Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Methylanilinium *p*-toluenesulfonate

Rui-jun Xu

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: youyoubanzhen@126.com

Received 18 May 2010; accepted 6 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.093; data-to-parameter ratio = 18.0.

The crystal structure of the title compound, $C_7H_{10}N^+$.- $C_7H_7O_3S^-$, displays strong $N-H\cdots O$ and $N-H\cdots S$ hydrogen bonding between the ammonium group and the *p*toluenesulfonate anion, linking the cations and anions into chains along the *b* axis.

Related literature

For background to dielectric-ferroelectric materials, see: Hang et al. (2009); Li et al. (2008).

Experimental

Crystal data

$C_7H_{10}N^+ \cdot C_7H_7O_3S$
$M_r = 279.35$
Monoclinic, P21
a = 5.775 (4) Å
b = 9.026 (5) Å

c = 13.350 (8) Å
$\beta = 96.344 \ (9)^{\circ}$
$V = 691.6 (7) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation

 $\mu = 0.24 \text{ mm}^{-1}$ T = 293 K

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\rm min} = 0.929, T_{\rm max} = 1.000$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.041 & \mbox{H-atom parameters constrained} \\ wR(F^2) = 0.093 & \mbox{$\Delta\rho_{max}$} = 0.18 \mbox{e} \mbox{\AA^{-3}} \\ S = 0.99 & \mbox{$\Delta\rho_{min}$} = -0.23 \mbox{e} \mbox{\AA^{-3}} \\ 3136 \mbox{ reflections} & \mbox{Absolute structure: Flack (1983),} \\ 174 \mbox{ parameters} & 1448 \mbox{ Friedel pairs} \\ 1 \mbox{ restraint} & \mbox{Flack parameter: } 0.05 \mbox{ (8)} \end{array}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1D \cdots O1^{i}$	0.89	2.31	3.170 (3)	164
$N1 - H1D \cdots O2^{i}$	0.89	2.33	2.824 (3)	115
$N1 - H1D \cdot \cdot \cdot S1^{i}$	0.89	2.81	3.570 (3)	144
$N1 - H1E \cdot \cdot \cdot O1^{ii}$	0.89	1.96	2.829 (3)	165
$N1-H1F\cdots O3^{iii}$	0.89	2.02	2.785 (3)	143

Symmetry codes: (i) -x - 1, $y - \frac{1}{2}$, -z + 1; (ii) x - 1, y - 1, z; (iii) -x, $y - \frac{1}{2}$, -z + 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *PRPKAPPA* (Ferguson, 1999).

The author thanks Southeast University for financial support of this research and is grateful for the guidance of Professor Wen Zhang.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2307).

References

Ferguson, G. (1999). *PRPKAPPA*. University of Guelph, Canada. Flack, H. D. (1983). *Acta Cryst.* A**39**, 876–881.

Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.

Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). *Chin. J. Chem.* **11**, 1959–1962. Rigaku (2005). *CrystalClear*. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.

 $0.2 \times 0.2 \times 0.2$ mm

 $R_{\rm int} = 0.029$

6641 measured reflections

3136 independent reflections

2876 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2010). E66, o1794 [doi:10.1107/S1600536810021537]

4-Methylanilinium *p*-toluenesulfonate

Rui-jun Xu

S1. Comment

Dielectric-ferroelectric as an interesting class of materials, there are organic ligands (Li *et al.*, 2008), metal-organic coordination compounds (Hang *et al.*, 2009) and organic-inorganic hybrid. In this article, the preparation and crystal structure of the title compound have been presented. It should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (477 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed.

The asymmetric unit of the title compound contains a $(CH_3 - C_6H_4 - NH_3^+)$ cation and an $(CH_3 - C_6H_4 - SO_3^-)$ anion (Fig.1). The strong N-H…S, N-H…O hydrogen bonds involving H1D and H1E (N1…S1 3.570 (3) Å and N1…O1 2.829 (3) Å) are beneficial to the stability of the crystal structure and link the cations and anions to chains along the *b* axis (Fig. 2 and Tab. 1).

S2. Experimental

The title compound was obtained by the addition of p-toluenesulfonic acid (3.78 g, 0.022 mol) to a solution of 4-methylaniline (2.14 g, 0.02 mol) in ethanol, in the stoichiometric ratio 1.1:1. After two weeks, good quality single crystals were obtained by slow evaporation.

