organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-(Propane-1,3-diyldioxy)dibenzaldehyde

Qamar Ali,^a Muhammad Raza Shah^a and Seik Weng Ng^b*

^aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 2 June 2010; accepted 3 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.106; data-to-parameter ratio = 16.4.

The title compound, $C_{17}H_{16}O_4$, is a dialdehyde in which two formylphenoxy units are linked by a $-CH_2CH_2CH_2$ - chain; the molecule is V-shaped with the middle methylene C atom as the apex. The two benzene rings are aligned at 77.4 (1)°. In the crystal, molecules are linked into centrosymmetric dimers by pairs of non-classical $C-H \cdots O$ hydrogen bonds.

Related literature

For background to Schiff bases derived by condensing similar dialdehydes with primary amines, see: Zhang *et al.* (2008). For the crystal structure of the 2,2'-disubstituted analog, see: Hu *et al.* (2005).

Experimental

Crystal data C₁₇H₁₆O₄

 $M_r = 284.30$

Z = 4 Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 100 K $0.25 \times 0.20 \times 0.10 \text{ mm}$
3113 independent reflections 2538 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$
190 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.25$ e Å ⁻³ $\Delta \rho_{min} = -0.22$ e Å ⁻³

Table 1			
Hydrogen-bond g	geometry ((Å, '	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$C16{-}H16{\cdot}{\cdot}{\cdot}O1^i$	0.95	2.41	3.287 (2)	154		
Symmetry code: (i) $-x + 1, -y + 2, -z + 1.$						

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors thank the University of Karachi and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5094).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hu, P.-Z., Ma, L.-F., Wang, J.-G., Zhao, B.-T. & Wang, L.-Y. (2005). Acta Cryst. E61, 02775–02777.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.
- Zhang, Y., Deng, X., Wang, L. & Wei, T. (2008). J. Incl. Phenom. Macrocycl. Chem. 60, 313–319.

supporting information

Acta Cryst. (2010). E66, o1620 [doi:10.1107/S1600536810021124]

4,4'-(Propane-1,3-diyldioxy)dibenzaldehyde

Qamar Ali, Muhammad Raza Shah and Seik Weng Ng

S1. Comment

The two-arm aldehyde is intended for condensation with primary amines to form Schiff bases, which, in a subsequent step, will be reacted with β -cyclodextrin to furnish inclusion compounds. The idea for this theme draws on a report on such compounds of poly(Schiff bases) (Zhang *et al.*, 2008). The flexibility of the Schiff base can be controlled by varying the position of the formyl group; the title compound has the the formyl groups in the 4,4'-positions. The crystal structure of the 2,2'-substituted compound has been reported (Hu *et al.*, 2005). The molecule of C₁₇H₁₆O₄ (Scheme I) is V-shaped with the middle methylene carbon as the apex (Fig. 1).

S2. Experimental

4-Hydroxybenzaldehyde (1 g, 8.2 mmol) was dissolved in acetone (25 ml). To the solution was added potassium carbonate (2.3 g, 16.4 mmol). The mixture was heated for 1 h. 1,3-Dibromopropane (0.29 ml, 2.7 mmol) was added and the mixture heated for another hour. The mixture was set aside for 8 h. The solvent was removed and the solid material was extracted with ethyl acetate. The solvent was again removed and the product purified by column chromatography by using dichloromethane-hexane (1:4) as mobile phase. Single crystals were obtained by recrystallization from dichloromethane.

S3. Refinement

H atoms were placed in calculated positions [C–H = 0.95–0.99 Å] and were included in the refinement in the riding model approximation, with U_{iso} (H) = $1.2U_{eq}$ (C).

Figure 1

Displacement ellipsoid plot (Barbour, 2001) of $C_{17}H_{16}O_4$ at the 70% probability level; H atoms are drawn as spheres of arbitrary radius.

4,4'-(Propane-1,3-diyldioxy)dibenzaldehyde

Crystal data

 $C_{17}H_{16}O_4$ $M_r = 284.30$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 15.3323 (15) Å b = 4.6173 (5) Å c = 20.2800 (19) Å $\beta = 104.783 (1)^\circ$ $V = 1388.2 (2) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEXII	2538 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.027$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$
Graphite monochromator	$h = -19 \rightarrow 19$
ω scans	$k = -5 \longrightarrow 5$
8297 measured reflections	$l = -19 \rightarrow 26$
3113 independent reflections	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fo

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.106$ S = 1.033113 reflections 190 parameters 0 restraints Primary atom site location: structure-invariant direct methods

$\theta = 3.1-28.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.25 \times 0.20 \times 0.10 \text{ mm}$ 2538 reflections with $I > 2\sigma(I)$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 2677 reflections

