

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Neoirietriol

Hiroki Takahashi,^a* Yoshinori Takahashi,^b Minoru Suzuki,^b Tsuyoshi Abe^c and Michio Masuda^d

^aGraduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan, ^bGraduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan, ^cThe Hokkaido University Museum, Sapporo 060-0810, Japan, and ^dDivision of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Correspondence e-mail: takahashi.hiroki.2x@kyoto-u.ac.jp

Received 8 June 2010; accepted 10 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.062; wR factor = 0.151; data-to-parameter ratio = 27.0.

The title compound {systematic name: (1R,4S,4aS,7R,8aR)-4bromo-7-[(1S,3R)-3-bromo-1,2,2-trimethylcyclopentyl]-1,4adimethyldecahydronaphthalene-1,7,8a-triol}, C₂₀H₃₄Br₂O₃, is a neoirieane-type bromoditerpenoid isolated from *Laurencia yonaguniensis* Masuda et Abe, species inedita. The absolute stereochemistry was established as (1S,4R,5R,7R,-10S,11S,14R). The structure displays inter- and intramolecular O-H···O hydrogen bonding.

Related literature

For background to neoirieane-type structures, see: Suzuki *et al.* (2002); Takahashi *et al.* (2002). For the related absolute configuration, see: Takahashi *et al.* (2007).

a = 7.5026 (2) Å

b = 11.3985 (3) Å

c = 12.1498 (5) Å

Experimental

Crystal data $C_{20}H_{34}Br_2O_3$ $M_r = 482.29$ Monoclinic, $P2_1$ $\beta = 94.9780 \ (3)^{\circ}$ $V = 1035.11 \ (6) \ Å^3$ Z = 2Mo $K\alpha$ radiation

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*DENZO-SMN*; Otwinowski & Minor, 1997) $T_{min} = 0.402, T_{max} = 0.454$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.151$ S = 1.146129 reflections 227 parameters $\mu = 3.94 \text{ mm}^{-1}$ T = 296 K $0.30 \times 0.20 \times 0.20 \text{ mm}$

43586 measured reflections 6129 independent reflections 4774 reflections with $F^2 > 2\sigma(F^2)$ $R_{\rm int} = 0.110$

All H-atom parameters refined $\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.44 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983) Flack parameter: -0.014 (12)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} D1 - H32 \cdots O3^{i} \\ D3 - H34 \cdots O2 \end{array}$	0.82 0.82	2.02 1.96	2.797 (4) 2.691 (4)	158 148

Symmetry code: (i) x + 1, y, z.

Data collection: *KappaCCD Server Software* (Nonius, 1998); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *CrystalStructure* (Rigaku, 2007); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2316).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Nonius (1998). *KappaCCD Server Software*. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suzuki, M., Nakano, S., Takahashi, Y., Abe, T., Masuda, M., Takahashi, H. & Kobayashi, K. (2002). J. Nat. Prod. 65, 801–804.
- Takahashi, Y., Daitoh, M., Suzuki, M., Abe, T. & Masuda, M. (2002). J. Nat. Prod. 65, 395–398.
- Takahashi, H., Takahashi, Y., Suzuki, M., Abe, T. & Masuda, M. (2007). *Anal. Sci.* **23**, x103–x1044.
- Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

supporting information

Acta Cryst. (2010). E66, o1795 [doi:10.1107/S1600536810022336]

Neoirietriol

Hiroki Takahashi, Yoshinori Takahashi, Minoru Suzuki, Tsuyoshi Abe and Michio Masuda

S1. Comment

As part of our continuing chemotaxonomical studies on Japanese species of the red algal genus *Laurencia* (Rhodomelaceae, Ceramiales), we reported previously the structure of neoirietetraol (Takahashi *et al.*, 2002, Takahashi *et al.*, 2007), including the relative configuration and X-ray crystal structure, isolated from *Laurencia yonaguniensis* Masuda et Abe, species inedita (Masuda, *M.*; unpublished results), which was collected at Yonaguni Island, Okinawa, Japan. Further investigation of the related metabolites from this alga has led to the isolation of a new bromoditerpene, named neoirietriol, having a molecular formula of $C_{20}H_{34}Br_2O_3$, which was established by FD-LRMS (m/z 466, 464, 462 (1:2:1); M–H₂O) and FAB-HRMS (m/z 479.0813; calcd for $C_{20}H_{33}^{79}Br_2O_3$, 479.0796; M–H).

During the course of refinement of the structure, the Flack parameter converged to a value of -0.014 (12) within the derived limits as required for the correct enantiomorph of the structure. The absolute configuration of the title compound was established as (1S, 4R, 5R, 7S, 10R, 11S, 14R) (Fig. 1).