S3. Refinement

Positional parameters of all the H atoms were calculated geometrically and the H atoms were set to ride on the C and N atoms to which they are bonded, with $U_{iso}(H) = 1.2 \text{Ueq}(C \text{ or } N)$.

Figure 1

The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view of the packing of the title compound, stacking along the *b* axis. Dashed lines indicate hydrogen bonds.

4-Methylanilinium *p*-toluenesulfonate

Crystal data

 $C_7H_{10}N^+ \cdot C_7H_7O_3S^ M_r = 279.35$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 5.775 (4) Å b = 9.026 (5) Å c = 13.350 (8) Å $\beta = 96.344$ (9)° V = 691.6 (7) Å³ Z = 2

Data collection

Rigaku Mercury2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm⁻¹ CCD_Profile_fitting scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.929, T_{max} = 1.000$ F(000) = 296 $D_x = 1.341 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3136 reflections $\theta = 3.6-27.5^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 293 KPrism, colorless $0.2 \times 0.2 \times 0.2 \text{ mm}$

6641 measured reflections 3136 independent reflections 2876 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 27.5^\circ, \theta_{min} = 3.6^\circ$ $h = -7 \rightarrow 7$ $k = -11 \rightarrow 11$ $l = -17 \rightarrow 17$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.093$	$w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 0.128P]$
S = 0.99	where $P = (F_0^2 + 2F_c^2)/3$
3136 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
174 parameters	$\Delta ho_{ m max} = 0.18 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta ho_{ m min} = -0.23 \ m e \ { m \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1448 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.05 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.14320 (9)	-0.16236 (6)	0.34803 (4)	0.03362 (14)
01	0.0753 (3)	-0.0673 (2)	0.42886 (12)	0.0456 (4)
O2	0.0234 (3)	-0.30349 (19)	0.34704 (14)	0.0481 (4)
O3	0.3936 (2)	-0.1756 (2)	0.34883 (12)	0.0485 (4)
C8	0.0436 (3)	-0.0720 (2)	0.23353 (15)	0.0302 (4)
C9	0.1872 (4)	0.0278 (3)	0.19156 (17)	0.0363 (5)
H9A	0.3372	0.0450	0.2223	0.044*
C10	0.1071 (4)	0.1023 (3)	0.10348 (19)	0.0420 (6)
H10A	0.2038	0.1701	0.0761	0.050*
C11	-0.1161 (4)	0.0769 (3)	0.05557 (17)	0.0394 (5)
C12	-0.2047 (5)	0.1588 (4)	-0.0397 (2)	0.0589 (8)
H12A	-0.3718	0.1546	-0.0491	0.071*
H12B	-0.1434	0.1134	-0.0962	0.071*
H12C	-0.1553	0.2603	-0.0343	0.071*
C13	-0.2562 (4)	-0.0238 (3)	0.09898 (18)	0.0405 (6)
H13A	-0.4056	-0.0420	0.0679	0.049*
C14	-0.1806 (4)	-0.0981 (3)	0.18702 (18)	0.0368 (5)
H14A	-0.2783	-0.1647	0.2149	0.044*
N1	-0.7130 (4)	-0.8010 (3)	0.50369 (16)	0.0513 (5)
H1D	-0.8346	-0.7437	0.5125	0.062*
H1E	-0.7621	-0.8925	0.4885	0.062*
H1F	-0.6154	-0.8026	0.5602	0.062*
C1	-0.2340 (5)	-0.5599 (4)	0.1861 (2)	0.0590 (7)

