

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 5-cyano-8-nitro-2,3,4,4a,5,6-hexahydro-1*H*-pyrido[1,2-*a*]quinoline-5carboxylate

Yapi Marcellin Yapo,^a* Kouakou Michel Konan,^a Ané Adjou,^b Adéyolé Timotou^b and Jules A. Tenon^a

^aLaboratoire de Cristallographie et Physique Moléculaire, UFR–SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire, and ^bLaboratoire de Chimie Organique Structurale, UFR–SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire

Correspondence e-mail: marcellin.yapo@univ-cocody.ci

Received 27 May 2010; accepted 14 June 2010

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.096; data-to-parameter ratio = 11.5.

In the title compound, $C_{17}H_{19}N_3O_4$, the piperidine ring adopts a chair conformation. The crystal structure features inversion dimers linked by pairs of weak $C-H \cdots N$ hydrogen bonds.

Related literature

For the therapeutic properties of quinoline derivatives, see: Dalla Via *et al.* (2008); Gasparotto *et al.* (2006); Ferlin *et al.* (2000). A similar heterocyclic structure, Mitomycin C, is used in cancer therapy, see: Crooke & Bradner (1976); Danishefsky & Ciufolini (1984); Remers (1980). For related structures, see: Zhuravleva *et al.* (2009); Oliveira *et al.* (2006). For ring conformation analysis, see: Cremer & Pople (1975). For reference bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data

C17H19N3O4	
$M_r = 329.36$	
Triclinic, P1	
a = 8.8257 (4) Å	
b = 9.2256 (5) Å	
c = 10.5011 (6) Å	

 $\alpha = 88.246 (4)^{\circ}$ $\beta = 75.089 (2)^{\circ}$ $\gamma = 83.289 (3)^{\circ}$ $V = 820.57 (8) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation organic compounds

 $0.20 \times 0.20 \times 0.20$ mm

 $\mu = 0.10 \text{ mm}^{-1}$ T = 223 K

Data collection

Nonius KappaCCD diffractometer2794 reflections with $I > 2\sigma(I)$ 10064 measured reflections $R_{int} = 0.04$ 4189 independent reflections

Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.055$	217 parameters
$wR(F^2) = 0.096$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
2503 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $C7-H72\cdots N3^{i}$ 0.97 2.56 3.492 (3)
 161

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *CRYSTALS*.

The authors wish to thank the Laboratoire de Physique des Interactions Ioniques et Moléculaires of Provence University (France) for the use of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2218).

References

- Allen, F. H., Kennard, O., Wastson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Crooke, S. T. & Bradner, W. T. (1976). Cancer Treat. Rev. 3, 121-139.
- Dalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). J. Med. Chem. 43, 429–434.
- Danishefsky, S. & Ciufolini, M. (1984). J. Am. Chem. Soc. 106, 6424-6425.
- Ferlin, M. G., Gatto, B., Chiarelotto, G. & Palumbo, M. (2000). Bioorg. Med. Chem. 8, 1415–1422.
- Gasparotto, V., Castalinolo, I., Chiarelotto, G., Pezzi, V., Montanaro, D., Brun, P., Palu, G., Viola, G. & Fer'lin, M. G. (2006). *J. Med. Chem.* **49**, 1910–1915. Nonius (2001). *COLLECT*. Nonius BV, Delft, The Netherlands.
- Oliveira, C. D., Romeiro, G. A., Skakle, J. M. S., Wardell, J. L. & Wardell, S. M. S. V. (2006). *Acta Cryst.* E62, 01492–01493.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Remers, W. A. (1980). In Anticancer Agents Based on Natural Product Models, edited by J. M. Cassady & J. D. Duoros, p. 131. New York: Academic Press. Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Zhuravleva, Y. A., Zimichev, A. V., Zemtsova, M. N., Rybakov, V. B. & Klimochkin, Y. N. (2009). Acta Cryst. E65, o2059.

supporting information

Acta Cryst. (2010). E66, o1735 [doi:10.1107/S160053681002283X]