F(000) = 600

 $D_{\rm x} = 1.360 {\rm Mg} {\rm m}^{-3}$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0513P)^2 + 0.4617P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.25$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
0.33791 (6)	1.4272 (2)	0.27971 (5)	0.0247 (2)	
0.37445 (6)	0.5332 (2)	0.52487 (5)	0.0191 (2)	
0.36450 (6)	0.5695 (2)	0.70403 (5)	0.0191 (2)	
0.58320 (6)	1.2514 (2)	0.97043 (5)	0.0290 (3)	
0.28543 (9)	1.3387 (3)	0.31097 (7)	0.0193 (3)	
0.2260	1.4154	0.2992	0.023*	
0.30737 (8)	1.1217 (3)	0.36563 (7)	0.0171 (3)	
0.24107 (8)	1.0286 (3)	0.39613 (7)	0.0183 (3)	
0.1816	1.1028	0.3805	0.022*	
0.25983 (8)	0.8289 (3)	0.44913 (7)	0.0182 (3)	
0.2137	0.7657	0.4694	0.022*	
0.34744 (8)	0.7227 (3)	0.47213 (6)	0.0166 (3)	
0.41484 (8)	0.8113 (3)	0.44128 (7)	0.0188 (3)	
0.4742	0.7361	0.4566	0.023*	
	x 0.33791 (6) 0.37445 (6) 0.36450 (6) 0.58320 (6) 0.28543 (9) 0.2260 0.30737 (8) 0.24107 (8) 0.1816 0.25983 (8) 0.2137 0.34744 (8) 0.41484 (8) 0.4742	x y 0.33791 (6) 1.4272 (2) 0.37445 (6) 0.5332 (2) 0.36450 (6) 0.5695 (2) 0.58320 (6) 1.2514 (2) 0.28543 (9) 1.3387 (3) 0.2260 1.4154 0.30737 (8) 1.1217 (3) 0.24107 (8) 1.0286 (3) 0.1816 1.1028 0.25983 (8) 0.8289 (3) 0.2137 0.7657 0.34744 (8) 0.7227 (3) 0.41484 (8) 0.8113 (3) 0.4742 0.7361	xyz $0.33791(6)$ $1.4272(2)$ $0.27971(5)$ $0.37445(6)$ $0.5332(2)$ $0.52487(5)$ $0.36450(6)$ $0.5695(2)$ $0.70403(5)$ $0.58320(6)$ $1.2514(2)$ $0.97043(5)$ $0.28543(9)$ $1.3387(3)$ $0.31097(7)$ 0.2260 1.4154 0.2992 $0.30737(8)$ $1.1217(3)$ $0.36563(7)$ $0.24107(8)$ $1.0286(3)$ $0.39613(7)$ 0.1816 1.1028 0.3805 $0.25983(8)$ $0.8289(3)$ $0.44913(7)$ 0.2137 0.7657 0.4694 $0.34744(8)$ $0.8113(3)$ $0.44128(7)$ 0.4742 0.7361 0.4566	xyz $U_{iso}*/U_{eq}$ 0.33791 (6)1.4272 (2)0.27971 (5)0.0247 (2)0.37445 (6)0.5332 (2)0.52487 (5)0.0191 (2)0.36450 (6)0.5695 (2)0.70403 (5)0.0191 (2)0.58320 (6)1.2514 (2)0.97043 (5)0.0290 (3)0.28543 (9)1.3387 (3)0.31097 (7)0.0193 (3)0.22601.41540.29920.023*0.30737 (8)1.1217 (3)0.36563 (7)0.0171 (3)0.24107 (8)1.0286 (3)0.39613 (7)0.0183 (3)0.18161.10280.38050.022*0.25983 (8)0.8289 (3)0.44913 (7)0.0182 (3)0.21370.76570.46940.022*0.34744 (8)0.7227 (3)0.47213 (6)0.0166 (3)0.41484 (8)0.8113 (3)0.44128 (7)0.0188 (3)0.47420.73610.45660.023*

