Structure Reports

Online
ISSN 1600-5368

N-(2-Methylphenyl)maleamic acid

B. Thimme Gowda, ${ }^{\text {a }}$ * Miroslav Tokarčík, ${ }^{\text {b }}$ K. Shakuntala, ${ }^{\text {a }}$ Jozef Kožíšek ${ }^{\text {b }}$ and Hartmut Fuess ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, ${ }^{\mathbf{b}}$ Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and ${ }^{\text {c Institute of }}$ Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com

Received 18 May 2010; accepted 27 May 2010
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.098 ;$ data-to-parameter ratio $=13.0$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}$, the conformation of the $\mathrm{N}-\mathrm{H}$ bond is anti to the $\mathrm{C}=\mathrm{O}$ bond in the amide segment, while it is syn to the ortho-methyl group in the phenyl ring. In the maleamic acid unit, the amide $\mathrm{C}=\mathrm{O}$ bond is anti to the adjacent $\mathrm{C}-\mathrm{H}$ bond, while the carboxyl $\mathrm{C}=\mathrm{O}$ bond is syn to the adjacent $\mathrm{C}-\mathrm{H}$ bond. The $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds of the acid group are in the relatively rare anti position to each other. This is an obvious consequence of the intramolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond donated to the amide carbonyl group. The ortho-substituted phenyl ring makes a dihedral angle of 12.7 (1) ${ }^{\circ}$ with the mean plane of the maleamic acid unit. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into zigzag chains parallel to [001]. These chains are further linked into sheet by weak $\pi-\pi$ interactions [centroid-centroid distance $=3.425(2) \AA$].

Related literature

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2009a,b,c); Prasad et al. (2002). For the modes of interlinking carboxylic acids by hydrogen bonds, see: Jagannathan et al. (1994); Leiserowitz (1976).

Experimental

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}$
$a=7.3942(3) \AA$
$M_{r}=205.21$
$b=11.5898$ (4) \AA
Monoclinic, $P 2_{1} / c$
$c=12.9903$ (3) \AA
$\beta=114.534$ (2) ${ }^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$V=1012.72(5) \AA^{3}$
$T=295 \mathrm{~K}$
$Z=4$
$0.58 \times 0.42 \times 0.42 \mathrm{~mm}$
Mo $K \alpha$ radiation
Data collection
Oxford Diffraction Gemini R CCD diffractometer
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009)
$T_{\text {min }}=0.922, T_{\text {max }}=0.962$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.098$
$S=1.07$
1776 reflections

137 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.17 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.13 \mathrm{e}_{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 3^{\mathrm{i}}$	0.86	2.22	$3.0665(14)$	167
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.92	1.56	$2.4822(13)$	178
Symmetry code: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$				

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer. K. thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2569).

References

Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakunthala, K. \& Fuess, H. (2009a). Acta Cryst. E65, o2807.
Gowda, B. T., Tokarčík, M., Kožǐǐek, J., Shakunthala, K. \& Fuess, H. (2009b). Acta Cryst. E65, o2874.
Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakunthala, K. \& Fuess, H. (2009c). Acta Cryst. E65, o2945.
Jagannathan, N. R., Rajan, S. S. \& Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.
Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Prasad, S. M., Sinha, R. B. P., Mandal, D. K. \& Rani, A. (2002). Acta Cryst. E58, o891-o892.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o1554 [doi:10.1107/S160053681002012X]

