organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Benzyl-3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate

Mehmet Akkurt,^a* Ísmail Çelik,^b Hasan Küçükbay,^c Nihat Şireci^d and Orhan Büyükgüngör^e

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, ^cDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, ^dDepartment of Chemistry, Faculty of Arts and Sciences, Adıyaman University, 02040 Adıyaman, Turkey, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Received 14 June 2010; accepted 21 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.135; data-to-parameter ratio = 18.9.

The title compound, $C_{18}H_{23}N_2Si^+\cdot Cl^-\cdot H_2O$, was synthesized from 1-[(trimethylsilyl)methyl]benzimidazole and benzyl chloride in dimethylformamide. The benzimidazole ring system is approximately planar, with a maximum deviation of 0.022 (2) Å, and makes an angle of 74.80 (12)° with the phenyl ring. The crystal packing is stabilized by $O-H\cdots Cl$, $C-H\cdots Cl$, $C-H\cdots O$ and $C-H\cdots \pi$ interactions between symmetry-related molecules together with $\pi-\pi$ stacking interactions between the imidazolium and benzene rings [centroid–centroid distance = 3.5690 (15) Å] and between the benzene rings [centroid–centroid distance = 3.7223 (14) Å].

Related literature

For general background to benzimidazole compounds and for the biological activity of related structures, see: Galal *et al.* (2009); Huang *et al.* (2006); Küçükbay & Durmaz (1997); Küçükbay *et al.* (1995, 2003, 2004, 2010); Lukevics *et al.* (2001); Singh & Lown (2000); Tavman *et al.* (2005); Turner & Denny (1996); Williams *et al.* (2002); Yılmaz & Küçükbay (2009); Çetinkaya *et al.* (1996). For similar structures, see: Akkurt *et al.* (2008, 2010).

 $\gamma = 92.094 \ (6)^{\circ}$

Z = 2

V = 963.39 (15) Å³

Mo $K\alpha$ radiation

 $0.57 \times 0.50 \times 0.36 \text{ mm}$

 $\mu = 0.27 \text{ mm}^-$

T = 296 K

Experimental

Crystal data $C_{18}H_{23}N_2Si^+ \cdot Cl^- \cdot H_2O$ $M_r = 348.94$ Triclinic, $P\overline{1}$ a = 9.3592 (7) Å b = 10.9500 (9) Å c = 11.0522 (8) Å

Data collection

 $\alpha = 117.594(6)^{\circ}$

 $\beta = 103.295 \ (6)^{\circ}$

Stoe IPDS 2 diffractometer	12149 measured reflections
Absorption correction: integration	3987 independent reflections
(X-RED32; Stoe & Cie, 2002)	3241 reflections with $I > 2\sigma(I)$
$T_{\rm min} = 0.859, T_{\rm max} = 0.909$	$R_{\rm int} = 0.029$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	211 parameters
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
3987 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C9-C14 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1A \cdots Cl1$	0.86	2.45	3.257 (2)	157
$01 - H1B \cdots Cl1^{i}$	0.85	2.45	3.250 (3)	158
$C7 - H7 \cdots O1$	0.93	2.51	3.170 (3)	128
$C8 - H8A \cdots Cl1$	0.97	2.81	3.703 (2)	153
$C3 - H3 \cdots Cg3^{ii}$	0.93	2.69	3.526 (2)	151

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) x - 1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare *et al.*, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). HK & NŞ also thank the İnönü University Research Fund (BAPB-2008–60) for financial support of this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2582).

