Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Chloro-4-nitro-1H-imidazole

Hoong-Kun Fun, ${ }^{\text {a* }} \ddagger$ Jia Hao Goh, ${ }^{\text {a }}$ § B. Chandrakantha, ${ }^{\text {b }}$ Arun M. Isloor ${ }^{\text {c }}$ and Prakash Shetty ${ }^{\text {d }}$
${ }^{\text {a }}$ - ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\mathbf{b}}$ Syngene International Ltd, Biocon Park, Plot Nos. 2 \& 3, Bommasandra 4th Phase, Jigani Link Road, Bangalore 560 100, India, ' Organic Chemistry Division, Department of Chemistry, National Institute of TechnologyKarnataka, Surathkal, Mangalore 575 025, India, and department of Printing, Manipal Institute of Technology, Manipal University, Manipal 576 104, India Correspondence e-mail: hkfun@usm.my

Received 18 June 2010; accepted 23 June 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.037 ; w R$ factor $=0.097$; data-to-parameter ratio $=16.8$.

The molecule of the title compound, $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{ClN}_{3} \mathrm{O}_{2}$, is almost planar; the dihedral angle between the imidazole ring and the nitro group is $1.7(2)^{\circ}$. In the crystal structure, pairs of intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link inversionrelated molecules into dimers, generating $R_{2}^{2}(10)$ ring motifs. The dimers are interconnected into two-dimensional networks parallel to (102) via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. Further stabilization is provided by short intermolecular $\mathrm{Cl} \cdots \mathrm{O}$ interactions [3.142 (2) and 3.1475 (19) Å].

Related literature

For general background to and applications of imidazole derivatives, see: Anuradha et al. (2006); Clark \& Macquarrie (1996); Jadhav et al. (2008); Kolavi et al. (2006); Susanta et al. (2000). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related 4-nitroimidazole crystal structures, see: Ségalas et al. (1992); De Bondt et al. (1993). For the stability of the temperature controller used for the data collection, see: Cosier \& Glazer (1986).

\ddagger Thomson Reuters ResearcherID: A-3561-2009.
§ Thomson Reuters ResearcherID: C-7576-2009.

Experimental

Crystal data
$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{ClN}_{3} \mathrm{O}_{2}$
$M_{r}=147.53$
Monoclinic, $P 2_{1} / c$
$V=523.2(3) \AA^{3}$
$Z=4$
$b=10.033$ (4) \AA
Mo $K \alpha$ radiation
$\mu=0.64 \mathrm{~mm}^{-1}$
$c=9.150(3) \AA$
$T=100 \mathrm{~K}$
$\beta=105.180(8)^{\circ}$
$0.29 \times 0.19 \times 0.04 \mathrm{~mm}$

Data collection

Bruker APEXII DUO CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.837, T_{\text {max }}=0.977$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.097$
$S=1.11$
1509 reflections

> 5484 measured reflections 1509 independent reflections 1195 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.86(3)$	$2.07(3)$	$2.900(2)$	$163(2)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.92(3)$	$2.48(3)$	$3.317(3)$	$151(2)$

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x,-y+1,-z+1$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/ PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship. AMI is grateful to the Director, National Institute of Technology-Karnataka and the Head of the Chemistry Department for their encouragement. BC is thankful to Dr John Kallikat of Syngene International Ltd for the research encouragement. AMI also thanks USM for a partially sponsored research visit to the X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5106).

References

Anuradha, V., Srinivas, P. V., Aparna, P. \& Madhusudana, J. R. (2006). Tetrahedron Lett. 47, 4933-4935.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Clark, J. H. \& Macquarrie, J. (1996). Chem. Soc. Rev. 25, 3445-3446.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

organic compounds

De Bondt, H. L., Ragia, E., Blaton, N. M., Peeters, O. M. \& De Ranter, C. J. (1993). Acta Cryst. C49, 693-695.

Jadhav, V. B., Kulkarni, M. V. \& Rasal, V. P. (2008). Eur. J. Med. Chem. 43, 1721-1729.
Kolavi, G., Hegde, V., Khan, I. z7 Gadag, P. (2006). Bioorg. Med. Chem. 14, 3069-3080.

