Structure Reports
 Online

ISSN 1600-5368

6-(Trifluoromethyl)pyrimidine-2,4(1H,3H)-dione monohydrate

Gong-Chun Li, Hong-Sheng Wang, Yu-Jiao Niu and Feng-Ling Yang*
College of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
Correspondence e-mail: actaeli@gmail.com

Received 27 May 2010; accepted 13 June 2010

Key indicators: single-crystal X-ray study; $T=113 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.036 ; w R$ factor $=0.100 ;$ data-to-parameter ratio $=13.0$.

The title compound, $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, was prepared by the reaction of ethyl 4,4,4-trifluoro-3-oxobutanoate with urea. In the crystal, the 6-(trifluoromethyl)pyrimidine-2,4(1H,3H)dione and water molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. A ring dimer structure is formed by additional intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For applications of pyrimidine derivatives as pesticides and pharmaceutical agents, see: Condon et al. (1993); as agrochemicals, see: Maeno et al. (1990); as antiviral agents, see: Gilchrist (1997); as herbicides, see: Selby et al. (2002).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=198.11$
Monoclinic, $P 2_{1} / c$
$a=5.0250$ (8) A
$b=7.046$ (1) \AA
$c=20.769(2) \AA$
$\beta=91.300(7)^{\circ}$

Data collection
Rigaku Saturn724 CCD
diffractometer
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/
MSC, 2009)
$T_{\text {min }}=0.956, T_{\text {max }}=0.966$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.100 \quad$ independent and constrained
$S=1.07$
1747 reflections
134 parameters
refinement
$\Delta \rho_{\text {max }}=0.33$ e \AA^{-3}
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O}^{1}{ }^{\text {i }}$	0.825 (17)	2.017 (18)	2.7815 (13)	153.9 (17)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\text {ii }}$	0.86 (2)	1.95 (2)	2.8066 (13)	176.0 (17)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3$	0.896 (17)	1.824 (17)	2.7191 (14)	177.9 (16)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {iii }}$	0.954 (17)	1.896 (18)	2.8490 (14)	176.4 (16)
$\begin{align*} & \text { Symmetry } \quad \text { cod } \tag{iii}\\ & -x+1,-y+2,- \end{align*}$	(i) $-x,-y+1,-z+1$;		(ii) $x-1, y-1, z$;	

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2009); software used to prepare material for publication: CrystalStructure.

This work was supported by the Program for New Century Excellent Talents in Universities of Henan Province (No. 2005HANCET-17), the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Eduation Department, China (grant No. 2007150036).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2309).

References

Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. \& Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.
Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman
Maeno, S., Miura, I., Masuda, K. \& Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.
Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/ MSC, The Woodlands, Texas, USA.
Selby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. \& Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800, Synthesis and Chemistry of Agrochemicals VI, pp. 74-84. Washington DC: American Chemical Society.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o1699 [doi:10.1107/S1600536810022683]

6-(Trifluoromethyl)pyrimidine-2,4(1H,3H)-dione monohydrate
 Gong-Chun Li, Hong-Sheng Wang, Yu-Jiao Niu and Feng-Ling Yang

S1. Comment

Pyrimidine derivatives are very important molecules in biology and have many application in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, shch as AZT, which is the most widely used anti-AIDS drug (Gilchrist, 1997). Recently, a new series of highly active herbicides of substituted azolylpyrimidines were reported (Selby et al., 2002). In order to discover further biologically active pyrimidine compounds, the title compound, (I), was synthesized and its crystal structure determined (Fig. 1).
In the crystal strucrure, The part of 6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione and water molecule are linked by N $-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The ring dimer structure is formed by addition intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

S2. Experimental

To 35 ml absolute ethanol sodium ($1.38 \mathrm{~g}, 60 \mathrm{mmol}$) was added. When sodium was dissppeared, ethyl 4,4,4-trifluoro-3oxobutanoate $(5.50 \mathrm{~g}, 30 \mathrm{mmol})$ and urea $(1.80 \mathrm{~g}, 30 \mathrm{mmol})$ were added to the solution. The mixture was refluxed for 20 hr., The solvent was evaporated in vacuo and the residue was washed with water. The title compound was recrystallized from water and single crystals of (I) were obtained by slow evaporation.