References

- Akkurt, M., Karaca, S., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, 0809.
- Akkurt, M., Yalçın, Ş. P., Şireci, N., Küçükbay, H. & Tahir, M. N. (2010). Acta Cryst. E66, m253–m254.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Çetinkaya, B., Çetinkaya, E., Küçükbay, H. & Durmaz, R. (1996). Arzneim. Forsch. Drug Res. 46, 1154–1158.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. M. A. & El-Diwani, H. I. (2009). *Eur. J. Med. Chem.* 44, 1500–1508.
- Huang, S. T., Hsei, I. J. & Chen, C. (2006). Bioorg. Med. Chem. 14, 6106–6119.Küçükbay, H., Çetinkaya, E. & Durmaz, R. (1995). Arzneim. Forsch. Drug Res. 45, 1331–1334.
- Küçükbay, H. & Durmaz, B. (1997). Arzneim. Forsch. Drug Res. 47, 667–670.
 Küçükbay, H., Durmaz, R., Okuyucu, N. & Günal, S. (2003). Fol. Microbiol. 48, 679–681.
- Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch./Drug Res. 54, 64-68.
- Küçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2010). Asian J. Chem. 22, 2816–2824.
- Lukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). *Eur. J. Med. Chem.* 36, 507–515.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, A. K. & Lown, J. W. (2000). Anticancer Drug Des. 15, 265-275.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Tavman, A., Birteksöz, S. & Ötük, G. (2005). Folia Mirobiol., 50, 467-472.
- Turner, P. R. & Denny, W. A. (1996). Mutat. Res. 355, 141-169.
- Williams, D. A., Lemke, T. L. & Foye, O. (2002). Foye's Principles of Medicinal Chemistry, 5th ed. Philadelphia, USA: Lippincott Williams and Wilkins.
- Yılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149-6155.

supporting information

Acta Cryst. (2010). E66, o1770-o1771 [doi:10.1107/S1600536810024128]

1-Benzyl-3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate

Mehmet Akkurt, Ísmail Çelik, Hasan Küçükbay, Nihat Şireci and Orhan Büyükgüngör

S1. Comment

Although there are different antibacterial and antifungal drugs used in the treatment of bacterial and fungal infections, some of them have undesirable side effects. In addition, some of them become less effective due to the development of resistance to these drugs (Williams *et al.*, 2002). Therefore, many clinically effective antibacterial and antifungal drugs have become less effective due to the development of resistance to these drugs. Since, benzimidazole compounds have been found to have a broad range of pharmacological activity, many research groups as well as our group have been interested in these type of heterocyclic compounds (Singh *et al.*, 2000; Huang *et al.* 2006; Turner & Denny, 1996; Lukevics *et al.*, 2001; Galal *et al.* 2009; Çetinkaya *et al.*, 1996; Küçükbay *et al.*, 1995, 1997, 2003, 2004, 2010; Yılmaz & Küçükbay, 2009; Tavman *et al.*, 2005). In recent years, considerable attention has been given to the synthesis of alkylsilyl substituted benzimidazole derivatives because of their properties in cancer therapy. For example, 1-(3-trimethylsilyl-propyl)benzimidazole inhibits carcinoma S-180 tumour growth in dose 1 mg.kg⁻¹ by 62% (on ICR mice) (Lukevics *et al.*, 2001). These properties of silylsubstituted benzimidazole compounds. The objectives of this study were to synthesize and elucidate the crystal structure of the title compound, 1-benzyl-3-trimethylsilylmethylbenzimidazolium chloride monohydrate, (I).

In the title molecule, (Fig. 1), the benzimidazole ring system (N1/N2/C1–C7) is approximately planar, with maximum deviations of -0.022 (2) Å for C6, -0.018 (2) for C1 and 0.015 (2) for C7. The benzimidazole (N1/N2/C1–C7) and phenyl (C9–C14) systems make an angle of 74.80 (12)°. The values of the geometric parameters in (I) are comparable with those observed for other similar compounds (Akkurt *et al.*, 2008, 2010). The average value of the Si–C bond length is 1.854 (4) Å. The angles around the Si atoms with a distorted tetrahedral geometry rang from 105.86 (16)° to 111.81 (16)°.

The crystal packing of (I) is stabilized by O—H···Cl, C—H···Cl and C—H··· π interactions between symmetry-related molecules (Fig. 2 and Table 1), together with π - π stacking interactions between imidazolium and benzene (Table 2).

