organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Ethyl-*N*-(2-methoxyphenyl)benzenesulfonamide

Aziz-ur-Rehman,^a‡ Humaira Rafique,^a Mehmet Akkurt,^b* Nabila Dilber,^a Muhammad Athar Abbasi^a and Islam Ullah Khan^a

^aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and ^bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Received 15 June 2010; accepted 16 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.157; data-to-parameter ratio = 20.1.

In the title molecule, $C_{15}H_{17}NO_3S$, the $C-S-N-C_{benzene}$ torsion angle is 81.45 (16)°, and the two aromatic rings form a dihedral angle of 45.83 (12)°. In the crystal structure, weak intermolecular $C-H \cdots O$ hydrogen bonds link the molecules into chains parallel to the *b* axis.

Related literature

For the biological activity of sulfonamides, see: Ozbek *et al.* (2007); Parari *et al.* (2008). For related structures, see: Mariam *et al.* (2009); Arshad *et al.* (2009); Asiri *et al.* (2009); Khan *et al.* (2010); Akkurt *et al.* (2010*a,b*).

Experimental

b = 9.5664 (6) Å
c = 17.1949 (10) Å
$\beta = 104.040 \ (2)^{\circ}$
$V = 1485.65 (15) \text{ Å}^3$

Z = 4Mo $K\alpha$ radiation $\mu = 0.22 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD	
diffractometer	
13197 measured reflections	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ 183 parameters $wR(F^2) = 0.157$ H-atom parameters constrainedS = 0.99 $\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$ 3670 reflections $\Delta \rho_{min} = -0.27 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$C6-H6\cdots O2^i$	0.93	2.53	3.300 (3)	140	
Symmetry code: (i) $-x + 2$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.					

T = 296 K

 $R_{\rm int} = 0.045$

 $0.15 \times 0.10 \times 0.06 \; \rm mm$

3670 independent reflections 1963 reflections with $I > 2\sigma(I)$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2735).

References

- Akkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1596.
- Akkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010b). Acta Cryst. E66, o1559–o1560.
- Arshad, M. N., Khan, I. U., Akkurt, M. & Shafiq, M. (2009). Acta Cryst. E65, 01953–01954.
- Asiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, 01246–01247.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Khan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). *Acta Cryst.* E66, 0786.
- Mariam, I., Akkurt, M., Sharif, S., Akhtar, N. & Khan, I. U. (2009). Acta Cryst. E65, 02797.
- Ozbek, N., Katircioglu, H., Karacan, N. & Baykal, T. (2007). *Bioorg. Med. Chem.* **15**, 5105–5109.
- Parari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

‡ Additional corresponding author, e-mail: azizhej@hotmail.com.

supporting information

Acta Cryst. (2010). E66, o1728 [doi:10.1107/S1600536810023287]

N-Ethyl-N-(2-methoxyphenyl)benzenesulfonamide

Aziz-ur-Rehman, Humaira Rafique, Mehmet Akkurt, Nabila Dilber, Muhammad Athar Abbasi and Islam Ullah Khan

S1. Comment

Sulfonamides are known as biologically active compounds (Ozbek *et al.*, 2007; Parari *et al.*, 2008). As a contribution to a structural study of sulfonamide derivatives (Mariam *et al.*, 2009; Arshad *et al.*, 2009; Asiri *et al.*, 2009; Khan *et al.*, 2010; Akkurt *et al.*, 2010*a*,b) we present here the title compound, (I).

The title molecule (Fig. 1) is bent at the S atoms with the C1—S1—N1—C9 torsion angle of $81.45 (16)^{\circ}$. The dihedral angle between the phenyl (C1–C6) and benzene (C9–C14) rings is $45.83 (12)^{\circ}$.

In the crystal structure of (I), weak intermolecular C—H \cdots O hydrogen bonds (Table 1) link the molecules into chains parallel to *b* axis.

S2. Experimental

A mixture of *N*-(2-methoxyphenyl)benzenesulfonamide (1.24 g, 5.0 mmol), sodium hydride (0.24 g, 10 mmol) and *N*,*N*-dimethylformamide (10 ml) was stirred at room temperature for 30 min and then ethyl iodide (0.4 ml, 5.0 mmol) was added. The stirring was continued further for a period of 3 h and the contents were poured over crushed ice. The precipitated product was isolated, washed and re-crystallized from methanolic solution. It was crystallized by slow evaporation of the solvent. Yield 72%.