Ethyl 5-cyano-8-nitro-2,3,4,4a,5,6-hexahydro-1*H*-pyrido[1,2-*a*]quinoline-5-carboxylate

Yapi Marcellin Yapo, Kouakou Michel Konan, Ané Adjou, Adéyolé Timotou and Jules A. Tenon

S1. Comment

Tricyclic quinoline derivatives have diverse and important therapeutic properties (Dalla Via *et al.*, 2008; Gasparotto *et al.*, 2006; Ferlin *et al.*, 2000). These heterocyclic are similar to Mitomycin C which is a powerful antibiotic used in cancerous chemotherapy (Crooke *et al.*, 1976; Remers *et al.*, 1980; Danishefsky *et al.*, 1984). They are also used as intermediate compound to elaborate keratic fiber colorings. Here, we report the single X-ray determination of the title compound $C_{17}H_{19}N_3O_4$, (I), in order to have a best insight of its structure and then to undertake a study of its possible therapeutic activity. The molecular structure of this compound and its atomic labeling scheme are shown in Figure 1. The bond lenghts distances are within the accepted range (Allen *et al.*, 1987). In (I), there are two coupled rings: quinoline and piperidine rings. The geometrical characteristics relating bond distances in quinoline ring are consistent and present no particularity with the recently reported (Oliveira *et al.*, 2006; Zhuravleva *et al.*, 2009). By least squares planes method, it is observed that carbon atom C8 deviates of -0.4074Å to quinoline cycle plane what proves that quinoline ring is not veritably plane. Concerning piperidine ring, it assumes a chair conformation which the puckering parameters (Cremer & Pople, 1975): θ =7.78°, Q=0.6147Å and Φ =42.46°. The crystal packing is due to the weak hydrogen bonds C-H…N which ensure crystal cohesion (Table 1 and Figure 2).

S2. Experimental

3.5 g, 10 mmol of malonic arylidene was dissolved in 10 ml of dimethylformamide. The melange was heated to reflux during 24 h. After cooling to ambient temperature, 20 ml of water was added to the melange. After extraction to ethyl acetate (150 ml), the organic layers were dried on magnesium sulfate, filtered and concentrated under reduced pressure. The residue was purified by chromatography on silica gel using hexane/ethyl acetate (80/20) to obtain yellow crystals with 45% yields. The melting point is 424 K

S3. Refinement

The H atoms were all located in a difference map and then treated as ridings atoms with C—H in the range 0.93–0.98Å and $U_{iso}(H)$ in the range 1.2–1.5 times U_{eq} of the parent atom.

Figure 1

The title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The crystal packing of (I). Hydrogen bonds C-H…N are shown as dashes lines: Symmetry code : (i) -x+1, -y+1, -z+1.

Ethyl 5-cyano-8-nitro-2,3,4,4a,5,6-hexahydro- 1H-pyrido[1,2-a]quinoline-5-carboxylate

Z = 2

F(000) = 348

 $\theta = 2-29^{\circ}$

T = 223 K

 $\mu = 0.10 \text{ mm}^{-1}$

Prism, yellow

 $D_{\rm x} = 1.333 {\rm Mg} {\rm m}^{-3}$

Melting point: 424 K

 $0.20\times0.20\times0.20~mm$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 10064 reflections

Crystal data

 $C_{17}H_{19}N_{3}O_{4}$ $M_{r} = 329.36$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.8257 (4) Å b = 9.2256 (5) Å c = 10.5011 (6) Å $a = 88.246 (4)^{\circ}$ $\beta = 75.089 (2)^{\circ}$ $\gamma = 83.289 (3)^{\circ}$ $V = 820.57 (8) \text{ Å}^{3}$

Data collection

Nonius KappaCCD diffractometer	2794 reflections with $I > 2\sigma(I)$ $R_{int} = 0.04$
Graphite monochromator	$\theta_{\rm max} = 29.1^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
φ and ω scans	$h = 0 \rightarrow 12$
10064 measured reflections	$k = -11 \rightarrow 12$
4189 independent reflections	$l = -13 \rightarrow 14$
Refinement	