S2. Experimental

A mixture of 1-trimethylsilylmethylbenzimidazole (1.02 g, 5 mmol) and benzyl chloride (0.60 cm³, 5 mmol) in dimethylformamide (5 ml) was refluxed for 3 h. The mixture was then cooled and the volatiles were removed *in vacuo*. The residue was crystallized from a dimethylformamide/ethanol (1:1). White crystals of the title compound (1.36 g, 82%) were obtained, m.p. 425–426 K; $v_{(CN)} = 1553$ cm⁻¹. Anal. Found: C 61.64, H 7.19, N 7.93%. Calculated for C₁₈H₂₅ClN₂OSi: C 61.96, H 7.22, N 8.03%. ¹H NMR (δ , DMSO-d₆): 10.21 (s, 1H, NCHN), 8.11 - 7.59 (m, 4H, C₆H₄), 7.56–7.33 (m, 5H, C₆H₅), 5.86 (s, 2H, CH₂ benzyl), 4.30 (s, 2H, CH₂Si) and 0.14 [s, 9H, (CH₃)₃Si]. ¹³C NMR (δ , DMSO-d₆): 141.6 (NCHN), 134.6, 132.1, 130.8, 129.1, 128.8 and 128.3 (C₆H₄), 126.8, 126.5, 114.3 and 113.9 (C₆H₅), 49.8 (CH₂ benzyl), 38.1(CH₂Si) and -2.5 [(CH₃)₃Si].

S3. Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene) with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl)$. H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.83 (1)Å and H···H= 1.40 (2)Å) with $U_{iso}(H) = 1.5U_{eq}(O)$. In the last cycles of refinement, they were treated as riding on the O atoms.

Figure 1

View of the title molecule in the asymmetric unit, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii and H bonds are shown as dashed lines.

Figure 2

View of the packing and hydrogen bonding interactions of (I) down the b axis. All hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

1-Benzyl-3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate

Crystal data	
$C_{18}H_{23}N_2Si^+\cdot Cl^-\cdot H_2O$	Z = 2
$M_r = 348.94$	F(000) = 372
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.203 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.3592 (7) Å	Cell parameters from 28124 reflections
b = 10.9500 (9) Å	$\theta = 2.1 - 28.0^{\circ}$
c = 11.0522 (8) Å	$\mu=0.27~\mathrm{mm^{-1}}$
$\alpha = 117.594 \ (6)^{\circ}$	T = 296 K
$\beta = 103.295 \ (6)^{\circ}$	Prism, colourless
$\gamma = 92.094~(6)^{\circ}$	$0.57 \times 0.50 \times 0.36 \text{ mm}$
$V = 963.39(15) Å^3$	

Data collection

Stoe IPDS 2 diffractometer	$T_{\min} = 0.859, T_{\max} = 0.909$ 12149 measured reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus	3987 independent reflections 3241 reflections with $I > 2\sigma(I)$
Plane graphite monochromator	$R_{\rm int} = 0.029$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: integration	$k = -13 \rightarrow 12$
(X-RED32; Stoe & Cie, 2002)	$l = -13 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.135$	neighbouring sites
S = 1.07	H-atom parameters constrained
3987 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0637P)^2 + 0.2683P]$
211 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Si1	0.53328 (7)	0.20172 (7)	0.79168 (6)	0.05705 (19)	
N1	0.72385 (17)	0.36741 (17)	0.52896 (17)	0.0466 (4)	
N2	0.59349 (17)	0.36730 (17)	0.66907 (17)	0.0466 (4)	
C1	0.4923 (2)	0.33506 (19)	0.54087 (19)	0.0428 (4)	
C2	0.3377 (2)	0.3101 (2)	0.4971 (2)	0.0521 (5)	
H2	0.2816	0.3104	0.5566	0.063*	
C3	0.2721 (2)	0.2847 (2)	0.3611 (2)	0.0587 (5)	
H3	0.1688	0.2667	0.3276	0.070*	
C4	0.3560 (2)	0.2853 (3)	0.2717 (2)	0.0592 (5)	
H4	0.3071	0.2682	0.1806	0.071*	
C5	0.5084 (2)	0.3104 (2)	0.3150 (2)	0.0532 (5)	
H5	0.5641	0.3111	0.2555	0.064*	
C6	0.57570 (19)	0.33479 (19)	0.4512 (2)	0.0432 (4)	
C7	0.7293 (2)	0.3855 (2)	0.6574 (2)	0.0505 (5)	
H7	0.8165	0.4079	0.7293	0.061*	