In the crystal, an intramolecular hydrogen bond was observed between O3…O2[distance 2.691 (4) Å] and an intermolecular hydrogen bond between O1…O3 (x + 1, y, z; distance 2.797 (4) Å) forming an infinite chain structure along the a axis (Fig. 2).

S2. Experimental

Isolation

The partially dried alga (40 g) was soaked in MeOH for 3 days. The MeOH solution was concentrated in *vacuo* and partitioned between Et₂O and H₂O. The Et₂O solution was washed with water, dried over anhydrous Na₂SO₄, and evaporated to leave a dark-green oil (523 mg). The extract was fractionated by column chromatography on Si gel with a step gradient (hexane and ethyl acetate). The fraction (144 mg) eluted with hexane-EtOAc (3:1) was further subjected to preparative TLC with toluene-EtOAc (4:1) gave neoiretriol (40.8 mg, 7.8% based on the weight of MeOH extract).

Neoirietriol: mp 132–133 °C (from CH₂Cl₂/hexane (2:1)); $[a]_D^{28}$ -61⁻ (c 0.53; CHCl₃); ¹H NMR (400 MHz; C₆D₆), d 0.28 (1*H*, br s, OH: D₂O exchangeable), 0.50 (3*H*, s, H₃-18), 0.54 (1*H*, m, Ha-8), 0.60 (1*H*, ddd, *J* = 13.2, 10.3, 5.4 Hz, Ha-12), 0.75 (1*H*, d, *J* = 2.4 Hz, OH: D₂O exchangeable), 0.93 (1*H*, ddd, *J* = 13.7, 4.9, 2.4 Hz, Ha-3), 0.97 (3*H*, s, H₃-20), 1.20 (3*H*, s, H₃-19), 1.38 (3*H*, s, H₃-17), 1.21 (1*H*, ddd, *J* = 13.2, 13.2, 4.4 Hz, Hb-12), 1.56 (1*H*, m, Ha-9), 1.67 (1*H*, ddd, *J* = 13.2, 13.2, 13.2, 3.9 Hz, Hb-8), 1.76 (1*H*, dd, *J* = 14.2, 2.4 Hz, Ha-6), 1.83 (1*H*, m, Hb-9), 1.86 (1*H*, m, Ha-13), 1.95 (1*H*, ddd, ddd, *J* = 13.7, 9.3, 4.9 Hz, Hb-13), 2.03 (1*H*, m, Ha-2), 2.13 (1*H*, ddd, *J* = 13.7, 13.7, 4.9 Hz, Hb-3), 2.07 (1*H*, dd, *J* = 14.2, 2.4 Hz, Hb-6), 2.48 (1*H*, dddd, *J* = 13.8, 13.2, 12.7, 4.4 Hz, Hb-2), 4.01 (1*H*, dd, *J* = 10.3, 8.8 Hz, H14), 4.88 (1*H*, dd, *J* = 12.7, 4.4 Hz, H-1), 5.20 (1*H*, s, OH: D₂O exchangeable); ¹³C NMR (100 MHz, DEPT; C₆D₆) d 18.8 (C, C17), 23.4 (CH₃, C18), 23.5 (CH₃, C19), 23.7 (CH₃, C20), 26.7 (CH₃, C16), 30.3 (CH₂*x* 2, C8 and C12), 31.4 (CH₂, C2), 32.2 (C, C9), 31.6 (CH₂, C13), 31.7 (CH₂, C6), 32.2 (CH₂, C2), 38.3 (CH₂, C3), 43.7 (C, C10), 48.5 (C, C15), 51.8 (C, C11), 65.2 (CH, C14), 65.7 (CH, C1), 75.3 (C, C4), 78.5 (C, C5), 81.7 (C, C7).

S3. Refinement

Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt). Non-H atoms were refined anisotropically. H atoms were treated as riding models.

Figure 1

The structure of the title compound with ellipsoids at the 50% probability level and the atom numbering scheme.

Figure 2

The packing diagram of the title compound. Inter and intramolecular hydrogen bonds are shown as dashed line.

(1*R*,4*S*,4*aS*,7*R*,8*aR*)-4-bromo-7- [(1*S*,3*R*)-3-bromo-1,2,2-trimethylcyclopentyl]-1,4adimethyldecahydronaphthalene-1,7,8a-triol

