organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2-Phenylethyl)adamantane

Michal Rouchal,^a Marek Nečas^b and Robert Vícha^a*

^aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and ^bDepartment of Chemistry, Faculty of Science, Masaryk University in Brno, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic Correspondence e-mail: rvicha@ft.utb.cz

Received 24 May 2010; accepted 16 June 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.127; data-to-parameter ratio = 8.9.

In the title compound, $C_{18}H_{24}$, the adamantane cage consists of three fused cyclohexane rings in almost ideal chair conformations, with C–C–C angles in the range 108.0 (14)–111.1 (15)°. The phenyl and 1-adamantyl substituents adopt *anti* orientations with a C–C–C–C torsion angle of 177.10 (16)°. In the crystal packing, the molecules are linked by weak C–H··· π interactions into chains along the *a* axis.

Related literature

The title compound was prepared according to a modified procedure of Adkins & Billica (1948). For some important properties of compounds bearing the adamantane scaffold, see: van der Schyf *et al.* (2009); van Bommel *et al.* (2001). For a related structure, see: Raine *et al.* (2002).

Experimental

Crystal data $C_{18}H_{24}$ $M_r = 240.37$ Orthorhombic, $P2_12_12_1$

a = 6.4844 (5) Å b = 7.5109 (5) Åc = 28.5305 (19) Å $V = 1389.55 (17) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

Data collection

Kuma KM-4-CCD diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) $T_{min} = 0.924, T_{max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 163 parameters $wR(F^2) = 0.127$ H-atom parameters constrainedS = 1.30 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 1452 reflections $\Delta \rho_{min} = -0.15$ e Å $^{-3}$

 $\mu = 0.06 \text{ mm}^{-1}$

 $0.40 \times 0.20 \times 0.20$ mm

11994 measured reflections 1452 independent reflections

1277 reflections with $I > 2\sigma(I)$

T = 120 K

 $R_{\rm int} = 0.043$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1 is the centroid of the C13-C18 ring.

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C18-H18\cdots Cg1^{i}$	0.95	2.64	3.529 (3)	156
Summatry and (i) x	1 1 3 7			

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

Financial support of this work by the Czech Ministry of Education, project No. MSM 7088352101, and by the Tomas Bata Foundation is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2215).

References

Adkins, H. & Billica, H. R. (1948). J. Am. Chem. Soc. 70, 695-698.

Bommel, K. J. C. van, Metselaar, M. A., Werboom, W. & Reinhoudt, D. N. (2001). J. Org. Chem. 66, 5405–5412.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Raine, A. L., Williams, C. M. & Bernhardt, P. V. (2002). Acta Cryst. E58, 01439–01440.

Schyf, C. J. van der & Geldenhuys, W. J. (2009). *Neurotherapeutics*, **6**, 175–186. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

supporting information

Acta Cryst. (2010). E66, o1736 [doi:10.1107/S1600536810023251]

1-(2-Phenylethyl)adamantane

Michal Rouchal, Marek Nečas and Robert Vícha

S1. Comment

Adamantane is a molecule with an elegant structure and unique properties. The addition of the highly lipophilic adamantane cage to a known biologically active compound can significantly improve the pharmacokinetic profile of the resulting molecule, *e.g.* its oral bioavailability (van der Schyf *et al.* 2009). Moreover, the relatively stable host–guest interactions of the adamantane scaffold with β -cyclodextrin might increase the solubility of non-polar substances in polar media (van Bommel *et al.* 2001). Both these characteristics have an important role in drug design. This structure represents one of the few low-molecular-weight molecules bearing an adamantane moiety that has no polar function group. Therefore, this compound may be used as a standard molecule for investigations of non-polar interactions.

The asymmetric unit of the title compound consists of a single molecule (Fig. 1). The benzene ring is nearly planar with a maximum deviation from the best plane being 0.007 (2) Å for C16. The torsion angles describing mutual alignment of the 1-adamantyl and phenyl substituents C18—C13—C12—C11, C13—C12—C11—C1 and C12—C11—C1—C2 are -73.4 (2), -177.10 (16) and 179.59 (16)°, respectively. In the crystal packing, the molecules are arranged into chains parallel to the *a*-axis linked by weak C—H··· π interactions (Fig. 2, Table 1).