C8	0.8534 (2)	0.3833 (2)	0.4794 (2)	0.0547 (5)
H8A	0.9413	0.4273	0.5602	0.066*
H8B	0.8371	0.4442	0.4377	0.066*
С9	0.8803 (2)	0.2461 (2)	0.3720 (2)	0.0510 (5)
C10	0.8520 (3)	0.2111 (3)	0.2308 (3)	0.0717 (7)
H10	0.8171	0.2741	0.2014	0.086*
C11	0.8748 (3)	0.0831 (4)	0.1329 (3)	0.0935 (10)
H11	0.8546	0.0600	0.0377	0.112*
C12	0.9272 (3)	-0.0100 (3)	0.1753 (4)	0.0947 (10)
H12	0.9404	-0.0970	0.1089	0.114*
C13	0.9600 (3)	0.0255 (3)	0.3158 (4)	0.0909 (10)
H13	0.9980	-0.0367	0.3451	0.109*
C14	0.9372 (3)	0.1527 (3)	0.4141 (3)	0.0700 (7)
H14	0.9602	0.1760	0.5095	0.084*
C15	0.5549 (3)	0.3754 (2)	0.7947 (2)	0.0549 (5)
H15A	0.4625	0.4122	0.8003	0.066*
H15B	0.6320	0.4406	0.8796	0.066*
C16	0.3837 (3)	0.0757 (3)	0.6328 (3)	0.0812 (8)
H16A	0.4063	0.0662	0.5487	0.122*
H16B	0.2907	0.1090	0.6377	0.122*
H16C	0.3767	-0.0135	0.6297	0.122*
C17	0.4849 (4)	0.2374 (4)	0.9569 (3)	0.1001 (10)
H17A	0.4744	0.1524	0.9619	0.150*
H17B	0.3928	0.2732	0.9569	0.150*
H17C	0.5624	0.3050	1.0376	0.150*
C18	0.7121 (3)	0.1391 (3)	0.7877 (3)	0.0899 (9)
H18A	0.7028	0.0478	0.7796	0.135*
H18B	0.7869	0.2023	0.8737	0.135*
H18C	0.7403	0.1344	0.7076	0.135*
01	0.9113 (3)	0.6314 (2)	0.9603 (2)	0.1024 (7)
H1A	0.9910	0.6000	0.9420	0.154*
H1B	0.9090	0.6350	1.0380	0.154*
Cl1	1.14370 (9)	0.44812 (10)	0.80296 (8)	0.0961 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0616 (4)	0.0668 (4)	0.0477 (3)	0.0106 (3)	0.0191 (3)	0.0301 (3)
N1	0.0349 (8)	0.0565 (9)	0.0533 (9)	0.0048 (7)	0.0145 (7)	0.0295 (8)
N2	0.0448 (9)	0.0524 (9)	0.0460 (8)	0.0074 (7)	0.0162 (7)	0.0251 (7)
C1	0.0401 (9)	0.0458 (9)	0.0466 (9)	0.0086 (7)	0.0162 (8)	0.0238 (8)
C2	0.0404 (10)	0.0611 (12)	0.0632 (12)	0.0110 (9)	0.0240 (9)	0.0324 (10)
C3	0.0358 (10)	0.0717 (14)	0.0673 (13)	0.0081 (9)	0.0120 (9)	0.0339 (11)
C4	0.0471 (12)	0.0770 (14)	0.0527 (11)	0.0088 (10)	0.0087 (9)	0.0333 (11)
C5	0.0486 (11)	0.0686 (13)	0.0516 (11)	0.0106 (9)	0.0193 (9)	0.0340 (10)
C6	0.0343 (9)	0.0484 (10)	0.0507 (10)	0.0068 (7)	0.0145 (8)	0.0260 (8)
C7	0.0418 (10)	0.0554 (11)	0.0511 (11)	0.0031 (8)	0.0079 (8)	0.0260 (9)
C8	0.0360 (10)	0.0667 (13)	0.0736 (13)	0.0050 (9)	0.0216 (9)	0.0412 (11)