S3. Refinement

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.95 \AA, \mathrm{O}-\mathrm{H}=0.86 \AA$ or $0.825 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C})$.

Figure 1
The asymmetric unit of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.

Figure 2
The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed line.

6-(Trifluoromethyl)pyrimidine-2,4(1H,3H)-dione monohydrate

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=198.11$
Monoclinic, $P 2_{1} / c$
$a=5.0250$ (8) \AA
$b=7.046(1) \AA$
$c=20.769(2) \AA$
$\beta=91.300(7)^{\circ}$
$V=735.16(17) \AA^{3}$
$Z=4$

Data collection

Rigaku Saturn724 CCD
diffractometer
Radiation source: rotating anode
Multilayer monochromator
ω scans
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
$T_{\min }=0.956, T_{\text {max }}=0.966$

$$
\begin{aligned}
& F(000)=400 \\
& D_{\mathrm{x}}=1.790 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71075 \AA \\
& \text { Cell parameters from } 2492 \text { reflections } \\
& \theta=2.0-27.9^{\circ} \\
& \mu=0.19 \mathrm{~mm}^{-1} \\
& T=113 \mathrm{~K} \\
& \text { Prism, colorless } \\
& 0.24 \times 0.20 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

6863 measured reflections
1747 independent reflections
1382 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.9^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-6 \rightarrow 6$
$k=-6 \rightarrow 9$
$l=-27 \rightarrow 27$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.100$
$S=1.07$
1747 reflections
134 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0589 P)^{2}+0.0166 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.33$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
F1	$0.74748(17)$	$0.37877(12)$	$0.26992(4)$	$0.0431(3)$
F2	$0.33139(17)$	$0.43344(12)$	$0.28202(4)$	$0.0433(3)$
F3	$0.54045(16)$	$0.25207(11)$	$0.34843(4)$	$0.0359(2)$
O1	$0.32964(16)$	$0.78481(12)$	$0.48978(4)$	$0.0247(2)$

O2	$1.03039(17)$	$0.99065(12)$	$0.37275(4)$	$0.0261(2)$
O3	$0.09114(19)$	$0.33980(15)$	$0.43644(5)$	$0.0299(3)$
N1	$0.67605(19)$	$0.88773(14)$	$0.42979(5)$	$0.0199(2)$
N2	$0.46193(19)$	$0.60395(14)$	$0.40583(5)$	$0.0187(2)$
C1	$0.4798(2)$	$0.76007(17)$	$0.44449(5)$	$0.0191(3)$
C2	$0.8566(2)$	$0.87123(17)$	$0.38039(6)$	$0.0193(3)$
C3	$0.8191(2)$	$0.70430(17)$	$0.34028(6)$	$0.0196(3)$
H3	0.9296	0.6828	0.3045	0.023^{*}
C4	$0.6262(2)$	$0.58089(16)$	$0.35448(5)$	$0.0183(3)$
C5	$0.5641(2)$	$0.40964(18)$	$0.31352(6)$	$0.0237(3)$
H1	$0.681(3)$	$0.999(2)$	$0.4561(9)$	$0.048(5)^{*}$
H2	$0.340(3)$	$0.518(2)$	$0.4169(8)$	$0.041(5)^{*}$
H3A	$0.081(3)$	$0.234(3)$	$0.4166(10)$	$0.049(5)^{*}$
H3B	$-0.024(3)$	$0.336(3)$	$0.4642(8)$	$0.043(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	$0.0459(5)$	$0.0380(5)$	$0.0467(5)$	$-0.0137(4)$	$0.0277(4)$	$-0.0219(4)$
F2	$0.0400(5)$	$0.0422(6)$	$0.0467(5)$	$0.0051(4)$	$-0.0173(4)$	$-0.0201(4)$
F3	$0.0481(5)$	$0.0177(4)$	$0.0423(5)$	$-0.0059(4)$	$0.0095(4)$	$-0.0025(3)$
O1	$0.0267(5)$	$0.0250(5)$	$0.0229(4)$	$-0.0091(4)$	$0.0097(4)$	$-0.0050(3)$
O2	$0.0237(5)$	$0.0225(5)$	$0.0325(5)$	$-0.0076(4)$	$0.0092(4)$	$-0.0012(4)$
O3	$0.0307(5)$	$0.0248(6)$	$0.0347(6)$	$-0.0110(4)$	$0.0140(4)$	$-0.0049(4)$
N1	$0.0204(5)$	$0.0192(6)$	$0.0204(5)$	$-0.0058(4)$	$0.0042(4)$	$-0.0025(4)$
N2	$0.0191(5)$	$0.0165(5)$	$0.0208(5)$	$-0.0046(4)$	$0.0043(4)$	$-0.0009(4)$
C1	$0.0190(6)$	$0.0193(6)$	$0.0190(5)$	$-0.0028(4)$	$0.0014(4)$	$0.0000(5)$
C2	$0.0176(5)$	$0.0187(6)$	$0.0215(6)$	$-0.0006(5)$	$0.0023(4)$	$0.0028(4)$
C3	$0.0192(6)$	$0.0195(7)$	$0.0201(6)$	$0.0010(5)$	$0.0039(4)$	$0.0010(4)$
C4	$0.0185(5)$	$0.0174(6)$	$0.0191(6)$	$0.0019(4)$	$0.0013(4)$	$0.0007(5)$
C5	$0.0227(6)$	$0.0216(7)$	$0.0270(6)$	$-0.0019(5)$	$0.0064(5)$	$-0.0038(5)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