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.055$
$wR(F^2) = 0.096$
S = 1.04
2503 reflections
217 parameters
0 restraints

Primary atom site location: structure-invariant
direct methods
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F^2) + (0.02P)^2 + 0.5P],$
where $P = (\max(F_o^2, 0) + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.000163$
$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.70920 (19)	0.86006 (18)	0.50748 (17)	0.0241	
N1	0.70324 (17)	0.85963 (14)	0.63954 (14)	0.0268	
03	0.66155 (17)	0.46173 (14)	0.84947 (13)	0.0393	
С9	0.7451 (2)	0.72488 (18)	0.70764 (17)	0.0256	
C2	0.6873 (2)	0.99129 (19)	0.43830 (18)	0.0287	
C6	0.7271 (2)	0.72669 (18)	0.43802 (17)	0.0269	
C5	0.7160 (2)	0.72795 (19)	0.30929 (18)	0.0308	
C4	0.6920(2)	0.8595 (2)	0.24574 (17)	0.0311	
O4	0.8187 (2)	0.35165 (15)	0.66714 (15)	0.0548	
O2	0.6821 (2)	0.74186 (19)	0.05771 (16)	0.0639	
C3	0.6790 (2)	0.99068 (19)	0.30939 (18)	0.0308	
C7	0.7604 (2)	0.58338 (19)	0.50323 (18)	0.0325	
C8	0.6879 (2)	0.59435 (18)	0.65159 (17)	0.0278	
C10	0.9210 (2)	0.7072 (2)	0.70064 (19)	0.0327	

N3	0.3802 (2)	0.63652 (18)	0.69548 (19)	0.0450
N2	0.6797 (2)	0.8591 (2)	0.11110 (17)	0.0436
01	0.6673 (2)	0.97711 (19)	0.05381 (15)	0.0652
C13	0.7303 (2)	0.98771 (19)	0.70769 (18)	0.0310
C17	0.5143 (2)	0.61781 (18)	0.67811 (19)	0.0322
C12	0.9039 (2)	0.9820 (2)	0.70523 (19)	0.0346
C14	0.7321 (2)	0.45278 (19)	0.72194 (19)	0.0328
C11	0.9606 (2)	0.8393 (2)	0.7643 (2)	0.0358
C15	0.6946 (3)	0.3372 (2)	0.9327 (2)	0.0461
C16	0.8465 (4)	0.3441 (3)	0.9667 (3)	0.0711
H91	0.6874	0.7364	0.8009	0.0307*
H51	0.7270	0.6393	0.2640	0.0374*
H31	0.6639	1.0787	0.2640	0.0358*
H71	0.8751	0.5568	0.4875	0.0395*
H72	0.7193	0.5065	0.4655	0.0388*
H101	0.9454	0.6173	0.7460	0.0386*
H102	0.9806	0.7000	0.6083	0.0399*
H122	0.9191	1.0653	0.7543	0.0424*
H121	0.9656	0.9890	0.6138	0.0425*
H112	1.0737	0.8312	0.7531	0.0436*
H111	0.9082	0.8405	0.8586	0.0444*
H152	0.6075	0.3476	1.0124	0.0547*
H151	0.6960	0.2467	0.8845	0.0545*
H162	0.8619	0.2658	1.0269	0.0858*
H161	0.8453	0.4366	1.0086	0.0858*
H163	0.9346	0.3328	0.8875	0.0858*
H21	0.6783	1.0810	0.4814	0.0340*
H131	0.6679	0.9883	0.7985	0.0380*
H132	0.6990	1.0760	0.6639	0.0380*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0202 (8)	0.0264 (9)	0.0259 (9)	-0.0011 (6)	-0.0068 (7)	-0.0010 (7)
N1	0.0338 (9)	0.0213 (7)	0.0269 (8)	0.0003 (6)	-0.0122 (7)	-0.0028 (6)
O3	0.0480 (9)	0.0337 (7)	0.0313 (8)	0.0038 (6)	-0.0057 (6)	0.0066 (6)
C9	0.0293 (9)	0.0242 (8)	0.0237 (9)	-0.0009 (7)	-0.0087 (7)	0.0007 (7)
C2	0.0264 (9)	0.0269 (9)	0.0316 (10)	-0.0020 (7)	-0.0061 (8)	0.0012 (7)
C6	0.0268 (9)	0.0274 (9)	0.0258 (9)	-0.0008 (7)	-0.0066 (7)	0.0000 (7)
C5	0.0332 (10)	0.0331 (10)	0.0262 (9)	-0.0035 (8)	-0.0076 (8)	-0.0024 (7)
C4	0.0301 (10)	0.0422 (11)	0.0206 (9)	-0.0055 (8)	-0.0058 (7)	0.0036 (7)
O4	0.0801 (12)	0.0323 (8)	0.0403 (9)	0.0185 (8)	-0.0056 (8)	0.0011 (6)
O2	0.0985 (15)	0.0666 (11)	0.0350 (9)	-0.0240 (10)	-0.0255 (9)	-0.0007 (8)
C3	0.0245 (9)	0.0345 (10)	0.0313 (10)	-0.0025 (7)	-0.0048 (8)	0.0086 (8)
C7	0.0452 (11)	0.0265 (9)	0.0259 (10)	0.0021 (8)	-0.0115 (9)	-0.0037 (7)
C8	0.0326 (10)	0.0233 (9)	0.0276 (10)	0.0006 (7)	-0.0097 (8)	0.0001 (7)
C10	0.0302 (10)	0.0314 (10)	0.0361 (11)	0.0007 (8)	-0.0101 (8)	0.0039 (8)
N3	0.0402 (11)	0.0384 (10)	0.0596 (12)	-0.0061 (8)	-0.0174 (9)	-0.0034 (8)