S3. Refinement

All H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene) with $U_{iso}(H) = 1.2U_{eq}(aromatic, methylene)$ and $U_{iso}(H) = 1.5U_{eq}(methyl)$.

Figure 1

Molecular structure of (I) showing the atom labelling scheme, Displacement ellipsoids are drawn at the 30% probability level.

N-Ethyl-N-(2-methoxyphenyl)benzenesulfonamide

Crystal data	
$C_{15}H_{17}NO_{3}S$	F(000) = 616
$M_r = 291.37$	$D_{\rm x} = 1.303 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3431 reflections
a = 9.3098 (5) Å	$\theta = 2.3 - 24.5^{\circ}$
b = 9.5664 (6) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 17.1949 (10) Å	T = 296 K
$\beta = 104.040 \ (2)^{\circ}$	Block, colourless
$V = 1485.65 (15) \text{ Å}^3$	$0.15 \times 0.10 \times 0.06 \text{ mm}$
Z = 4	
Data collection	
Bruker APEXII CCD	1963 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.045$
Radiation source: sealed tube	$\theta_{\rm max} = 28.3^\circ, \theta_{\rm min} = 3.1^\circ$
Graphite monochromator	$h = -12 \rightarrow 10$
φ and ω scans	$k = -11 \rightarrow 12$
13197 measured reflections	$l = -20 \rightarrow 22$
3670 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.157$	neighbouring sites
S = 0.99	H-atom parameters constrained
3670 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0842P)^2]$
183 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.86267 (6)	0.81474 (6)	0.18075 (4)	0.0619 (2)
O1	0.99631 (18)	0.7591 (2)	0.16733 (12)	0.0964 (8)
O2	0.81194 (19)	0.94809 (17)	0.14864 (9)	0.0771 (7)
O3	0.57342 (18)	0.66902 (16)	0.25621 (9)	0.0675 (6)
N1	0.73281 (18)	0.70249 (17)	0.14324 (10)	0.0532 (6)
C1	0.8828 (2)	0.8200 (2)	0.28471 (13)	0.0557 (7)
C2	0.8216 (3)	0.9285 (2)	0.31844 (14)	0.0687 (9)
C3	0.8335 (3)	0.9308 (3)	0.39875 (16)	0.0899 (11)
C4	0.9055 (4)	0.8251 (4)	0.44612 (18)	0.1036 (15)
C5	0.9646 (4)	0.7163 (4)	0.4127 (2)	0.1047 (14)
C6	0.9558 (3)	0.7136 (3)	0.33214 (17)	0.0809 (10)
C7	0.7640 (3)	0.5514 (2)	0.15704 (15)	0.0723 (9)
C8	0.6825 (4)	0.4652 (3)	0.09012 (17)	0.1080 (13)
C9	0.5821 (2)	0.7500 (2)	0.12968 (11)	0.0476 (7)
C10	0.5011 (2)	0.7321 (2)	0.18716 (12)	0.0498 (7)
C11	0.3558 (2)	0.7784 (2)	0.17143 (14)	0.0633 (9)
C12	0.2933 (3)	0.8395 (2)	0.09883 (17)	0.0740 (10)
C13	0.3707 (3)	0.8566 (2)	0.04225 (15)	0.0722 (9)
C14	0.5157 (3)	0.8111 (2)	0.05732 (13)	0.0605 (8)
C15	0.5112 (3)	0.6721 (3)	0.32343 (15)	0.0878 (11)
H2	0.77210	1.00010	0.28620	0.0820*
Н3	0.79260	1.00430	0.42150	0.1080*
H4	0.91440	0.82730	0.50120	0.1240*
Н5	1.01110	0.64350	0.44500	0.1260*
H6	0.99860	0.64090	0.30970	0.0970*