S2. Experimental

The title compound was prepared according to a modified literature procedure published by Adkins & Billica (1948). 2-(1-Adamantyl)-2-benzyl-1,3-dithiane (0.33 mmol, 114 mg) was dissolved in 5 ml of dioxane and a large excess of Raney nickel catalyst was added to this solution. The reaction mixture was stirred and refluxed under Ar atmosphere. Further portions of Raney nickel were added until the starting material was completely consumed (monitored by GC). Subsequently, the Raney nickel was filtered off, the filtrate was diluted with water and extracted with diethyl ether. The combined organic layers were washed twice with brine and dried over Na₂SO₄. The required product was obtained after evaporation of solvent in vacuum as a colorless crystalline powder (72 mg, 91%, mp 318–324 K). The crystal used for data collection was grown by spontaneous evaporation from deuterochloroform at room temperature.

S3. Refinement

Hydrogen atoms were positioned geometrically and refined as riding using standard *SHELXTL* constraints, with their U_{iso} set to either $1.2U_{eq}$ of their parent atoms. In the absence of significant anomalous scattering, Friedel pairs were merged.

Figure 1

ORTEP diagram of the asymmetric unit showing the atom labelling scheme with atoms represented as 50% probability ellipsoids.

Figure 2

A partial view of the crystal packing viewed along the *b*-axis showing the arrangement of the molecules into chains parallel to the *a*-axis stabilized by weak C—H··· π interactions (dotted lines). *Cg*1 is the center of gravity of C13–C18. H-atoms (except those which are involved in H-bonding) have been omitted for clarity. Symmetry codes: (i) -*x* + 1.5, -*y* + 1, z + 1/2; (ii) -*x*+2, *y* - 1/2, -*z* + 1/2.

1-(2-Phenylethyl)adamantane

<i>c</i> = 28.5305 (19) Å
$V = 1389.55 (17) Å^3$
Z = 4
F(000) = 528
$D_{\rm x} = 1.149 {\rm Mg m^{-3}}$
Melting point: 321 K

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 5446 reflections $\theta = 3.1-27.2^{\circ}$ $\mu = 0.06 \text{ mm}^{-1}$	T = 120 K Block, colourless $0.40 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Kuma KM-4-CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0.06 mm pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009) $T_{\min} = 0.924, T_{\max} = 1.000$	11994 measured reflections 1452 independent reflections 1277 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -5 \rightarrow 7$ $k = -8 \rightarrow 8$ $l = -33 \rightarrow 33$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$ wR(F ²) = 0.127	Hydrogen site location: inferred from neighbouring sites
S = 1.30	H-atom parameters constrained
1452 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0705P)^2 + 0.0787P]$
163 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm A}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm A}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.8116 (4)	0.4428 (3)	0.14870 (8)	0.0172 (6)	
C2	0.6166 (4)	0.4772 (3)	0.17845 (9)	0.0207 (6)	
H2A	0.6402	0.5812	0.1991	0.025*	
H2B	0.4993	0.5052	0.1575	0.025*	
C3	0.5633 (4)	0.3148 (3)	0.20840 (8)	0.0206 (6)	
H3	0.4366	0.3400	0.2272	0.025*	
C4	0.5236 (4)	0.1543 (3)	0.17589 (9)	0.0232 (6)	
H4A	0.4887	0.0482	0.1949	0.028*	
H4B	0.4059	0.1803	0.1549	0.028*	
C5	0.7167 (4)	0.1176 (3)	0.14680 (8)	0.0212 (6)	
H5	0.6913	0.0137	0.1257	0.025*	
C6	0.8974 (4)	0.0749 (3)	0.17999 (9)	0.0222 (6)	