Crystal data C₂₀H₃₄Br₂O₃ F(000) = 496.00 $M_{\rm w} = 482.29$ $D_{\rm x} = 1.547 {\rm Mg m^{-3}}$ Monoclinic, $P2_1$ Mo *K* α radiation, $\lambda = 0.71069$ Å Hall symbol: P 2yb Cell parameters from 1225 reflections a = 7.5026 (2) Å $\theta = 1.8 - 28.1^{\circ}$ $\mu = 3.94 \text{ mm}^{-1}$ *b* = 11.3985 (3) Å c = 12.1498(5) Å T = 296 K $\beta = 94.9780 (3)^{\circ}$ Prism, colorless V = 1035.11 (6) Å³ $0.30 \times 0.20 \times 0.20$ mm Z = 2Data collection Nonius KappaCCD $T_{\rm min} = 0.402, \ T_{\rm max} = 0.454$ diffractometer 43586 measured reflections Radiation source: Mo K α 6129 independent reflections Horizonally mounted graphite crystal 4774 reflections with $F^2 > 2\sigma(F^2)$ monochromator $R_{\rm int} = 0.110$ Detector resolution: 9 pixels mm⁻¹ $\theta_{\rm max} = 30.5^{\circ}$ $h = -10 \rightarrow 10$ ω scans Absorption correction: multi-scan $k = -16 \rightarrow 16$ (DENZO-SMN; Otwinowski & Minor, 1997) $l = -17 \rightarrow 17$ Refinement Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0612P)^2 + 1.0272P]$ $R[F^2 > 2\sigma(F^2)] = 0.062$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.151$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$ *S* = 1.14 $\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$ 6129 reflections Absolute structure: Flack (1983) 227 parameters All H-atom parameters refined Absolute structure parameter: -0.014(12)

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma (F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A	A^2	?)
--	-------	----

85 (5) 0.41310 (5) (526 (5) 0.13400 (6)	i) 0.05902 (18)
(526 (5) 0 12400 (6)	· · · · · · · · · · · · · · · · · · ·
0.15400(0)	b) 0.05993 (18)
5 (3) 0.2533 (3)	0.0471 (8)
0 (3) 0.1271 (2)	0.0381 (7)
3 (3) 0.1812 (2)	0.0357 (6)
0.2880 (4)	0.0421 (10)
6 (5) 0.2479 (5)	0.0552 (14)
	5 (3) 0.2533 (3) 0 (3) 0.1271 (2) 3 (3) 0.1812 (2) 5 (4) 0.2880 (4) 6 (5) 0.2479 (5)

C3	1.0585 (8)	0.4788 (5)	0.1477 (5)	0.0522 (13)
C4	1.0244 (6)	0.3474 (4)	0.1691 (4)	0.0378 (9)
C5	0.8363 (5)	0.3340 (3)	0.2131 (3)	0.0299 (8)
C6	0.7899 (5)	0.2032 (3)	0.2322 (3)	0.0286 (8)
C7	0.6015 (5)	0.1830 (3)	0.2705 (3)	0.0298 (8)
C8	0.5726 (6)	0.2635 (4)	0.3683 (4)	0.0381 (10)
C9	0.6148 (6)	0.3931 (4)	0.3459 (4)	0.0355 (9)
C10	0.8119 (6)	0.4086 (3)	0.3189 (3)	0.0316 (8)
C11	0.5662 (6)	0.0505 (3)	0.2964 (3)	0.0310 (8)
C12	0.3623 (7)	0.0296 (4)	0.3094 (5)	0.0463 (11)
C13	0.3165 (9)	-0.0954 (5)	0.2707 (7)	0.0631 (17)
C14	0.4932 (7)	-0.1454 (4)	0.2415 (4)	0.0395 (10)
C15	0.6091 (6)	-0.0428 (4)	0.2044 (4)	0.0338 (9)
C16	1.0421 (8)	0.2773 (6)	0.0629 (4)	0.0538 (14)
C17	0.9349 (6)	0.3707 (4)	0.4209 (4)	0.0404 (10)
C18	0.6753 (8)	0.0176 (4)	0.4068 (4)	0.0445 (11)
C19	0.8045 (7)	-0.0813 (4)	0.2069 (5)	0.0460 (11)
C20	0.5443 (7)	-0.0058 (4)	0.0862 (4)	0.0419 (11)
H1	0.7610	0.5588	0.2279	0.051*
H2	1.1248	0.5387	0.3068	0.066*
H3	1.0455	0.6384	0.2278	0.066*
H4	1.1797	0.4883	0.1271	0.063*
H5	0.9775	0.5048	0.0860	0.063*
H6	0.7994	0.1604	0.1639	0.034*
H7	0.8777	0.1708	0.2872	0.034*
H8	0.6481	0.2370	0.4324	0.046*
H9	0.4491	0.2571	0.3856	0.046*
H10	0.5939	0.4397	0.4103	0.043*
H11	0.5354	0.4213	0.2843	0.043*
H12	0.3382	0.0392	0.3860	0.056*
H13	0.2903	0.0857	0.2651	0.056*
H14	0.2689	-0.1406	0.3291	0.076*
H15	0.2296	-0.0948	0.2068	0.076*
H16	0.5541	-0.1780	0.3094	0.047*
H17	1.1539	0.2958	0.0341	0.065*
H18	0.9453	0.2971	0.0092	0.065*
H19	1.0381	0.1949	0.0789	0.065*
H20	1.0525	0.4023	0.4159	0.048*
H21	0.9414	0.2866	0.4236	0.048*
H22	0.8874	0.3994	0.4866	0.048*
H23	0.7981	0.0396	0.4033	0.053*
H24	0.6679	-0.0655	0.4186	0.053*
H25	0.6272	0.0583	0.4668	0.053*
H26	0.8741	-0.0195	0.1783	0.055*
H27	0.8129	-0.1503	0.1623	0.055*
H28	0.8493	-0.0983	0.2816	0.055*
H29	0.4186	0.0112	0.0822	0.050*
H30	0.5654	-0.0684	0.0360	0.050*