\mathbf{N}-(2-Methylphenyl)maleamic acid

B. Thimme Gowda, Miroslav Tokarčík, K. Shakuntala, Jozef Kožíšek and Hartmut Fuess

S1. Comment

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitutions on the crystal structures of this class of compounds (Gowda et al., 2009a,b,c; Prasad et al., 2002), the crystal structure of N-(2-methylphenyl)-maleamic acid (I) has been determined (Fig. 1). The conformations of the $\mathrm{N}-\mathrm{H}$ and the $\mathrm{C}=\mathrm{O}$ bonds in the amide segment are anti to each other. But the conformation of the $\mathrm{N}-\mathrm{H}$ bond is syn to the ortho-methyl group in the phenyl ring. In the maleamic acid moiety, the amide $\mathrm{C}=\mathrm{O}$ bond is anti to the adjacent $\mathrm{C}-\mathrm{H}$ bond, while the carboxyl $\mathrm{C}=\mathrm{O}$ bond is syn to the adjacent $\mathrm{C}-\mathrm{H}$ bond. The observed rare anti conformation of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds of the acid group is similar to that obsrved in N-(2,6-dimethylphenyl)maleamic acid (Gowda et al., 2009a), N-(3,4-dimethylphenyl)-maleamic acid (Gowda et al., 2009b) and N-(2,4,6-tri-methylphenyl)- maleamic acid (Gowda et al., 2009c).
The ortho-substituted phenyl ring makes a dihedral angle of $12.7(1)^{\circ}$ with the mean plane of the maleamic acid moiety (atoms $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{~N} 1, \mathrm{O} 1, \mathrm{O} 2$ and O 3). The orientation of the central amide group $-\mathrm{NHOC}-$ with respect to the phenyl ring is partially affected by the intramolecular hydrogen bond $\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1$ (amide) and is given by the torsion angle $\mathrm{C} 10-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1=-17.3(2)^{\circ}$. Short intramolecular hydrogen bond $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (Table 1) is important characteristic of the maleamic acid moiety. The C2-C3 bond length of 1.330 (2) \AA clearly indicates the double bond character. In the crystal structure, the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, having the amide N 1 atom as donor and carbonyl O3 atom of the carboxyl group as acceptor, link the molecules into zigzag chains running along the [001] 0 1] direction. Due to weak $\pi-\pi$ interaction between the phenyl and maleamic acid moieties the chains are assembled to form sheets parallel to the $b c$-plane. One mode of the chain coupling is shown in Fig. 2 as a short contact between the phenyl ring centroid $C g$ and the C 4 atom of the carboxylic group at $(-x,-y+1,-z+1)$.
The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

S2. Experimental

The solution of maleic anhydride $(0.025 \mathrm{~mol})$ in toluene $(25 \mathrm{ml})$ was treated dropwise with the solution of 2-methylaniline $(0.025 \mathrm{~mol})$ also in toluene $(20 \mathrm{ml})$ with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2-methylaniline. The resultant solid N-(2-methylphenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

S3. Refinement

All H atoms attached to C atoms, N atom and O atom were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.96 \AA$ (methyl) or $0.93 \AA$ (aromatic), $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-\mathrm{H}=0.92 \AA$ with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {aromatic }}, \mathrm{N}\right)$ or $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}, \mathrm{O}\right)$.

Figure 1

Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30\% probability level and H atoms are represented as small spheres of arbitrary radii.

Figure 2
Part of the crystal structure of (I) showing the zigzag chains generated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and extending parallel to the c axis. The chains are weakly coupled by $\pi-\pi$ interaction between the phenyl rings and maleamic acid groups. The dashed lines depict the hydrogen bonds, the dotted line depicts the short contact $\mathrm{Cg} \cdots \mathrm{C} 4^{i i}$. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes (i): $x,-y+3 / 2, z-1 / 2$; (ii) $-x,-y+1,-z+1$].

N-(2-Methylphenyl)maleamic acid

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}$
$M_{r}=205.21$
Monoclinic, $P 2_{1} / c$
Hall symbol: - P 2ybc
$a=7.3942$ (3) \AA
$b=11.5898$ (4) \AA

$$
\begin{aligned}
& c=12.9903(3) \AA \\
& \beta=114.534(2)^{\circ} \\
& V=1012.72(5) \AA^{3} \\
& Z=4 \\
& F(000)=432 \\
& D_{\mathrm{x}}=1.346 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8927 reflections
$\theta=2.5-29.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$