H6A	0.8640	-0.0316	0.1990	0.027*
H6B	1.0230	0.0490	0.1615	0.027*
C7	0.9363 (4)	0.2344 (3)	0.21230 (8)	0.0195 (6)
H7	1.0545	0.2072	0.2337	0.023*
C8	0.9892 (4)	0.3977 (3)	0.18208 (8)	0.0182 (6)
H8A	1.0171	0.5010	0.2027	0.022*
H8B	1.1154	0.3731	0.1637	0.022*
C9	0.7437 (4)	0.2729 (4)	0.24146 (8)	0.0217 (6)
H9A	0.7693	0.3756	0.2624	0.026*
H9B	0.7097	0.1683	0.2611	0.026*
C10	0.7703 (4)	0.2808 (3)	0.11744 (9)	0.0208 (6)
H10A	0.6548	0.3076	0.0959	0.025*
H10B	0.8941	0.2554	0.0983	0.025*
C11	0.8577 (4)	0.6112 (3)	0.12008 (8)	0.0219 (6)
H11A	0.7359	0.6377	0.1004	0.026*
H11B	0.8750	0.7118	0.1421	0.026*
C12	1.0478 (5)	0.6040 (4)	0.08826 (9)	0.0283 (7)
H12A	1.1701	0.5727	0.1073	0.034*
H12B	1.0284	0.5092	0.0646	0.034*
C13	1.0866 (5)	0.7775 (4)	0.06375 (8)	0.0234 (6)
C14	1.2499 (5)	0.8876 (4)	0.07581 (8)	0.0302 (7)
H14	1.3389	0.8539	0.1007	0.036*
C15	1.2855 (5)	1.0453 (4)	0.05228 (9)	0.0349 (8)
H15	1.3969	1.1197	0.0615	0.042*
C16	1.1596 (5)	1.0957 (4)	0.01530 (9)	0.0317 (7)
H16	1.1860	1.2027	-0.0014	0.038*
C17	0.9961 (5)	0.9891 (4)	0.00311 (9)	0.0285 (7)
H17	0.9071	1.0238	-0.0217	0.034*
C18	0.9604 (5)	0.8312 (4)	0.02684 (9)	0.0275 (7)
H18	0.8477	0.7581	0.0178	0.033*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0173 (14)	0.0180 (13)	0.0163 (11)	-0.0001 (11)	0.0018 (10)	-0.0003 (10)
C2	0.0141 (13)	0.0236 (14)	0.0244 (13)	0.0037 (11)	0.0005 (12)	-0.0009 (11)
C3	0.0150 (14)	0.0257 (14)	0.0212 (12)	0.0006 (11)	0.0051 (11)	0.0004 (11)
C4	0.0187 (15)	0.0262 (14)	0.0247 (12)	-0.0028 (12)	-0.0013 (12)	0.0051 (11)
C5	0.0238 (15)	0.0188 (13)	0.0210 (12)	-0.0015 (12)	-0.0036 (11)	-0.0037 (11)
C6	0.0196 (14)	0.0202 (13)	0.0269 (13)	0.0012 (12)	0.0022 (12)	0.0028 (11)
C7	0.0157 (14)	0.0246 (14)	0.0184 (12)	0.0004 (12)	-0.0023 (11)	0.0037 (11)
C8	0.0155 (13)	0.0214 (13)	0.0177 (11)	-0.0004 (11)	0.0010 (11)	-0.0020 (11)
C9	0.0196 (15)	0.0278 (15)	0.0176 (11)	-0.0020 (13)	0.0016 (11)	0.0017 (10)
C10	0.0199 (15)	0.0237 (14)	0.0187 (11)	0.0010 (12)	-0.0007 (11)	-0.0012 (10)
C11	0.0216 (14)	0.0217 (14)	0.0223 (12)	0.0016 (12)	-0.0002 (12)	0.0007 (11)
C12	0.0275 (16)	0.0289 (15)	0.0284 (13)	0.0014 (14)	0.0050 (13)	0.0058 (12)
C13	0.0252 (16)	0.0248 (14)	0.0201 (12)	-0.0005 (12)	0.0029 (11)	0.0015 (11)
C14	0.0302 (16)	0.0415 (18)	0.0190 (12)	-0.0061 (15)	-0.0020 (12)	0.0030 (12)

supporting information

C15	0.040 (2)	0.0352 (17)	0.0291 (14)	-0.0181 (15)	-0.0039 (14)	-0.0028 (13)
C16	0.0468 (19)	0.0250 (14)	0.0235 (13)	-0.0047 (15)	0.0047 (13)	0.0029 (12)
C17	0.0307 (17)	0.0317 (15)	0.0232 (13)	0.0030 (14)	-0.0002 (14)	0.0046 (11)
C18	0.0237 (16)	0.0283 (15)	0.0306 (14)	-0.0033 (13)	-0.0027 (12)	0.0000 (12)

Geometric parameters (Å, °)