Ségalas, I., Poitras, J. \& Beauchamp, A. L. (1992). Acta Cryst. C48, 295-298. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Susanta, S., Frederick, F. B. \& Bimal, K. B. (2000). Tetrahedron Lett. 41, 80178020.

supporting information

Acta Cryst. (2010). E66, o1828-o1829 [doi:10.1107/S1600536810024542]

2-Chloro-4-nitro-1H-imidazole

Hoong-Kun Fun, Jia Hao Goh, B. Chandrakantha, Arun M. Isloor and Prakash Shetty

S1. Comment

The nitro aromatic compounds are used as key substrates for the preparation of useful materials such as dyes, pharmaceuticals, perfumes and plastics (Susanta et al., 2000). Therefore, nitration of hydrocarbons particularly of aromatic compounds is probably one of the most widely studied organic reactions (Jadhav et al., 2008). In addition, they have proven to be valuable reagents for the synthesis of complex target molecules (Kolavi et al., 2006). Most of the substituted imidazoles are widely used in pharmaceutical ingredients (Clark \& Macquarrie, 1996). The imidazole nucleus is one of the important heterocyclic groups due to its presence in a large number of bioactive pharmaceutical and agrochemicals (Anuradha et al., 2006). It was also reported that a large number of compounds containing the imidazole ring possess some moderately useful activities. The environmentally friendly nitration reaction has been the focus of recent research.
In the title imidazole derivative, the $1 H$-imidazole ring with atom sequence $\mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{N} 2$ is essentially planar, with a maximum deviation of 0.003 (2) \AA at atom N1. The nitro group is coplanar with the attached $1 H$-imidazole ring, as indicated by the dihedral angle of $1.7(2)^{\circ}$. The geometric parameters agree well with those reported for related 4-nitroimidazole structures (Ségalas et al., 1992; De Bondt et al., 1993).
In the crystal structure, (Fig. 2), pairs of intermolecular C2—H2 $\cdots \mathrm{O} 1$ hydrogen bonds (Table 1) link inversion-related molecules into dimers, generating $R^{2}{ }_{2}(10)$ hydrogen bond ring motifs (Bernstein et al., 1995). These dimers are further interconnected into two-dimensional arrays parallel to the (102) plane via intermolecular N1—H1N1 $\cdots \mathrm{N} 2$ hydrogen bonds (Table 1). The interesting features of the crystal structure are the intermolecular short $\mathrm{Cl} \cdots \mathrm{O}$ interactions $\left[\mathrm{Cl} 1 \cdots \mathrm{O} 1^{\mathrm{iii}}\right.$ $=3.143$ (2) and $\mathrm{Cl} 1 \cdots \mathrm{O} 2^{\mathrm{i}}=3.148$ (2) \AA; (i) $1-\mathrm{x}, \mathrm{y}-1 / 2,1 / 2-\mathrm{z}$ and (iii) $\left.1+\mathrm{x}, 3 / 2-\mathrm{y}, \mathrm{z}-1 / 2\right]$ which are shorter than the sum of the van der Waals radii of the relavant atoms and help to further stabilize the crystal structure.

S2. Experimental

Nitronium tetrafluoroborate ($1.42 \mathrm{~g}, 0.0107 \mathrm{~mol}$) was dissolved in nitromethane (10 ml) and 2-chloroimidazole (1 g , 0.0097 mol) was then added in lot-wise. The reaction mixture was stirred at room temperature for 3 h . The reaction mixture was then neutrallized with an aqueous solution of sodium bicarbonate. The separated solid was then filtered. The crude product was purified by column chromatography using $60-120$ silica gel. The fraction eluted at 10% ethyl acetate in hexane was concentrated to afford the title compound as pale yellow single crystals (Yield $0.9 \mathrm{~g}, 62.93$ \%; m.p. 363366 K).

S3. Refinement

Atoms H1N1 and H2 were located in a difference Fourier map and allowed to refine freely $[\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1=0.86$ (3) and $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}=0.93$ (3) \AA].

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.

Figure 2
The crystal structure of the title compound, showing a two-dimensional network. Intermolecular interactions are shown as dashed lines.

2-Chloro-4-nitro-1H-imidazole

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{ClN}_{3} \mathrm{O}_{2}$
$M_{r}=147.53$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=5.905$ (2) \AA
$b=10.033$ (4) \AA
$c=9.150(3) \AA$
$\beta=105.180(8)^{\circ}$
$V=523.2(3) \AA^{3}$
$Z=4$
$F(000)=296$
$D_{\mathrm{x}}=1.873 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2073 reflections
$\theta=3.6-30.0^{\circ}$
$\mu=0.64 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, yellow
$0.29 \times 0.19 \times 0.04 \mathrm{~mm}$

Data collection

Bruker APEXII DUO CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.837, T_{\text {max }}=0.977$