Data collection

Oxford Diffraction Gemini R CCD diffractometer
Graphite monochromator
Detector resolution: 10.434 pixels mm^{-1}
ω scans
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
$T_{\min }=0.922, T_{\text {max }}=0.962$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.098$
$S=1.07$
1776 reflections
137 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$T=295 \mathrm{~K}$
Prism, colourless
$0.58 \times 0.42 \times 0.42 \mathrm{~mm}$

15644 measured reflections
1776 independent reflections
1453 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=25^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-8 \rightarrow 8$
$k=-13 \rightarrow 13$
$l=-15 \rightarrow 15$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.24625(18)$	$0.49123(8)$	$0.59119(8)$	$0.0661(3)$
O2	$0.26421(19)$	$0.62958(9)$	$0.74100(8)$	$0.0701(4)$
H2A	0.2600	0.5770	0.6870	0.105^{*}
O3	$0.24623(18)$	$0.81655(10)$	$0.75227(8)$	$0.0711(4)$
N1	$0.24594(15)$	$0.49437(9)$	$0.41733(8)$	$0.0432(3)$
H1N	0.2368	0.5389	0.3624	0.052^{*}
C1	$0.23624(18)$	$0.54568(11)$	$0.50723(9)$	$0.0416(3)$
C2	$0.2115(2)$	$0.67235(11)$	$0.49860(10)$	$0.0444(3)$
H2	0.1931	0.7044	0.4293	0.053^{*}
C3	$0.2122(2)$	$0.74646(11)$	$0.57694(11)$	$0.0463(3)$
H3	0.1892	0.8224	0.5517	0.056^{*}
C4	$0.2424(2)$	$0.73222(12)$	$0.69681(11)$	$0.0488(4)$

C5	$0.26967(19)$	$0.37432(11)$	$0.40204(11)$	$0.0432(3)$
C6	$0.2264(2)$	$0.33549(12)$	$0.29220(11)$	$0.0502(4)$
C7	$0.2520(2)$	$0.21851(13)$	$0.27818(14)$	$0.0614(4)$
H7	0.2247	0.1910	0.2060	0.074^{*}
C8	$0.3162(3)$	$0.14215(13)$	$0.36698(15)$	$0.0680(5)$
H8	0.3303	0.0643	0.3547	0.082^{*}
C9	$0.3591(3)$	$0.18185(13)$	$0.47378(14)$	$0.0648(4)$
H9	0.4031	0.1307	0.5345	0.078^{*}
C10	$0.3376(2)$	$0.29766(12)$	$0.49199(12)$	$0.0550(4)$
H10	0.3688	0.3242	0.5650	0.066^{*}
C11	$0.1553(3)$	$0.41495(15)$	$0.19286(12)$	$0.0711(5)$
H11A	0.1342	0.3721	0.1256	0.107^{*}
H11B	0.2532	0.4737	0.2041	0.107^{*}
H11C	0.0326	0.4502	0.1849	0.107^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.1258(10)$	$0.0400(6)$	$0.0506(6)$	$0.0030(6)$	$0.0547(6)$	$0.0022(5)$
O2	$0.1294(10)$	$0.0507(6)$	$0.0420(5)$	$0.0101(6)$	$0.0472(6)$	$0.0033(4)$
O3	$0.1142(10)$	$0.0573(7)$	$0.0486(6)$	$0.0083(6)$	$0.0406(6)$	$-0.0134(5)$
N1	$0.0616(7)$	$0.0386(6)$	$0.0353(5)$	$-0.0011(5)$	$0.0261(5)$	$-0.0029(5)$
C1	$0.0547(8)$	$0.0400(7)$	$0.0348(6)$	$-0.0020(6)$	$0.0233(6)$	$-0.0022(5)$
C2	$0.0620(8)$	$0.0418(7)$	$0.0327(6)$	$0.0025(6)$	$0.0231(6)$	$0.0018(5)$
C3	$0.0650(9)$	$0.0367(6)$	$0.0397(7)$	$0.0057(6)$	$0.0243(6)$	$0.0008(5)$
C4	$0.0642(9)$	$0.0468(8)$	$0.0397(7)$	$0.0051(6)$	$0.0260(6)$	$-0.0044(6)$
C5	$0.0500(8)$	$0.0392(7)$	$0.0474(7)$	$-0.0045(5)$	$0.0272(6)$	$-0.0079(6)$
C6	$0.0567(8)$	$0.0491(8)$	$0.0485(7)$	$-0.0072(6)$	$0.0254(6)$	$-0.0151(6)$
C7	$0.0701(10)$	$0.0541(9)$	$0.0626(9)$	$-0.0079(7)$	$0.0301(8)$	$-0.0254(8)$
C8	$0.0793(11)$	$0.0406(8)$	$0.0926(13)$	$-0.0042(7)$	$0.0441(10)$	$-0.0151(8)$
C9	$0.0849(12)$	$0.0444(8)$	$0.0776(11)$	$0.0072(7)$	$0.0461(9)$	$0.0057(8)$
C10	$0.0737(10)$	$0.0482(8)$	$0.0532(8)$	$0.0046(7)$	$0.0364(7)$	$-0.0016(6)$
C11	$0.1050(13)$	$0.0666(10)$	$0.0427(8)$	$0.0016(9)$	$0.0316(9)$	$-0.0134(7)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 1$	$1.2355(14)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.4005(17)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.3015(17)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.391(2)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.9200	$\mathrm{C} 6-\mathrm{C} 11$	$1.492(2)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.2076(16)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.373(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3387(14)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{~N} 1-\mathrm{C} 5$	$1.4265(16)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.368(2)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	0.8602	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.4779(18)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.384(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.3301(18)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 10-\mathrm{H} 10$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.4876(18)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9600