C1—C10	1.532 (3)	C8—H8B	0.9900
C1—C8	1.532 (3)	С9—Н9А	0.9900
C1-C11	1.535 (3)	С9—Н9В	0.9900
C1—C2	1.544 (3)	C10—H10A	0.9900
C2—C3	1.529 (3)	C10—H10B	0.9900
C2—H2A	0.9900	C11—C12	1.532 (4)
C2—H2B	0.9900	C11—H11A	0.9900
С3—С9	1.535 (4)	C11—H11B	0.9900
C3—C4	1.542 (3)	C12—C13	1.500 (4)
С3—Н3	1.0000	C12—H12A	0.9900
C4—C5	1.527 (4)	C12—H12B	0.9900
C4—H4A	0.9900	C13—C14	1.387 (4)
C4—H4B	0.9900	C13—C18	1.393 (4)
C5—C10	1.525 (3)	C14—C15	1.381 (4)
C5—C6	1.540 (4)	C14—H14	0.9500
С5—Н5	1.0000	C15—C16	1.387 (4)
С6—С7	1.533 (3)	C15—H15	0.9500
С6—Н6А	0.9900	C16—C17	1.373 (4)
С6—Н6В	0.9900	C16—H16	0.9500
С7—С9	1.528 (4)	C17—C18	1.385 (4)
С7—С8	1.538 (3)	C17—H17	0.9500
С7—Н7	1.0000	C18—H18	0.9500
C8—H8A	0.9900		
С10—С1—С8	108.5 (2)	C1—C8—H8B	109.5
C10-C1-C11	112.24 (18)	C7—C8—H8B	109.5
C8—C1—C11	111.5 (2)	H8A—C8—H8B	108.0
C10-C1-C2	108.1 (2)	С7—С9—С3	109.08 (18)
C8—C1—C2	108.09 (18)	С7—С9—Н9А	109.9
C11—C1—C2	108.3 (2)	С3—С9—Н9А	109.9
C3—C2—C1	111.0 (2)	С7—С9—Н9В	109.9
C3—C2—H2A	109.4	С3—С9—Н9В	109.9
C1—C2—H2A	109.4	H9A—C9—H9B	108.3
C3—C2—H2B	109.4	C5-C10-C1	110.99 (19)
C1—C2—H2B	109.4	C5-C10-H10A	109.4
H2A—C2—H2B	108.0	C1C10H10A	109.4
С2—С3—С9	109.5 (2)	C5-C10-H10B	109.4
C2—C3—C4	108.97 (18)	C1C10H10B	109.4
C9—C3—C4	109.7 (2)	H10A—C10—H10B	108.0
С2—С3—Н3	109.6	C12—C11—C1	116.3 (2)
С9—С3—Н3	109.6	C12—C11—H11A	108.2

С4—С3—Н3	109.6	C1-C11-H11A	108.2
C5—C4—C3	109.3 (2)	C12—C11—H11B	108.2
C5—C4—H4A	109.8	C1-C11-H11B	108.2
C3—C4—H4A	109.8	H11A—C11—H11B	107.4
C5—C4—H4B	109.8	C13—C12—C11	112.4 (2)
C3—C4—H4B	109.8	C13—C12—H12A	109.1
H4A—C4—H4B	108.3	C11—C12—H12A	109.1
C10—C5—C4	109.9 (2)	C13—C12—H12B	109.1
C10—C5—C6	109.4 (2)	C11—C12—H12B	109.1
C4—C5—C6	109.09 (18)	H12A—C12—H12B	107.9
С10—С5—Н5	109.5	C14—C13—C18	117.6 (2)
С4—С5—Н5	109.5	C14—C13—C12	122.0 (2)
С6—С5—Н5	109.5	C18—C13—C12	120.4 (3)
C7—C6—C5	109.4 (2)	C15—C14—C13	121.2 (3)
С7—С6—Н6А	109.8	C15—C14—H14	119.4
С5—С6—Н6А	109.8	C13—C14—H14	119.4
С7—С6—Н6В	109.8	C14—C15—C16	120.4 (3)
С5—С6—Н6В	109.8	C14—C15—H15	119.8
H6A—C6—H6B	108.2	C16—C15—H15	119.8
С9—С7—С6	109.9 (2)	C17—C16—C15	119.2 (3)
С9—С7—С8	109.7 (2)	C17—C16—H16	120.4
C6—C7—C8	108.84 (18)	C15—C16—H16	120.4
С9—С7—Н7	109.5	C16—C17—C18	120.3 (3)
С6—С7—Н7	109.5	C16—C17—H17	119.9
С8—С7—Н7	109.5	C18—C17—H17	119.9
C1—C8—C7	110.9 (2)	C17—C18—C13	121.3 (3)
C1—C8—H8A	109.5	C17—C18—H18	119.4
С7—С8—Н8А	109.5	C13—C18—H18	119.4

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C18—H18···Cg1 ⁱ	0.95	2.64	3.529 (3)	156

Symmetry code: (i) x-1/2, -y+3/2, -z.