	H7A-C7-H7B	108.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.2		
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.0 (3)	C6-C3-C4-C7	-1.7 (2)
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	179.24 (16)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1^{\text {i }}$	-0.5 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.5 (2)	$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1^{\text {i }}$	-179.53 (15)
C1-C2-C3-C6	-179.09 (15)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6-\mathrm{Br} 1$	92.22 (16)
C2-C3-C4-C5	-0.2 (2)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6-\mathrm{Br} 1$	-87.36 (16)
C6-C3-C4-C5	179.34 (15)	C5-C4-C7- ${ }^{\text {- }} 2$	99.15 (16)
C2-C3-C4-C7	178.76 (15)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{Br} 2$	-79.86 (17)

Symmetry code: (i) $-x,-y+1,-z$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6 — \mathrm{H} 6 A \cdots \mathrm{Br}^{2} \mathrm{ii}$	0.99	2.96	$3.7967(17)$	143
$\mathrm{C} 6 — \mathrm{H} 6 A \cdots \mathrm{Br}^{2 i i}$	0.99	2.98	$3.7359(16)$	134
$\mathrm{C}^{\mathrm{ii}} \mathrm{H} 5 \cdots \mathrm{Br}^{\text {iv }}$	0.95	3.11	$3.9399(16)$	147

Symmetry codes: (ii) $x, y-1, z$; (iii) $-x,-y+1,-z+1$; (iv) $-x+1,-y+1,-z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2020).

 ## References

 Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
 Jones, P. G. \& Kuś, P. (2007). Z. Naturforsch. Teil B, 62, 725-731.
 Jones, P. G. \& Kuś, P. (2010). Z. Naturforsch. Teil B, 65, 433-444.
 Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. \& Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.
 Metrangolo, P. \& Resnati, G. (2001). Chem. Eur. J. 7, 2511-2519.
 Otsubo, T., Aso, Y., Ogura, F., Misumi, S., Kawamoto, A. \& Tanaka, J. (1989). Bull. Chem. Soc. Jpn, 62, 164-170.
 Otsubo, T., Ogura, F. \& Misumi, S. (1983). Tetrahedron Lett. 24, 4851-4854.
 Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