supporting information

H31	0.6084	0.0629	0.0664	0.050*
H32	1.2265	0.2650	0.2253	0.057*
H33	0.7350	0.3567	0.0667	0.046*
H34	0.5132	0.2691	0.1438	0.043*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.0831 (4)	0.0325 (2)	0.0605 (3)	-0.0029 (2)	0.0009 (2)	-0.0086 (2)
Br2	0.0686 (3)	0.0386 (2)	0.0705 (3)	-0.0076 (2)	-0.0061 (2)	-0.0147 (2)
01	0.0255 (16)	0.063 (2)	0.053 (2)	0.0083 (15)	0.0065 (14)	0.0017 (18)
O2	0.0400 (17)	0.0439 (18)	0.0292 (14)	0.0058 (14)	-0.0033 (12)	0.0043 (13)
O3	0.0261 (13)	0.0377 (15)	0.0425 (15)	0.0037 (13)	-0.0013 (11)	0.0025 (15)
C1	0.050 (2)	0.032 (2)	0.044 (2)	-0.000(2)	0.000 (2)	0.0004 (19)
C2	0.058 (3)	0.036 (2)	0.073 (3)	-0.013 (2)	0.012 (2)	0.001 (2)
C3	0.050 (3)	0.052 (3)	0.056 (3)	-0.012 (2)	0.017 (2)	0.014 (2)
C4	0.032 (2)	0.041 (2)	0.041 (2)	-0.0017 (18)	0.0067 (18)	0.0063 (19)
C5	0.0233 (19)	0.034 (2)	0.032 (2)	0.0022 (16)	-0.0020 (15)	0.0026 (16)
C6	0.0237 (18)	0.029 (2)	0.0336 (19)	0.0022 (14)	0.0040 (14)	-0.0009 (15)
C7	0.027 (2)	0.0292 (17)	0.0326 (19)	0.0031 (16)	0.0006 (17)	-0.0006 (15)
C8	0.035 (2)	0.040 (2)	0.042 (2)	-0.0044 (18)	0.0175 (19)	-0.0039 (19)
C9	0.036 (2)	0.031 (2)	0.041 (2)	0.0022 (18)	0.0081 (19)	-0.0057 (18)
C10	0.031 (2)	0.0289 (19)	0.034 (2)	-0.0022 (16)	-0.0024 (16)	-0.0005 (16)
C11	0.033 (2)	0.031 (2)	0.0299 (19)	-0.0013 (17)	0.0071 (16)	-0.0020 (16)
C12	0.041 (2)	0.038 (2)	0.062 (3)	-0.001 (2)	0.017 (2)	-0.001 (2)
C13	0.047 (3)	0.048 (3)	0.097 (5)	-0.008(2)	0.018 (3)	-0.014 (3)
C14	0.044 (2)	0.032 (2)	0.042 (2)	-0.0083 (19)	0.001 (2)	-0.0053 (18)
C15	0.030 (2)	0.030 (2)	0.041 (2)	-0.0017 (17)	0.0012 (18)	-0.0043 (17)
C16	0.047 (3)	0.072 (3)	0.046 (2)	-0.004 (2)	0.023 (2)	-0.005 (2)
C17	0.042 (2)	0.043 (2)	0.035 (2)	-0.002 (2)	-0.0061 (18)	-0.0006 (19)
C18	0.065 (3)	0.037 (2)	0.031 (2)	-0.008 (2)	-0.000 (2)	0.0044 (19)
C19	0.044 (2)	0.036 (2)	0.058 (3)	0.006 (2)	0.009 (2)	-0.003 (2)
C20	0.052 (3)	0.037 (2)	0.036 (2)	0.001 (2)	-0.000 (2)	-0.0084 (19)

Geometric parameters (Å, °)