C7	0.39463 (9)	1.0082 (3)	0.38860 (7)	0.0192 (3)
H7	0.4404	1.0678	0.3676	0.023*
C8	0.30783 (8)	0.4333 (3)	0.55834 (7)	0.0182 (3)
H8A	0.2590	0.3283	0.5257	0.022*
H8B	0.2810	0.5991	0.5771	0.022*
C9	0.35588 (9)	0.2331 (3)	0.61526 (7)	0.0190 (3)
H9A	0.3901	0.0869	0.5964	0.023*
H9B	0.3103	0.1290	0.6331	0.023*
C10	0.42019 (8)	0.3892 (3)	0.67370 (7)	0.0176 (3)
H10A	0.4544	0.2486	0.7074	0.021*
H10B	0.4635	0.5084	0.6567	0.021*
C11	0.40426 (8)	0.7236 (3)	0.76107 (6)	0.0164 (3)
C12	0.34516 (8)	0.8830 (3)	0.78886 (7)	0.0189 (3)
H12	0.2821	0.8762	0.7685	0.023*
C13	0.37858 (9)	1.0507 (3)	0.84602 (7)	0.0202 (3)
H13	0.3383	1.1611	0.8647	0.024*
C14	0.47139 (8)	1.0595 (3)	0.87679 (7)	0.0187 (3)
C15	0.52930 (8)	0.8986 (3)	0.84844 (7)	0.0189 (3)
H15	0.5923	0.9038	0.8691	0.023*
C16	0.49718 (8)	0.7308 (3)	0.79069 (7)	0.0174 (3)
H16	0.5375	0.6227	0.7716	0.021*
C17	0.50495 (9)	1.2379 (3)	0.93787 (7)	0.0235 (3)
H17	0.4622	1.3516	0.9531	0.028*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U ²³
01	0.0269 (5)	0.0271 (5)	0.0213 (5)	0.0011 (4)	0.0081 (4)	0.0041 (4)
02	0.0179 (4)	0.0231 (5)	0.0158 (5)	0.0023 (4)	0.0036 (4)	0.0036 (4)
03	0.0165 (4)	0.0234 (5)	0.0163 (5)	0.0004 (4)	0.0020 (3)	-0.0030 (4)
04	0.0248 (5)	0.0375 (6)	0.0228 (6)	-0.0053 (4)	0.0027 (4)	-0.0083(5)
C1	0.0220 (6)	0.0177 (6)	0.0168 (7)	0.0004 (5)	0.0027 (5)	-0.0033 (5)
C2	0.0200 (6)	0.0162 (6)	0.0139 (6)	-0.0002 (5)	0.0020 (5)	-0.0036 (5)
C3	0.0168 (6)	0.0190 (6)	0.0169 (7)	0.0015 (5)	0.0006 (5)	-0.0027 (5)
C4	0.0171 (6)	0.0207 (6)	0.0165 (7)	-0.0013 (5)	0.0039 (5)	-0.0019 (5)
C5	0.0197 (6)	0.0166 (6)	0.0118 (6)	0.0005 (5)	0.0010 (5)	-0.0027 (5)
C6	0.0166 (6)	0.0212 (7)	0.0177 (7)	0.0022 (5)	0.0026 (5)	-0.0018 (5)
C7	0.0189 (6)	0.0211 (7)	0.0180 (7)	-0.0012 (5)	0.0055 (5)	-0.0017 (5)
C8	0.0187 (6)	0.0199 (7)	0.0158 (7)	-0.0021 (5)	0.0039 (5)	-0.0018 (5)
C9	0.0208 (6)	0.0174 (6)	0.0181 (7)	-0.0019 (5)	0.0035 (5)	-0.0009 (5)
C10	0.0184 (6)	0.0182 (6)	0.0160 (7)	0.0010 (5)	0.0038 (5)	-0.0005 (5)
C11	0.0191 (6)	0.0155 (6)	0.0135 (6)	-0.0013 (5)	0.0022 (5)	0.0025 (5)
C12	0.0154 (6)	0.0218 (7)	0.0192 (7)	-0.0006 (5)	0.0037 (5)	0.0012 (5)
C13	0.0194 (6)	0.0205 (7)	0.0221 (7)	0.0011 (5)	0.0077 (5)	-0.0014 (6)
C14	0.0205 (6)	0.0190 (6)	0.0163 (7)	-0.0018 (5)	0.0037 (5)	0.0006 (5)
C15	0.0160 (6)	0.0204 (7)	0.0186 (7)	-0.0006 (5)	0.0015 (5)	0.0027 (5)
C16	0.0165 (6)	0.0190 (6)	0.0173 (7)	0.0016 (5)	0.0053 (5)	0.0009 (5)
C17	0.0242 (7)	0.0258 (7)	0.0214 (7)	-0.0022 (6)	0.0073 (5)	-0.0026 (6)

Geometric parameters (Å, °)