F1-C5	1.3245 (14)	N1-H1	0.954 (17)
F2-C5	1.3374 (15)	N2-C1	1.3636 (15)
F3-C5	1.3328 (15)	N2-C4	1.3729 (14)
O1-C1	1.2317 (14)	N2-H2	0.896 (17)
$\mathrm{O} 2-\mathrm{C} 2$	1.2255 (14)	C2-C3	1.4512 (17)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	0.86 (2)	C3-C4	1.3400 (17)
O3-H3B	0.825 (17)	C3-H3	0.9500
N1-C1	1.3742 (15)	C4-C5	1.5050 (17)
N1-C2	1.3898 (15)		
H3A-O3-H3B	105.8 (17)	C4-C3-C2	119.01 (11)
C1-N1-C2	126.37 (10)	C4-C3-H3	120.5
C1-N1-H1	114.8 (11)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.5
C2-N1-H1	118.8 (11)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	123.00 (11)

$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	$121.34(10)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$122.52(11)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2$	$115.5(11)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$114.42(10)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2$	$123.2(11)$	$\mathrm{F} 1-\mathrm{C} 5-\mathrm{F} 3$	$107.89(10)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	$122.04(10)$	$\mathrm{F} 1-\mathrm{C} 5-\mathrm{F} 2$	$107.48(10)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$122.15(11)$	$\mathrm{F} 3-\mathrm{C} 5-\mathrm{F} 2$	$106.44(10)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$115.80(10)$	$\mathrm{F} 1-\mathrm{C} 5-\mathrm{C} 4$	$112.30(10)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	$121.15(11)$	$\mathrm{F} 3-\mathrm{C} 5-\mathrm{C} 4$	$112.34(10)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$124.46(11)$	$\mathrm{F} 2-\mathrm{C} 5-\mathrm{C} 4$	$110.10(10)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$114.39(10)$		
		$176.73(10)$	
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1-\mathrm{O} 1$	$178.24(10)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$2.53(18)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$-1.87(16)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$-174.89(10)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$10.94(17)$	
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{F} 1$	$-171.62(10)$	
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 2$	$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{F} 1$	$132.78(12)$	
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{F} 3$	$-49.78(14)$	
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{F} 3$	$-108.79(13)$	
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{F} 2$	$68.65(13)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{F} 2$		

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 B \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.825(17)$	$2.017(18)$	$2.7815(13)$	$153.9(17)$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots 2^{\mathrm{ii}}$	$0.86(2)$	$1.95(2)$	$2.8066(13)$	$176.0(17)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{O} 3$	$0.896(17)$	$1.824(17)$	$2.7191(14)$	$177.9(16)$
$\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.954(17)$	$1.896(18)$	$2.8490(14)$	$176.4(16)$

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x-1, y-1, z$; (iii) $-x+1,-y+2,-z+1$.