Br1—C1	1.984 (5)	С2—Н3	0.970	
Br2-C14	1.978 (4)	C3—H4	0.970	
O1—C4	1.421 (6)	C3—H5	0.970	
O2—C5	1.452 (5)	С6—Н6	0.970	
O3—C7	1.458 (5)	C6—H7	0.970	
C1—C2	1.515 (9)	C8—H8	0.970	
C1-C10	1.539 (6)	C8—H9	0.970	
C2—C3	1.531 (9)	C9—H10	0.970	
C3—C4	1.545 (8)	C9—H11	0.970	
C4—C5	1.559 (6)	C12—H12	0.970	
C4—C16	1.533 (8)	C12—H13	0.970	
C5—C6	1.553 (5)	C13—H14	0.970	

C5—C10	1.565 (6)	C13—H15	0.970
С6—С7	1.543 (6)	C14—H16	0.980
С7—С8	1.532 (6)	C16—H17	0.960
C7—C11	1.570 (6)	C16—H18	0.960
С8—С9	1.541 (6)	C16—H19	0.960
C9—C10	1.552 (6)	C17—H20	0.960
C10—C17	1.541 (6)	C17—H21	0.960
C11—C12	1.569 (7)	C17—H22	0.960
C11—C15	1.597 (6)	C18—H23	0.960
C11—C18	1.556 (6)	C18—H24	0.960
C12-C13	1.530 (8)	C18—H25	0.960
C13-C14	1 513 (8)	C19—H26	0.960
C14-C15	1.547 (6)	C19—H27	0.960
C15-C19	1.5 (7)	C19—H28	0.960
C15 - C20	1.526 (7)	C20—H29	0.960
01 <u>–</u> H32	0.820	C20—H30	0.960
C1H1	0.920	C20 H30	0.960
С1—111 С2—Н2	0.970	020-1151	0.900
02 112	0.970		
0103 ⁱ	2 797 (4)	H15…H27 ⁱⁱⁱ	3 189
$01 \cdot \cdot \cdot C8^{i}$	2.797(4) 3 378(5)	H15H28 ⁱⁱⁱ	3 069
$01 \cdot \cdot \cdot C12^{i}$	3,551 (6)	H15H33 ^{iv}	3 401
$O^2 \cdots C^2 O^{ii}$	3.331(0) 3.341(5)	$H16 \cdots Br1^{viii}$	3 043
02 °C20 03…01 ⁱⁱⁱ	2.797(4)		3 558
03···C16 ⁱⁱⁱ	2.757 (4)	$H17O3^{i}$	2 977
	3,378 (5)	H17C19 ^{xii}	3 285
C1201	3.551 (6)	H17 C19 $H17 C20^{xii}$	3 500
$C12^{-}O1^{-}$	3.468 (6)	H17H26 ^{xii}	3 3 2 3
$C_{10} O_{3}^{iv}$	3 341 (6)	H17H27 ^{xii}	2 498
$Br1\cdots H0^{v}$	3.551	$H17 \cdots H30^{xii}$	2.496
$Br1\cdots H12^{v}$	3.058	H17H33	3 276
Br1···H16 ^{vi}	3.043	$H17H34^{i}$	2 917
Br1…H21 ^{vii}	3.015	H18)Br 2^{ii}	3 452
$Br1\cdots H24^{vi}$	3 500	H18)···H3 ^{xi}	3 407
Br1···H28 ^{vi}	3,350	H18H5 ^{xi}	3 591
Br ² ···H1 ^{viii}	3.101	H18···H15 ⁱⁱ	3 087
Br2····H3 ^{ix}	3 523	H18H26 ^{xii}	3 454
$Br2\cdots H4^{ix}$	3.401	H18H27 ^{xii}	2 941
$Br2\cdots H18^{iv}$	3.452	H18H33	1 905
Br2…H31 ^{iv}	3.452	$H10 \cdot H33$ $H10 \cdot \cdot \cdot O3^{i}$	3 379
Br2H33 ^{iv}	3.111	H10H5 ^{xi}	2 946
Br2H34 ^{iv}	3.439	$H10H13^{i}$	3 083
O1…H9) ⁱ	2 694	H19H20 ⁱ	3 538
01H11 ⁱ	3 160	H19H33	2.220 2.222
01H13 ⁱ	2 703	$H20\cdots C18^{vii}$	3 126
$01 \cdots H34^{i}$	2.703	$H20H0^{i}$	3.120
02H20 ⁱⁱ	3.032	H20H23 ^{vii}	5.455 7 847
02····H30 ⁱⁱ	2 702	H20 H25 H20 H20 H	2.077
	4.174	1120 1127	2.002