supporting information

N2	0.0455 (11)	0.0574 (12)	0.0267 (9)	-0.0062 (9)	-0.0076 (8)	0.0059 (8)
O1	0.0931 (14)	0.0654 (11)	0.0342 (9)	0.0056 (10)	-0.0195 (9)	0.0154 (8)
C13	0.0372 (11)	0.0257 (9)	0.0320 (10)	-0.0002 (8)	-0.0132 (8)	-0.0046 (7)
C17	0.0422 (12)	0.0223 (9)	0.0349 (10)	-0.0051 (8)	-0.0141 (9)	-0.0009 (7)
C12	0.0362 (11)	0.0338 (10)	0.0358 (11)	-0.0078 (8)	-0.0110 (9)	-0.0017 (8)
C14	0.0400 (11)	0.0265 (9)	0.0321 (10)	-0.0015 (8)	-0.0105 (9)	0.0009 (8)
C11	0.0282 (10)	0.0431 (11)	0.0378 (11)	-0.0062 (8)	-0.0108 (8)	0.0019 (9)
C15	0.0573 (14)	0.0401 (12)	0.0364 (12)	0.0018 (10)	-0.0088 (10)	0.0141 (9)
C16	0.0735 (19)	0.086 (2)	0.0595 (17)	-0.0018 (15)	-0.0330 (15)	0.0224 (14)

Geometric parameters (Å, °)