C9	0.0311 (9)	0.0671 (12)	0.0673 (12)	0.0090 (8)	0.0197 (9)	0.0400 (10)
C10	0.0529 (13)	0.1023 (19)	0.0737 (15)	0.0312 (13)	0.0236 (12)	0.0498 (15)
C11	0.0647 (17)	0.126 (3)	0.0702 (17)	0.0308 (17)	0.0212 (14)	0.0299 (17)
C12	0.0684 (18)	0.0793 (19)	0.120 (3)	0.0195 (15)	0.0432 (18)	0.0266 (18)
C13	0.087 (2)	0.088 (2)	0.146 (3)	0.0402 (16)	0.069 (2)	0.077 (2)
C14	0.0671 (15)	0.0864 (17)	0.0943 (18)	0.0279 (13)	0.0444 (14)	0.0631 (15)
C15	0.0599 (12)	0.0622 (12)	0.0420 (10)	0.0129 (10)	0.0203 (9)	0.0217 (9)
C16	0.0781 (18)	0.0771 (17)	0.0790 (17)	-0.0077 (13)	0.0151 (14)	0.0347 (14)
C17	0.142 (3)	0.111 (2)	0.0703 (17)	0.022 (2)	0.0513 (19)	0.0526 (17)
C18	0.0818 (19)	0.093 (2)	0.088 (2)	0.0247 (16)	0.0135 (16)	0.0423 (17)
01	0.1114 (17)	0.0974 (15)	0.0822 (13)	0.0288 (13)	0.0144 (12)	0.0355 (12)
Cl1	0.0818 (5)	0.1278 (7)	0.0780 (5)	0.0348 (4)	0.0259 (4)	0.0465 (4)

Geometric parameters (Å, °)

Si1—C18	1.834 (3)	C9—C10	1.378 (3)	_
Sil—C17	1.850 (3)	C9—C14	1.383 (3)	
Sil—C16	1.852 (3)	C10—C11	1.380 (4)	
Sil—C15	1.890 (2)	C10—H10	0.9300	
N1—C7	1.328 (3)	C11—C12	1.368 (5)	
N1-C6	1.386 (2)	C11—H11	0.9300	
N1—C8	1.476 (2)	C12—C13	1.367 (5)	
N2C7	1.324 (2)	C12—H12	0.9300	
N2-C1	1.387 (2)	C13—C14	1.376 (4)	
N2-C15	1.478 (2)	C13—H13	0.9300	
C1—C2	1.389 (3)	C14—H14	0.9300	
C1—C6	1.394 (2)	C15—H15A	0.9700	
C2—C3	1.374 (3)	C15—H15B	0.9700	
С2—Н2	0.9300	C16—H16A	0.9600	
C3—C4	1.398 (3)	C16—H16B	0.9600	
С3—Н3	0.9300	C16—H16C	0.9600	
C4—C5	1.369 (3)	C17—H17A	0.9600	
C4—H4	0.9300	C17—H17B	0.9600	
C5—C6	1.384 (3)	C17—H17C	0.9600	
С5—Н5	0.9300	C18—H18A	0.9600	
С7—Н7	0.9300	C18—H18B	0.9600	
С8—С9	1.497 (3)	C18—H18C	0.9600	
C8—H8A	0.9700	O1—H1A	0.8598	
C8—H8B	0.9700	O1—H1B	0.8466	
C18—Si1—C17	111.82 (16)	C14—C9—C8	120.0 (2)	
C18—Si1—C16	110.58 (15)	C9—C10—C11	120.5 (3)	
C17—Si1—C16	110.93 (16)	C9—C10—H10	119.8	
C18—Si1—C15	107.44 (14)	C11—C10—H10	119.8	
C17—Si1—C15	105.86 (13)	C12—C11—C10	120.2 (3)	
C16—Si1—C15	110.04 (12)	C12—C11—H11	119.9	
C7—N1—C6	108.20 (15)	C10—C11—H11	119.9	
C7—N1—C8	125.70 (17)	C13—C12—C11	119.7 (3)	