H7A	0.86930	0.53530	0.16450	0.0870*	
H7B	0.73710	0.52310	0.20580	0.0870*	
H8A	0.57950	0.46310	0.09050	0.1620*	
H8B	0.72140	0.37180	0.09570	0.1620*	
H8C	0.69320	0.50430	0.04040	0.1620*	
H11	0.30120	0.76820	0.20970	0.0760*	
H12	0.19550	0.86980	0.08830	0.0890*	
H13	0.32660	0.89860	-0.00640	0.0870*	
H14	0.56880	0.82170	0.01840	0.0730*	
H15A	0.47490	0.76430	0.32950	0.1320*	
H15B	0.58550	0.64750	0.37070	0.1320*	
H15C	0.43090	0.60650	0.31570	0.1320*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0444 (4)	0.0686 (4)	0.0765 (4)	-0.0128 (3)	0.0219 (3)	-0.0093 (3)
01	0.0473 (10)	0.1239 (15)	0.1290 (16)	-0.0121 (10)	0.0426 (10)	-0.0311 (12)
O2	0.0798 (12)	0.0655 (11)	0.0836 (11)	-0.0281 (9)	0.0152 (8)	0.0088 (8)
O3	0.0664 (10)	0.0780 (11)	0.0630 (10)	0.0078 (8)	0.0252 (8)	0.0158 (7)
N1	0.0449 (10)	0.0534 (11)	0.0631 (11)	-0.0040 (8)	0.0167 (8)	-0.0081 (8)
C1	0.0362 (11)	0.0496 (12)	0.0761 (15)	-0.0024 (9)	0.0033 (10)	-0.0073 (10)
C2	0.0755 (17)	0.0528 (14)	0.0751 (16)	0.0057 (12)	0.0132 (12)	-0.0031 (11)
C3	0.111 (2)	0.0808 (19)	0.0776 (19)	0.0022 (17)	0.0224 (16)	-0.0168 (15)
C4	0.127 (3)	0.106 (3)	0.0640 (17)	-0.010 (2)	-0.0037 (17)	-0.0083 (16)
C5	0.110 (3)	0.089 (2)	0.087 (2)	0.0113 (18)	-0.0303 (18)	0.0097 (17)
C6	0.0691 (17)	0.0680 (16)	0.089 (2)	0.0152 (13)	-0.0131 (14)	-0.0081 (13)
C7	0.0600 (15)	0.0580 (15)	0.1008 (18)	0.0077 (11)	0.0233 (13)	-0.0162 (12)
C8	0.143 (3)	0.0672 (18)	0.122 (2)	-0.0313 (18)	0.048 (2)	-0.0282 (16)
C9	0.0446 (12)	0.0434 (11)	0.0553 (12)	-0.0076 (9)	0.0130 (9)	-0.0070 (9)
C10	0.0464 (12)	0.0459 (11)	0.0576 (12)	-0.0058 (9)	0.0135 (9)	-0.0012 (9)
C11	0.0455 (13)	0.0638 (14)	0.0839 (17)	-0.0052 (10)	0.0224 (11)	-0.0003 (12)
C12	0.0492 (14)	0.0662 (16)	0.099 (2)	0.0021 (11)	0.0035 (13)	0.0004 (13)
C13	0.0691 (18)	0.0655 (15)	0.0701 (16)	-0.0038 (12)	-0.0059 (13)	0.0066 (12)
C14	0.0645 (15)	0.0628 (14)	0.0537 (13)	-0.0128 (11)	0.0132 (11)	-0.0029 (10)
C15	0.093 (2)	0.110 (2)	0.0686 (17)	-0.0052 (17)	0.0353 (14)	0.0107 (14)

Geometric parameters (Å, °)

<u>81—01</u>	1.4226 (19)	C12—C13	1.354 (4)	
S1—O2	1.4243 (17)	C13—C14	1.382 (4)	
S1—N1	1.6286 (18)	C2—H2	0.9300	
S1—C1	1.752 (2)	С3—Н3	0.9300	
O3—C10	1.356 (2)	C4—H4	0.9300	
O3—C15	1.413 (3)	С5—Н5	0.9300	
N1—C7	1.482 (3)	С6—Н6	0.9300	
N1-C9	1.439 (3)	С7—Н7А	0.9700	
C1—C2	1.378 (3)	С7—Н7В	0.9700	