> 5484 measured reflections
> 1509 independent reflections
> 1195 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.037$
> $\theta_{\max }=30.0^{\circ}, \theta_{\min }=3.1^{\circ}$
> $h=-6 \rightarrow 8$
> $k=-13 \rightarrow 14$
> $l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.097$
$S=1.11$
1509 reflections
90 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.72178(8)$	$0.63986(4)$	$0.10842(5)$	$0.01869(15)$
O1	$0.0169(3)$	$0.65199(14)$	$0.47907(19)$	$0.0268(4)$
O2	$0.1231(3)$	$0.84048(13)$	$0.40048(18)$	$0.0250(3)$
N1	$0.4713(3)$	$0.49414(15)$	$0.25596(19)$	$0.0157(3)$
N2	$0.4212(3)$	$0.71387(14)$	$0.26450(18)$	$0.0151(3)$
N3	$0.1318(3)$	$0.71851(16)$	$0.41138(19)$	$0.0190(3)$
C1	$0.5304(3)$	$0.61677(16)$	$0.2149(2)$	$0.0149(4)$
C2	$0.3104(3)$	$0.51281(17)$	$0.3371(2)$	$0.0164(4)$
C3	$0.2845(3)$	$0.64762(17)$	$0.3405(2)$	$0.0150(4)$
H1N1	$0.525(4)$	$0.417(3)$	$0.240(3)$	$0.025(6)^{*}$
H2	$0.246(4)$	$0.441(3)$	$0.375(3)$	$0.025(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
C11	$0.0218(2)$	$0.0162(2)$	$0.0214(3)$	$-0.00093(16)$	$0.01140(19)$	$0.00052(17)$
O1	$0.0311(8)$	$0.0228(7)$	$0.0340(9)$	$-0.0028(6)$	$0.0221(7)$	$-0.0015(6)$
O2	$0.0308(8)$	$0.0120(6)$	$0.0351(9)$	$0.0043(5)$	$0.0140(7)$	$-0.0022(6)$
N1	$0.0193(8)$	$0.0096(7)$	$0.0196(8)$	$0.0010(6)$	$0.0078(7)$	$-0.0003(6)$
N2	$0.0179(8)$	$0.0107(6)$	$0.0184(8)$	$0.0001(5)$	$0.0075(6)$	$0.0000(6)$
N3	$0.0206(8)$	$0.0151(7)$	$0.0231(9)$	$0.0008(6)$	$0.0090(7)$	$-0.0017(6)$
C1	$0.0174(9)$	$0.0113(8)$	$0.0163(9)$	$-0.0013(6)$	$0.0053(7)$	$-0.0004(6)$
C2	$0.0186(9)$	$0.0114(8)$	$0.0208(10)$	$-0.0010(6)$	$0.0082(8)$	$0.0001(7)$
C3	$0.0167(9)$	$0.0122(8)$	$0.0170(9)$	$-0.0007(6)$	$0.0060(7)$	$-0.0019(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cl} 1-\mathrm{C} 1$	1.690 (2)	N2-C1	1.313 (2)
O1-N3	1.228 (2)	N2-C3	1.368 (2)
O2-N3	1.228 (2)	N3-C3	1.430 (2)
N1-C1	1.359 (2)	C2-C3	1.362 (2)
N1-C2	1.363 (3)	C2-H2	0.93 (3)
N1-H1N1	0.86 (3)		
C1-N1-C2	107.01 (15)	N2- $\mathrm{C} 1-\mathrm{Cl} 1$	124.11 (14)
C1-N1-H1N1	129.2 (17)	N1-C1-Cl1	122.87 (14)
C2-N1-H1N1	123.7 (17)	C3-C2-N1	104.32 (16)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	102.95 (15)	C3-C2-H2	135.0 (16)
O2-N3-O1	124.46 (17)	N1-C2-H2	120.7 (16)
O2-N3-C3	118.46 (16)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	112.71 (17)
$\mathrm{O} 1-\mathrm{N} 3-\mathrm{C} 3$	117.08 (16)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 3$	126.29 (18)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	113.01 (17)	N2-C3-N3	120.99 (16)
C3-N2-C1-N1	-0.4 (2)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	0.0 (2)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{Cl} 1$	178.70 (15)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 3$	-179.05 (17)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	0.6 (2)	$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 2$	-177.8 (2)
C2-N1-C1-Cl1	-178.52 (14)	$\mathrm{O} 1-\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 2$	1.9 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.5 (2)	$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 3-\mathrm{N} 2$	1.1 (3)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	0.3 (2)	$\mathrm{O} 1-\mathrm{N} 3-\mathrm{C} 3-\mathrm{N} 2$	-179.10 (18)
N1-C2-C3-N3	179.32 (18)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.86(3)$	$2.07(3)$	$2.900(2)$	$163(2)$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.92(3)$	$2.48(3)$	$3.317(3)$	$151(2)$

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (ii) $-x,-y+1,-z+1$.