C6—N1—C8	126.08 (16)	C13—C12—H12	120.1
C7—N2—C1	108.16 (15)	C11—C12—H12	120.1
C7—N2—C15	126.39 (17)	C12—C13—C14	120.4 (3)
C1—N2—C15	125.43 (16)	C12—C13—H13	119.8
N2—C1—C2	131.97 (17)	C14—C13—H13	119.8
N2—C1—C6	106.56 (16)	C13—C14—C9	120.4 (3)
C2—C1—C6	121.45 (18)	C13—C14—H14	119.8
C3—C2—C1	116.40 (18)	C9—C14—H14	119.8
С3—С2—Н2	121.8	N2—C15—Si1	113.64 (13)
C1—C2—H2	121.8	N2—C15—H15A	108.8
C2—C3—C4	122.03 (19)	Si1—C15—H15A	108.8
С2—С3—Н3	119.0	N2—C15—H15B	108.8
С4—С3—Н3	119.0	Si1—C15—H15B	108.8
C5—C4—C3	121.6 (2)	H15A—C15—H15B	107.7
C5—C4—H4	119.2	Si1—C16—H16A	109.5
C3—C4—H4	119.2	Si1—C16—H16B	109.5
C4—C5—C6	116.92 (18)	H16A—C16—H16B	109.5
C4—C5—H5	121.5	Si1—C16—H16C	109.5
С6—С5—Н5	121.5	H16A—C16—H16C	109.5
C5—C6—N1	131.92 (17)	H16B—C16—H16C	109.5
C5—C6—C1	121.62 (17)	Si1—C17—H17A	109.5
N1—C6—C1	106.41 (16)	Si1—C17—H17B	109.5
N2—C7—N1	110.68 (17)	H17A—C17—H17B	109.5
N2—C7—H7	124.7	Si1—C17—H17C	109.5
N1—C7—H7	124.7	H17A—C17—H17C	109.5
N1—C8—C9	112.22 (16)	H17B—C17—H17C	109.5
N1—C8—H8A	109.2	Si1—C18—H18A	109.5
С9—С8—Н8А	109.2	Si1—C18—H18B	109.5
N1—C8—H8B	109.2	H18A—C18—H18B	109.5
С9—С8—Н8В	109.2	Si1—C18—H18C	109.5
H8A—C8—H8B	107.9	H18A—C18—H18C	109.5
C10—C9—C14	118.7 (2)	H18B—C18—H18C	109.5
C10—C9—C8	121.3 (2)	H1A—O1—H1B	107.0
		-	
C7—N2—C1—C2	-178.0(2)	C15—N2—C7—N1	178.44 (17)
C15—N2—C1—C2	3.6 (3)	C6—N1—C7—N2	-0.3 (2)
C7—N2—C1—C6	0.1 (2)	C8—N1—C7—N2	178.18 (18)
C15—N2—C1—C6	-178.27 (17)	C7—N1—C8—C9	109.6 (2)
N2—C1—C2—C3	178.1 (2)	C6—N1—C8—C9	-72.2 (2)
C6—C1—C2—C3	0.2 (3)	N1-C8-C9-C10	108.7 (2)
C1—C2—C3—C4	-0.6 (3)	N1—C8—C9—C14	-72.5 (2)
C2—C3—C4—C5	0.4 (4)	C14—C9—C10—C11	2.3 (4)
C3—C4—C5—C6	0.2 (3)	C8—C9—C10—C11	-178.8(2)
C4—C5—C6—N1	-177.7 (2)	C9-C10-C11-C12	-0.5 (4)
C4—C5—C6—C1	-0.6 (3)	C10-C11-C12-C13	-1.5 (5)
C7—N1—C6—C5	177.7 (2)	C11—C12—C13—C14	1.7 (5)
C8—N1—C6—C5	-0.7 (3)	C12—C13—C14—C9	0.2 (4)
C7—N1—C6—C1	0.3 (2)	C10—C9—C14—C13	-2.2(3)

supporting information

C8—N1—C6—C1	-178.13 (17)	C8—C9—C14—C13	179.0 (2)
N2—C1—C6—C5	-177.97 (18)	C7—N2—C15—Si1	-91.7 (2)
C2-C1-C6-C5	0.4 (3)	C1—N2—C15—Si1	86.4 (2)
N2-C1-C6-N1	-0.2 (2)	C18—Si1—C15—N2	60.61 (19)
C2-C1-C6-N1	178.10 (18)	C17—Si1—C15—N2	-179.77 (18)
C1—N2—C7—N1	0.1 (2)	C16—Si1—C15—N2	-59.84 (19)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 ring.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1A···Cl1	0.86	2.45	3.257 (2)	157
O1—H1B···Cl1 ⁱ	0.85	2.45	3.250 (3)	158
C7—H7…O1	0.93	2.51	3.170 (3)	128
C8—H8A…Cl1	0.97	2.81	3.703 (2)	153
С3—Н3…Сg3іі	0.93	2.69	3.526 (2)	151

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) *x*-1, *y*, *z*.