C1—N1	1.374 (2)	С7—Н72	0.971
C1—C2	1.412 (2)	C8—C17	1.476 (3)
C1—C6	1.422 (2)	C8—C14	1.541 (2)
N1-C9	1.472 (2)	C10—C11	1.525 (3)
N1-C13	1.474 (2)	C10—H101	0.973
O3—C14	1.324 (2)	C10—H102	0.977
O3—C15	1.469 (2)	N3—C17	1.143 (2)
С9—С8	1.546 (2)	N2—O1	1.235 (2)
C9—C10	1.524 (3)	C13—C12	1.520 (3)
С9—Н91	0.983	C13—H131	0.970
C2—C3	1.375 (3)	C13—H132	0.970
C2—H21	0.941	C12—C11	1.524 (3)
C6—C5	1.380 (2)	C12—H122	0.979
С6—С7	1.504 (2)	C12—H121	0.979
C5—C4	1.388 (3)	C11—H112	0.969
C5—H51	0.941	C11—H111	0.979
C4—C3	1.379 (3)	C15—C16	1.482 (4)
C4—N2	1.446 (2)	C15—H152	0.979
O4—C14	1.194 (2)	C15—H151	0.987
O2—N2	1.229 (2)	C16—H162	0.966
С3—Н31	0.942	C16—H161	0.969
С7—С8	1.526 (2)	C16—H163	0.980
С7—Н71	0.985		
N1—C1—C2	121.61 (15)	C11—C10—H101	111.3
N1-C1-C6	120.57 (15)	C9-C10-H102	109.0
C2—C1—C6	117.69 (16)	C11—C10—H102	109.9
C1—N1—C9	121.40 (13)	H101—C10—H102	109.1
C1—N1—C13	122.69 (14)	C4—N2—O2	119.05 (17)
C9—N1—C13	109.99 (13)	C4—N2—O1	118.60 (18)
C14—O3—C15	117.40 (15)	O2—N2—O1	122.36 (18)
N1—C9—C8	109.45 (14)	N1—C13—C12	110.21 (14)
N1-C9-C10	110.06 (14)	N1-C13-H131	109.3
C8—C9—C10	114.36 (14)	C12—C13—H131	109.3
N1—C9—H91	107.0	N1—C13—H132	109.3
С8—С9—Н91	108.0	C12—C13—H132	109.3

С10—С9—Н91	107.7	H131—C13—H132	109.4
C1—C2—C3	121.40 (16)	C8—C17—N3	178.4 (2)
C1—C2—H21	119.3	C13—C12—C11	110.80 (15)
C3—C2—H21	119.3	C13—C12—H122	109.2
C1—C6—C5	120.13 (16)	C11—C12—H122	110.4
C1—C6—C7	120.45 (15)	C13—C12—H121	109.0
C5—C6—C7	119.41 (15)	C11—C12—H121	109.0
C6—C5—C4	120.19 (16)	H122—C12—H121	108.5
С6—С5—Н51	119.8	C8—C14—O3	110.12 (15)
C4—C5—H51	120.0	C8—C14—O4	123.73 (18)
C5—C4—C3	120.93 (17)	O3—C14—O4	126.15 (17)
C5—C4—N2	119.57 (17)	C10—C11—C12	111.70 (16)
C3—C4—N2	119.49 (17)	C10—C11—H112	108.7
C4—C3—C2	119.60 (16)	C12—C11—H112	110.4
C4—C3—H31	119.5	C10-C11-H111	109.4
С2—С3—Н31	120.9	C12—C11—H111	107.7
C6—C7—C8	110.18 (14)	H112—C11—H111	108.9
С6—С7—Н71	110.2	O3—C15—C16	110.69 (19)
C8—C7—H71	108.6	O3—C15—H152	104.8
С6—С7—Н72	110.0	C16—C15—H152	110.0
С8—С7—Н72	110.7	O3—C15—H151	108.1
H71—C7—H72	107.2	C16—C15—H151	111.3
C9—C8—C7	109.74 (14)	H152—C15—H151	111.7
C9—C8—C17	108.75 (14)	C15—C16—H162	109.3
C7—C8—C17	109.52 (15)	C15—C16—H161	110.0
C9—C8—C14	109.75 (14)	H162—C16—H161	109.0
C7—C8—C14	111.10 (14)	C15—C16—H163	110.6
C17—C8—C14	107.93 (15)	H162—C16—H163	108.3
C9—C10—C11	109.16 (14)	H161—C16—H163	109.6
C9—C10—H101	108.3		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C7—H72…N3 ⁱ	0.97	2.56	3.492 (3)	161

Symmetry code: (i) -x+1, -y+1, -z+1.