H1A	-0.2324	-0.4538	0.1911	0.071*	
H1B	-0.3120	-0.5889	0.1218	0.071*	
H1C	-0.0768	-0.5963	0.1926	0.071*	
C2	-0.3611 (4)	-0.6242 (2)	0.26934 (18)	0.0408 (6)	
C3	-0.2853 (4)	-0.7531 (3)	0.31786 (18)	0.0400 (5)	
H3A	-0.1548	-0.8010	0.2985	0.048*	
C4	-0.3986 (4)	-0.8132 (3)	0.39495 (18)	0.0392 (5)	
H4A	-0.3448	-0.8996	0.4275	0.047*	
C5	-0.5937 (4)	-0.7409 (3)	0.42196 (17)	0.0385 (5)	
C6	-0.6736 (4)	-0.6122 (3)	0.3749 (2)	0.0485 (7)	
H6A	-0.8047	-0.5645	0.3939	0.058*	
C7	-0.5565 (5)	-0.5552 (3)	0.2994 (2)	0.0508 (6)	
H7A	-0.6097	-0.4680	0.2677	0.061*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0322 (2)	0.0360 (3)	0.0334 (3)	0.0060 (3)	0.00711 (18)	0.0046 (2)
01	0.0537 (10)	0.0513 (11)	0.0326 (9)	0.0096 (9)	0.0085 (7)	-0.0025 (8)
O2	0.0532 (11)	0.0334 (9)	0.0589 (11)	0.0011 (8)	0.0121 (8)	0.0090 (8)
03	0.0311 (7)	0.0656 (11)	0.0489 (9)	0.0115 (9)	0.0046 (6)	0.0178 (9)
C8	0.0276 (10)	0.0320 (11)	0.0315 (10)	0.0028 (9)	0.0058 (8)	-0.0017 (9)
C9	0.0309 (11)	0.0432 (13)	0.0349 (12)	-0.0018 (10)	0.0044 (9)	0.0023 (10)
C10	0.0416 (13)	0.0448 (14)	0.0409 (13)	-0.0050 (11)	0.0101 (10)	0.0068 (11)
C11	0.0438 (12)	0.0443 (13)	0.0303 (11)	0.0072 (11)	0.0042 (10)	0.0023 (10)
C12	0.0641 (18)	0.074 (2)	0.0371 (14)	0.0073 (16)	0.0010 (12)	0.0134 (14)
C13	0.0295 (11)	0.0532 (15)	0.0380 (12)	0.0016 (11)	-0.0004 (9)	-0.0003 (11)
C14	0.0305 (11)	0.0392 (12)	0.0415 (13)	-0.0011 (10)	0.0071 (9)	0.0019 (10)
N1	0.0401 (11)	0.0737 (14)	0.0412 (11)	-0.0133 (11)	0.0088 (9)	-0.0154 (11)
C1	0.0736 (19)	0.0558 (17)	0.0486 (16)	-0.0024 (16)	0.0105 (14)	0.0017 (14)
C2	0.0469 (13)	0.0390 (14)	0.0362 (12)	-0.0028 (10)	0.0027 (10)	-0.0083 (9)
C3	0.0349 (12)	0.0416 (14)	0.0444 (13)	0.0025 (10)	0.0085 (10)	-0.0099 (11)
C4	0.0392 (12)	0.0377 (12)	0.0402 (12)	0.0013 (10)	0.0026 (9)	-0.0019 (10)
C5	0.0310 (11)	0.0513 (14)	0.0333 (11)	-0.0057 (10)	0.0047 (9)	-0.0119 (11)
C6	0.0385 (13)	0.0572 (16)	0.0494 (15)	0.0153 (11)	0.0032 (11)	-0.0145 (12)
C7	0.0583 (16)	0.0456 (15)	0.0474 (14)	0.0186 (13)	0.0012 (12)	-0.0013 (12)

Geometric parameters (Å, °)

<u>81—02</u>	1.449 (2)	N1—C5	1.458 (3)	_
S1—O3	1.4500 (18)	N1—H1D	0.8903	
S1—01	1.4655 (18)	N1—H1E	0.8893	
S1—C8	1.772 (2)	N1—H1F	0.8904	
С8—С9	1.384 (3)	C1—C2	1.514 (4)	
C8—C14	1.393 (3)	C1—H1A	0.9600	
C9—C10	1.389 (3)	C1—H1B	0.9600	
С9—Н9А	0.9300	C1—H1C	0.9600	
C10—C11	1.393 (4)	С2—С3	1.379 (3)	