O2…H33	0.820	H20····H25 ^{vii}	3.221
O2…H34	1.960	H21···Br1 ^{xiii}	3.015
O3…H17 ⁱⁱⁱ	2.977	H22…C12 ^v	3.558
O3…H19 ⁱⁱⁱ	3.379	H22…C13 ^v	3.438
O3…H30 ⁱⁱ	3.581	H22…H12 ^v	2.873
O3…H32 ⁱⁱⁱ	2.020	H22…H14 ^v	2.656
O3…H33	2.976	H22····H23 ^{vii}	3.060
O3…H34	0.820	H22····H24 ^{vii}	3.458
C1…H33	3.432	H22····H28 ^{vii}	3.297
С3…Н33	2.895	H23····C17 ^{xiii}	3.398
C4…H33	2.410	H23····H2 ^{xiii}	3.520
С5…Н33	1.891	H23····H20 ^{xiii}	2.847
С5…Н34	2.604	H23····H22 ^{xiii}	3.060
С6…Н33	2.671	H24…Br1 ^{viii}	3.500
C6…H34	2.376	H24····C17 ^{xiii}	3.494
C7···H32 ⁱⁱⁱ	2.970	H24…H9 ^x	3.299
С7…Н33	3.389	H24…H10 ^x	2.982
C7…H34	1.896	H24····H20 ^{xiii}	2.802
C8…H32 ⁱⁱⁱ	2.996	H24····H22 ^{xiii}	3.458
C8…H34	2.727	H25…C9 ^x	3.569
C9…H25 ^v	3.569	H25····H2 ^{xiii}	3.193
C9…H32 ⁱⁱⁱ	3.468	H25…H10 ^x	2.690
С9…Н34	2.878	H25····H20 ^{xiii}	3.221
С10…Н33	3.125	H26…C13 ⁱ	3.518
C10…H34	3.354	H26····H5 ^{xi}	3.500
C11…H32 ⁱⁱⁱ	3.582	H26…H13 ⁱ	3.424
С11…Н34	3.111	H26…H15 ⁱ	2.794
C12…H10 ^x	3.544	H26…H17 ^{xi}	3.323
C12…H22 ^x	3.558	H26····H18 ^{xi}	3.454
C12…H32 ⁱⁱⁱ	3.017	H27…C16 ^{xi}	3.142
C13…H22 ^x	3.438	H27…H1 ^{viii}	3.440
C13…H26 ⁱⁱⁱ	3.518	H27····H3 ^{viii}	3.039
C13…H28 ⁱⁱⁱ	3.519	H27…H15 ⁱ	3.189
C16····H5 ^{xi}	3.591	H27…H17 ^{xi}	2.498
C16····H27 ^{xii}	3.142	H27…H18 ^{xi}	2.941
С16…Н33	2.480	H28…Br1 ^{viii}	3.350
C16…H34 ⁱ	3.587	H28…C13 ⁱ	3.519
C17…H14 ^v	3.520	H28····H3 ^{viii}	3.431
C17····H23 ^{vii}	3.398	$H28 \cdots H14^{i}$	3.188
C17····H24 ^{vii}	3.494	H28…H15 ⁱ	3.069
C18…H10 ^x	3.253	H28····H22 ^{xiii}	3.297
C18····H20 ^{xiii}	3.126	H29····O2 ^{iv}	3.032
C19…H15 ⁱ	3.193	H29····H5 ^{iv}	3.458
C19…H17 ^{xi}	3.285	H29…H19 ⁱⁱⁱ	3.538
C20····H4 ^{xi}	3.455	H29…H33 ^{iv}	2.709
C20…H17 ^{xi}	3.599	H29…H34	3.101
C20…H33 ^{iv}	3.101	H30…O2 ^{iv}	2.792
С20…Н34	3.224	H30…O3 ^{iv}	3.581