C1—C6	1.376 (3)	C8—H8A	0.9600
C2—C3	1.359 (4)	C8—H8B	0.9600
C3—C4	1.368 (5)	C8—H8C	0.9600
C4—C5	1.367 (5)	C11—H11	0.9300
C5—C6	1 368 (4)	C12—H12	0.9300
C7-C8	1 468 (4)	C13—H13	0.9300
C_{1}^{0}	1 392 (3)	C14—H14	0.9300
C_{0} C_{14}	1.372(3)	C_{15} H15A	0.9500
C_{3}	1.576(3) 1.296(2)	C15_H15P	0.9000
	1.380(3) 1.272(4)	С15—ПІЗВ	0.9000
CII—CI2	1.373 (4)	CI3—HI3C	0.9600
01…C11 ⁱ	3,336 (3)	C11H15A	2.6800
$01 \cdots C12^{i}$	3347(3)	C11···H15C	2 9200
$02 \cdots C6^{ii}$	3 300 (3)	C15H11	2.5200
02 00	3.500(3)	H2O2	2.5800
02N1	3.113(3)	H2C11V	2.5500
03 C2	2.734(2)		2.4600
03	3.383(3)		2.4600
	2.965 (3)		2.4400
03	3.152 (3)	H4···OI	2.8900
	2.7600	H6…O1	2.6900
O1···H7A	2.4400	$H6\cdots O2^{v_1}$	2.5300
O1···H4 ^m	2.8900	H7A…O1	2.4400
O1…H12 ⁱ	2.7600	H7A····C1 ^{vi}	3.0600
O1…H6	2.6900	H7A…C2 ^{vi}	3.0000
O2…H13 ^{iv}	2.8800	H7B…O3	2.3800
O2···H15C ^v	2.9100	H7B…C10	2.9300
O2…H2	2.5300	H8A…C9	2.8200
O2…H6 ⁱⁱ	2.5300	H8A…H15A ^{ix}	2.4700
O3…H7B	2.3800	H8C····C3 ⁱⁱⁱ	3.0900
N1…O3	2.734 (2)	H8C···H3 ⁱⁱⁱ	2.4400
C1…O3	3.152 (3)	H11…O1 ^{vii}	2.7600
C2…O3	3.383 (3)	H11…C15	2.5800
C6…O2 ^{vi}	3.300 (3)	H11…H15A	2.2900
C6…C7	3.472 (4)	H11H15C	2.4700
C7···C6	3 472 (4)	H12····O1 ^{vii}	2,7600
C7···O3	2 965 (3)	$H12 \cdots O2^{iv}$	2.7000
$C_{11} \cdots O_{1}^{\text{vii}}$	3 336 (3)	H14H15B ⁱⁱⁱ	2.0000
$C12O1^{vii}$	3.330(3)	H15AC11	2.0000
C12 = 01	3.347(3)	H15AH11	2.0800
	3.0600		2.2900
	2,0000		2.9000
	2,0000		2.4/00
	3.0900		2.6000
	2.9600		2.9200
C9···H8A	2.8200	HI5C…HII	2.4700
С10…Н7В	2.9300	H15C···O2 ^{IX}	2.9100
C11····H2 ^{ix}	3.0800	H15C···H2 ^{ix}	2.4600
01—S1—O2	119.54 (11)	С4—С3—Н3	120.00
	× /		