C5-C10	1.3856 (19)	C11-H11C	0.9600
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	108.1	C7-C6-C11	120.42 (12)
C1-N1-C5	127.52 (10)	C5-C6-C11	122.15 (12)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	116.3	C8-C7-C6	122.44 (14)
C5-N1-H1N	116.2	C8-C7-H7	118.8
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	122.54 (11)	C6-C7-H7	118.8
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	122.32 (10)	C9-C8-C7	119.28 (14)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	115.14 (10)	C9-C8-H8	120.4
C3-C2-C1	128.49 (11)	C7-C8-H8	120.4
C3-C2-H2	115.8	C8-C9-C10	120.33 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	115.8	C8-C9-H9	119.8
C2-C3-C4	132.88 (12)	C10-C9-H9	119.8
C2-C3-H3	113.6	C9-C10-C5	120.33 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	113.6	C9-C10-H10	119.8
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{O} 2$	120.58 (12)	C5-C10-H10	119.8
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	119.39 (13)	C6-C11-H11A	109.5
O2-C4-C3	120.03 (11)	C6- $\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.5
C10-C5-C6	120.17 (12)	H11A-C11-H11B	109.5
C10-C5-N1	122.04 (11)	C6-C11-H11C	109.5
C6-C5-N1	117.77 (11)	H11A-C11-H11C	109.5
C7-C6-C5	117.43 (13)	H11B-C11-H11C	109.5
C5-N1-C1-O1	-0.5 (2)	N1-C5-C6-C7	179.30 (12)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	179.87 (12)	C10-C5-C6-C11	-179.25 (14)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	5.8 (2)	N1-C5-C6-C11	-0.7 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-174.52 (14)	C5-C6-C7-C8	0.3 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	2.1 (3)	C11-C6-C7-C8	-179.68 (15)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	175.97 (16)	C6-C7-C8-C9	-0.8 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	-4.1 (3)	C7-C8-C9-C10	0.2 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 10$	-17.3 (2)	C8-C9-C10-C5	0.9 (2)
C1-N1-C5-C6	164.21 (12)	C6-C5-C10-C9	-1.4 (2)
C10-C5-C6-C7	0.8 (2)	N1-C5-C10-C9	-179.82 (13)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots 3^{i}$	0.86	2.22	$3.0665(14)$	167
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.92	1.56	$2.4822(13)$	178

Symmetry code: (i) $x,-y+3 / 2, z-1 / 2$.