H1…Br2 ^{vi}	3.101	H30…H4 ^{xi}	2.943
H1…H16 ^{vi}	3.558	H30…H17 ^{xi}	2.805
H1…H27 ^{vi}	3.440	H30…H33 ^{iv}	2.622
H1…H33	3.019	H30…H34 ^{iv}	2.886
H2…H11 ⁱ	3.391	H31…Br2 ⁱⁱ	3.060
H2…H23 ^{vii}	3.520	H31…H4 ^{xi}	3.070
H2…H25 ^{vii}	3.193	H31…H33	3.482
H3…Br2 ^{xiv}	3.523	H31…H34	2.653
H3…H14 ^{xiv}	3.212	H32…O3 ⁱ	2.020
H3····H15 ^{xiv}	3.359	H32…C7 ⁱ	2.970
H3…H18 ^{xii}	3.407	H32…C8 ⁱ	2.996
H3····H27 ^{vi}	3.039	H32…C9 ⁱ	3.468
H3····H28 ^{vi}	3.431	H32…C11 ⁱ	3.582
H4…Br2 ^{xiv}	3.401	H32…C12 ⁱ	3.017
H4…C20 ^{xii}	3.455	H32…H9 ⁱ	2.454
$H4 \cdots H11^{i}$	3.235	H32…H11 ⁱ	2.961
H4…H30 ^{xii}	2.943	H32…H12 ⁱ	3.295
H4…H31 ^{xii}	3.070	H32…H13 ⁱ	2.145
$H4\cdots H34^{i}$	3.528	H32…H34 ⁱ	2.445
H5…C16 ^{xii}	3.591	H33····Br2 ⁱⁱ	3.111
H5…H18 ^{xii}	3.591	Н33…О2	0.820
H5…H19 ^{xii}	2.946	H33…O3	2.976
H5…H26 ^{xii}	3.500	H33…C1	3.432
H5…H29 ⁱⁱ	3.458	Н33…С3	2.895
Н5…Н33	2.478	H33…C4	2.410
Н6…Н33	2.557	H33…C5	1.891
Н6…Н34	2.473	H33…C6	2.671
H7…H13 ⁱ	3.277	H33…C7	3.389
Н7…Н33	3.510	H33…C10	3.125
H7…H34	3.309	H33…C16	2.480
$H8 \cdots H14^{v}$	3.227	H33…C20 ⁱⁱ	3.101
H8…H34	3.583	H33…H1	3.019
H9…Br1 ^x	3.551	H33…H5	2.478
H9…O1 ⁱⁱⁱ	2.694	Н33…Н6	2.557
H9…H20 ⁱⁱⁱ	3.453	H33…H7	3.510
H9…H24 ^v	3.299	H33…H11	3.235
H9····H32 ⁱⁱⁱ	2.454	H33…H15 ⁱⁱ	3.401
H9…H34	3.021	H33…H17	3.276
$H10$ ···· $C12^{v}$	3.544	H33…H18	1.905
$H10 \cdots C18^{v}$	3.253	H33…H19	2.922
H10…H12 ^v	2.729	H33…H29 ⁱⁱ	2.709
$H10 \cdots H14^{v}$	3.370	H33…H30 ⁱⁱ	2.622
$H10 \cdots H24^{v}$	2.982	H33…H31	3.482
H10…H25 ^v	2.690	H33…H34	2.217
H11…O1 ⁱⁱⁱ	3.169	H34…Br2 ⁱⁱ	3.439
H11···H2 ⁱⁱⁱ	3.391	H34…O1 ⁱⁱⁱ	3.153
H11···H4 ⁱⁱⁱ	3.235	H34…O2	1.960
H11····H32 ⁱⁱⁱ	2.961	H34…O3	0.820

H11…H33	3.235	Н34…С5	2.604
H11…H34	2.430	H34…C6	2.376
H12…Br1 ^x	3.058	H34…C7	1.896
H12…H10 ^x	2.729	H34…C8	2.727
H12…H22 ^x	2.873	Н34…С9	2.878
H12…H32 ⁱⁱⁱ	3.295	H34…C10	3.354
H13…O1 ⁱⁱⁱ	2.703	H34…C11	3.111
H13…H7 ⁱⁱⁱ	3.277	H34…C16 ⁱⁱⁱ	3.587
H13…H19 ⁱⁱⁱ	3.083	H34…C20	3.224
H13…H26 ⁱⁱⁱ	3.424	H34…H4 ⁱⁱⁱ	3.528
H13…H32 ⁱⁱⁱ	2.145	H34…H6	2.473
H13…H34	3.125	H34…H7	3.309
H14C17 ^x	3.520	H34…H8	3.583
H14···H3 ^{ix}	3.212	H34…H9	3.021
H14…H8 ^x	3.227	H34…H11	2.430
H14H10 ^x	3 370	H34…H13	3 125
H14H22 ^x	2 656	H34…H17 ⁱⁱⁱ	2 917
H14H28 ⁱⁱⁱ	3 188	H34···H29	3 101
H15C19 ⁱⁱⁱ	3 103	H34H30 ⁱⁱ	2 886
H15H3 ^{ix}	3 359	H34H31	2.653
H15H18iv	3.087	H34H32	2.055
H15H26 ⁱⁱⁱ	2 794	H34H33	2.445
1115 1120	2.774	1154 1155	2,217
Br1 C1 C2	108 2 (3)	CA $C3$ HA	108.0
Br1 - C1 - C2	100.2(3)	$C_4 = C_3 = H_5$	108.9
C_{1} C_{1} C_{10}	111.7(3) 114.5(4)	$H_{1} = C_{2} = H_{2}$	108.9
$C_2 = C_1 = C_{10}$	114.3(4) 110.2(4)	П4—С5—П5 С5 С6 Ц6	107.8
$C_1 = C_2 = C_3$	110.3(4) 112.2(5)	$C_{5} = C_{6} = H_{7}$	108.7
$C_2 = C_3 = C_4$	113.2(3) 110.2(4)	C_{3}	108.7
01 - C4 - C3	110.2(4)	$C_{1} = C_{0} = H_{0}$	108.7
01 - C4 - C3	100.7(3)		108.7
01 - 04 - 010	109.0(4)	$\Pi 0 - C 0 - \Pi / C 7 - C 8 - U 8$	107.0
$C_3 = C_4 = C_3$	108.7 (4)	$C_{1} = C_{0} = H_{0}$	109.0
C_{3} $-C_{4}$ $-C_{16}$	109.7 (4)	C = C = H	109.0
C_{5} $-C_{4}$ $-C_{16}$	112.6 (4)	C9—C8—H8	109.0
02 - 05 - 04	106.1 (3)	C9—C8—H9	109.0
02-05-06	108.2 (3)	H8—C8—H9	107.8
02	106.2 (3)	C8—C9—H10	109.4
C4—C5—C6	111.5 (3)	C8—C9—H11	109.4
C4—C5—C10	113.7 (3)	C10—C9—H10	109.4
C6—C5—C10	110.8 (3)	C10—C9—H11	109.4
C5—C6—C7	114.3 (3)	H10—C9—H11	108.0
O3—C7—C6	108.2 (3)	C11—C12—H12	110.1
O3—C7—C8	106.3 (3)	C11—C12—H13	110.1
O3—C7—C11	107.4 (3)	C13—C12—H12	110.1
C6—C7—C8	109.9 (3)	C13—C12—H13	110.1
C6—C7—C11	112.3 (3)	H12—C12—H13	108.5
C8—C7—C11	112.5 (3)	C12—C13—H14	110.9
C7—C8—C9	113.0 (4)	C12—C13—H15	110.9