C10—H10A	0.9300	C2—C7	1.387 (4)
C11—C13	1.386 (3)	C3—C4	1.389 (3)
C11—C12	1.510 (3)	С3—НЗА	0.9300
C12—H12A	0.9600	C4—C5	1.384 (3)
C12—H12B	0.9600	C4—H4A	0.9300
С12—Н12С	0.9600	C5—C6	1.376 (4)
C13—C14	1.381 (3)	C6—C7	1.374 (4)
С13—Н13А	0.9300	C6—H6A	0.9300
C14—H14A	0.9300	C7—H7A	0.9300
			019000
O2—S1—O3	113.73 (12)	C5—N1—H1D	109.1
O2—S1—O1	110.78 (11)	C5—N1—H1E	109.9
O3—S1—O1	113.02 (11)	H1D—N1—H1E	109.5
O2—S1—C8	106.72 (11)	C5—N1—H1F	109.4
O3—S1—C8	105.82 (10)	H1D—N1—H1F	109.4
O1—S1—C8	106.15 (11)	H1E—N1—H1F	109.5
C9—C8—C14	119.9 (2)	C2—C1—H1A	109.5
C9—C8—S1	119.82 (16)	C2—C1—H1B	109.5
C14—C8—S1	120.26 (17)	H1A—C1—H1B	109.5
C8—C9—C10	120.0 (2)	C2—C1—H1C	109.5
С8—С9—Н9А	120.0	H1A—C1—H1C	109.5
С10—С9—Н9А	120.0	H1B—C1—H1C	109.5
C9-C10-C11	120.9 (2)	$C_{3}-C_{2}-C_{7}$	118.0 (2)
C9-C10-H10A	119.5	$C_{3}-C_{2}-C_{1}$	120.9(2)
C11—C10—H10A	119.5	C7-C2-C1	120.3(2) 121.1(2)
C13 - C11 - C10	118.0(2)	$C_{2}-C_{3}-C_{4}$	121.8(2)
C13 - C11 - C12	120.9(2)	C2—C3—H3A	1191
C10-C11-C12	120.3(2) 121.1(2)	C4-C3-H3A	119.1
C11—C12—H12A	109 5	$C_{5}-C_{4}-C_{3}$	118.2(2)
C11—C12—H12B	109.5	C5-C4-H4A	120.9
H12A - C12 - H12B	109.5	$C_3 - C_4 - H_4A$	120.9
$C_{11} - C_{12} - H_{12}C_{12}$	109.5	C6-C5-C4	120.9 121.4(2)
H12A - C12 - H12C	109.5	C6-C5-N1	1196(2)
H12B - C12 - H12C	109.5	C4-C5-N1	119.0(2)
C14 - C13 - C11	122 0 (2)	C7-C6-C5	119.0(2) 118.9(2)
C14 - C13 - H13A	119.0	C7—C6—H6A	120.5
C11—C13—H13A	119.0	C_{5} C_{6} H_{6A}	120.5
C13 - C14 - C8	119.0	C6-C7-C2	120.3 121.8(2)
C_{13} C_{14} H_{14A}	120.4	C6-C7-H7A	121.8 (2)
C8 - C14 - H14A	120.4	$C_2 - C_7 - H_7 \Delta$	119.1
	120.4	62—67—11/X	117.1
O2—S1—C8—C9	-151.80 (18)	C11—C13—C14—C8	-0.4 (4)
O3—S1—C8—C9	-30.3 (2)	C9—C8—C14—C13	0.3 (3)
O1—S1—C8—C9	90.00 (19)	S1—C8—C14—C13	178.57 (18)
O2—S1—C8—C14	29.9 (2)	C7—C2—C3—C4	-0.2 (3)
O3—S1—C8—C14	151.35 (19)	C1—C2—C3—C4	179.5 (2)
O1—S1—C8—C14	-88.3 (2)	C2—C3—C4—C5	0.6 (3)
C14—C8—C9—C10	0.3 (3)	C3—C4—C5—C6	-0.6 (3)

supporting information

S1-C8-C9-C10	-178.00 (19)	C3—C4—C5—N1	-179.1 (2)
C8—C9—C10—C11	-0.7 (4)	C4—C5—C6—C7	0.2 (4)
C9—C10—C11—C13	0.6 (4)	N1—C5—C6—C7	178.6 (2)
C9—C10—C11—C12	179.4 (2)	C5—C6—C7—C2	0.3 (4)
C10-C11-C13-C14	0.0 (4)	C3—C2—C7—C6	-0.2 (4)
C12-C11-C13-C14	-178.8 (2)	C1—C2—C7—C6	-179.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H···A
N1—H1D····O1 ⁱ	0.89	2.31	3.170 (3)	164
N1—H1D····O2 ⁱ	0.89	2.33	2.824 (3)	115
N1— $H1D$ ···S1 ⁱ	0.89	2.81	3.570 (3)	144
N1—H1E····O1 ⁱⁱ	0.89	1.96	2.829 (3)	165
N1—H1F···O3 ⁱⁱⁱ	0.89	2.02	2.785 (3)	143

Symmetry codes: (i) -*x*-1, *y*-1/2, -*z*+1; (ii) *x*-1, *y*-1, *z*; (iii) -*x*, *y*-1/2, -*z*+1.