01—C1	1.2152 (16)	C8—H8A	0.99	
O2—C5	1.3620 (15)	C8—H8B	0.99	
O2—C8	1.4389 (15)	C9—C10	1.5167 (17)	
O3—C11	1.3623 (15)	С9—Н9А	0.99	
O3—C10	1.4382 (15)	С9—Н9В	0.99	
O4—C17	1.2145 (17)	C10—H10A	0.99	
C1—C2	1.4682 (19)	C10—H10B	0.99	
C1—H1	0.95	C11—C12	1.3931 (18)	
C2—C3	1.3863 (18)	C11—C16	1.3981 (17)	
C2—C7	1.4014 (18)	C12—C13	1.3796 (19)	
C3—C4	1.3894 (19)	C12—H12	0.95	
С3—Н3	0.95	C13—C14	1.4009 (17)	
C4—C5	1.3938 (18)	C13—H13	0.95	
C4—H4	0.95	C14—C15	1.3895 (19)	
C5—C6	1.3989 (18)	C14—C17	1.4674 (19)	
C6—C7	1.3765 (19)	C15—C16	1.3859 (18)	
С6—Н6	0.95	C15—H15	0.95	
С7—Н7	0.95	C16—H16	0.95	
С8—С9	1.5153 (18)	C17—H17	0.95	
C5—O2—C8	117.78 (10)	С10—С9—Н9А	108.9	
C11—O3—C10	118.66 (9)	С8—С9—Н9В	108.9	
O1—C1—C2	124.65 (12)	С10—С9—Н9В	108.9	
O1	117.7	H9A—C9—H9B	107.7	
C2C1H1	117.7	O3—C10—C9	105.71 (10)	
C3—C2—C7	118.83 (12)	O3—C10—H10A	110.6	
C3—C2—C1	119.72 (11)	C9—C10—H10A	110.6	
C7—C2—C1	121.44 (12)	O3—C10—H10B	110.6	
C2—C3—C4	121.36 (12)	C9—C10—H10B	110.6	
С2—С3—Н3	119.3	H10A—C10—H10B	108.7	
C4—C3—H3	119.3	O3—C11—C12	115.02 (11)	
C3—C4—C5	118.95 (12)	O3—C11—C16	124.28 (11)	
C3—C4—H4	120.5	C12—C11—C16	120.69 (12)	
C5—C4—H4	120.5	C13—C12—C11	119.74 (11)	
O2—C5—C4	124.25 (12)	C13—C12—H12	120.1	
O2—C5—C6	115.34 (11)	C11—C12—H12	120.1	
C4—C5—C6	120.40 (12)	C12—C13—C14	120.51 (12)	
C7—C6—C5	119.66 (12)	C12—C13—H13	119.7	
С7—С6—Н6	120.2	C14—C13—H13	119.7	
С5—С6—Н6	120.2	C15—C14—C13	118.95 (12)	
C6—C7—C2	120.77 (12)	C15—C14—C17	121.73 (12)	
С6—С7—Н7	119.6	C13—C14—C17	119.32 (12)	
С2—С7—Н7	119.6	C16—C15—C14	121.44 (12)	
O2—C8—C9	106.81 (10)	C16—C15—H15	119.3	
O2—C8—H8A	110.4	C14—C15—H15	119.3	
C9—C8—H8A	110.4	C15—C16—C11	118.67 (12)	

O2—C8—H8B C9—C8—H8B H8A—C8—H8B C8—C9—C10 C8—C9—H9A	110.4 110.4 108.6 113.45 (11) 108.9	C15—C16—H16 C11—C16—H16 O4—C17—C14 O4—C17—H17 C14—C17—H17	120.7 120.7 124.94 (13) 117.5 117.5
$\begin{array}{c} 01 - C1 - C2 - C3 \\ 01 - C1 - C2 - C7 \\ C7 - C2 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ C2 - C3 - C4 - C5 \\ C8 - 02 - C5 - C4 \\ C8 - 02 - C5 - C6 \\ C3 - C4 - C5 - 02 \\ C3 - C4 - C5 - 02 \\ C3 - C4 - C5 - C6 \\ O2 - C5 - C6 - C7 \\ C4 - C5 - C6 - C7 \\ C5 - C6 - C7 - C2 \\ C3 - C2 - C7 - C6 \\ C1 - C2 - C7 - C6 \end{array}$	-177.57 (13) 3.3 (2) 0.75 (19) -178.41 (12) 0.48 (19) 0.89 (18) -179.69 (11) 178.02 (12) -1.37 (19) -178.41 (11) 1.0 (2) 0.2 (2) -1.1 (2) 178.04 (12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$176.03 (10) \\ 65.84 (13) \\ -177.41 (11) \\ 3.47 (18) \\ -178.89 (12) \\ 0.26 (19) \\ -0.7 (2) \\ 0.6 (2) \\ -179.52 (13) \\ 0.0 (2) \\ -179.92 (12) \\ -0.42 (19) \\ 179.37 (12) \\ 0.29 (19) \\ -0.41 (10) \\ 0.29 (10) \\ 0.$
02—C8—C9—C10	70.22 (13)	C13—C14—C17—O4 C13—C14—C17—O4	-3.7 (2) 176.44 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C6—H6···O2 ⁱ	0.95	2.57	3.508 (2)	168
C16—H16…O1 ⁱⁱ	0.95	2.41	3.287 (2)	154

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.