01—S1—N1	106.47 (10)	C3—C4—H4	120.00
01—S1—C1	107.15 (11)	C5—C4—H4	120.00
O2—S1—N1	107.01 (10)	С4—С5—Н5	120.00
O2—S1—C1	108.24 (10)	С6—С5—Н5	120.00
N1—S1—C1	107.96 (9)	С1—С6—Н6	120.00
C10—O3—C15	119.46 (18)	С5—С6—Н6	120.00
\$1—N1—C7	118.81 (15)	N1—C7—H7A	109.00
S1—N1—C9	117.18 (13)	N1—C7—H7B	109.00
C7—N1—C9	118.65 (18)	С8—С7—Н7А	109.00
S1—C1—C2	119.88 (16)	С8—С7—Н7В	109.00
\$1—C1—C6	119.90 (18)	H7A—C7—H7B	108.00
C2—C1—C6	120.2 (2)	С7—С8—Н8А	109.00
C1—C2—C3	120.0 (2)	С7—С8—Н8В	109.00
C2—C3—C4	120.1 (3)	C7—C8—H8C	109.00
C3—C4—C5	120.1 (3)	H8A—C8—H8B	109.00
C4—C5—C6	120.6 (3)	H8A—C8—H8C	109.00
C1—C6—C5	119.1 (3)	H8B—C8—H8C	109.00
N1—C7—C8	112.2 (2)	C10—C11—H11	120.00
N1-C9-C10	121.41 (17)	C12—C11—H11	120.00
N1-C9-C14	119.11 (19)	C11—C12—H12	119.00
C10—C9—C14	119.5 (2)	C13—C12—H12	119.00
O3—C10—C9	115.92 (17)	C12—C13—H13	120.00
O3—C10—C11	124.52 (19)	C14—C13—H13	120.00
C9—C10—C11	119.56 (19)	C9—C14—H14	120.00
C10—C11—C12	119.4 (2)	C13—C14—H14	120.00
C11—C12—C13	121.5 (2)	O3—C15—H15A	109.00
C12—C13—C14	119.6 (2)	O3—C15—H15B	109.00
C9—C14—C13	120.5 (2)	O3—C15—H15C	109.00
C1—C2—H2	120.00	H15A—C15—H15B	109.00
С3—С2—Н2	120.00	H15A—C15—H15C	109.00
С2—С3—Н3	120.00	H15B—C15—H15C	109.00
01—S1—N1—C7	42.39 (19)	S1—C1—C2—C3	178.2 (2)
O1—S1—N1—C9	-163.78 (15)	C6—C1—C2—C3	0.1 (4)
O2—S1—N1—C7	171.30 (16)	S1—C1—C6—C5	-177.1 (2)
O2—S1—N1—C9	-34.87 (17)	C2-C1-C6-C5	1.0 (4)
C1—S1—N1—C7	-72.39 (18)	C1—C2—C3—C4	-0.4 (4)
C1—S1—N1—C9	81.45 (16)	C2—C3—C4—C5	-0.5 (5)
O1—S1—C1—C2	144.01 (19)	C3—C4—C5—C6	1.7 (6)
O1—S1—C1—C6	-38.0 (2)	C4—C5—C6—C1	-1.9 (5)
O2—S1—C1—C2	13.9 (2)	N1-C9-C10-O3	0.7 (3)
O2—S1—C1—C6	-168.12 (19)	N1-C9-C10-C11	-179.48 (18)
N1—S1—C1—C2	-101.66 (19)	C14—C9—C10—O3	178.90 (18)
N1—S1—C1—C6	76.4 (2)	C14—C9—C10—C11	-1.2 (3)
C15—O3—C10—C9	167.2 (2)	N1-C9-C14-C13	179.41 (18)
C15—O3—C10—C11	-12.7 (3)	C10-C9-C14-C13	1.1 (3)
S1—N1—C7—C8	-148.4 (2)	O3—C10—C11—C12	-179.24 (19)
C9—N1—C7—C8	58.1 (3)	C9—C10—C11—C12	0.9 (3)

S1—N1—C9—C10	-93.0 (2)	C10-C11-C12-C13	-0.5 (3)
S1-N1-C9-C14	88.8 (2)	C11—C12—C13—C14	0.4 (3)
C7—N1—C9—C10	60.9 (3)	C12—C13—C14—C9	-0.7 (3)
C7—N1—C9—C14	-117.4 (2)		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+2, *y*+1/2, -*z*+1/2; (iii) *x*, -*y*+3/2, *z*-1/2; (iv) -*x*+1, -*y*+2, -*z*; (v) -*x*+1, *y*+1/2, -*z*+1/2; (vi) -*x*+2, *y*-1/2, -*z*+1/2; (vii) *x*-1, *y*, *z*; (viii) *x*, -*y*+3/2, *z*+1/2; (ix) -*x*+1, *y*-1/2, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
С2—Н2…О2	0.93	2.53	2.905 (3)	104
C6—H6…O2 ^{vi}	0.93	2.53	3.300 (3)	140
C7—H7A…O1	0.97	2.44	2.911 (3)	109
C7—H7 <i>B</i> ···O3	0.97	2.38	2.965 (3)	118

Symmetry code: (vi) -x+2, y-1/2, -z+1/2.