C8—C9—C10	111.1 (3)	C14—C13—H14	110.9
C1—C10—C5	106.1 (3)	C14—C13—H15	110.9
C1—C10—C9	111.1 (3)	H14—C13—H15	108.9
C1-C10-C17	110.5 (3)	Br2-C14-H16	107.4
С5—С10—С9	107.1 (3)	C13—C14—H16	107.4
C5-C10-C17	113.8 (3)	C15—C14—H16	107.4
C9—C10—C17	108.3 (3)	C4—C16—H17	109.5
C7—C11—C12	110.5 (3)	C4—C16—H18	109.5
C7—C11—C15	116.9 (3)	C4—C16—H19	109.5
C7—C11—C18	108.6 (3)	H17—C16—H18	109.5
C12—C11—C15	103.1 (3)	H17—C16—H19	109.5
C12—C11—C18	108.7 (4)	H18—C16—H19	109.5
C15—C11—C18	108.7 (3)	C10—C17—H20	109.5
C11—C12—C13	107.8 (4)	C10—C17—H21	109.5
C12—C13—C14	104.2 (4)	C10—C17—H22	109.5
Br2-C14-C13	111.4 (3)	H20—C17—H21	109.5
Br2-C14-C15	114.9 (3)	H20—C17—H22	109.5
C13—C14—C15	108.0 (4)	H21—C17—H22	109.5
C11—C15—C14	98.4 (3)	C11—C18—H23	109.5
C11—C15—C19	115.4 (3)	C11—C18—H24	109.5
C11—C15—C20	113.9 (3)	C11—C18—H25	109.5
C14—C15—C19	109.9 (4)	H23—C18—H24	109.5
C14—C15—C20	109.9 (3)	H23—C18—H25	109.5
C19—C15—C20	108.9 (4)	H24—C18—H25	109.5
C4—O1—H32	109.5	С15—С19—Н26	109.5
С5—О2—Н33	109.5	С15—С19—Н27	109.5
С7—О3—Н34	109.5	C15—C19—H28	109.5
Br1—C1—H1	107.4	H26—C19—H27	109.5
C2—C1—H1	107.4	H26—C19—H28	109.5
C10—C1—H1	107.4	H27—C19—H28	109.5
С1—С2—Н2	109.6	С15—С20—Н29	109.5
С1—С2—Н3	109.6	С15—С20—Н30	109.5
С3—С2—Н2	109.6	С15—С20—Н31	109.5
С3—С2—Н3	109.6	H29—C20—H30	109.5
H2—C2—H3	108.1	H29—C20—H31	109.5
C2—C3—H4	108.9	H30—C20—H31	109.5
С2—С3—Н5	108.9		

Symmetry codes: (i) x+1, y, z; (ii) -x+1, y+1/2, -z; (iii) x-1, y, z; (iv) -x+1, y-1/2, -z; (v) -x+1, y+1/2, -z+1; (vi) x, y+1, z; (vii) -x+2, y+1/2, -z+1; (viii) x, y-1, z; (xi) x-1, y-1, z; (x) -x+1, y-1/2, -z+1; (xi) -x+2, y-1/2, -z; (xii) -x+2, y-1/2, -z+1; (xiv) x+1, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H32…O3 ⁱ	0.82	2.02	2.797 (4)	158
O3—H34…O2	0.82	1.96	2.691 (4)	148

Symmetry code: (i) x+1, y, z.