Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

catena-Poly[nickel(II)-bis(μ-2-amino-ethanesulfonato- $\left.\left.\kappa^{3} N, O: O^{\prime} ; \kappa^{3} O: N, O^{\prime}\right)\right]$

Feng Yang, ${ }^{\text {a }}$ Zhi-Hong Wu ${ }^{\text {b }}$ and Jin-Hua Cai ${ }^{\text {b }}$ *

${ }^{a}$ Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry Education of China), School of Chemistry \& Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry and Life Science, Hechi University, Yizhou, Guangxi 546300, People's Republic of China
Correspondence e-mail: cjhzse@163.com
Received 16 May 2010; accepted 28 May 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.027 ; w R$ factor $=0.072$; data-to-parameter ratio $=12.6$.

In the title polymeric complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}\right]_{n}$, the $\mathrm{Ni}^{\mathrm{II}}$ ion occupies a special position on an inversion centre and displays a slightly distorted octahedral coordination geometry, being linked to four sulfonate O atoms and to two N atoms of the taurine ligands. The sulfonate groups doubly bridge symmetry-related $\mathrm{Ni}^{\mathrm{II}}$ centers, forming polymeric chains along the a axis.

Related literature

For general background to taurine complexes and their derivatives, see: Bottari \& Festa (1998); Zhang \& Jiang (2002); Zeng et al. (2003); Zhong et al. (2003). For our previous work on taurine complexes, see: Cai et al. (2004, 2006); Jiang et al. (2005).

Experimental

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}\right]$
$M_{r}=306.99$
Monoclinic, $P 2_{1} / n$
$a=5.1003(17) \AA$
$V=485.9(3) \AA^{3}$
$Z=2$
$b=8.231$ (3) A
Mo K α radiation
$\mu=2.44 \mathrm{~mm}^{-1}$
$c=11.673$ (4) \AA
$T=293 \mathrm{~K}$
$\beta=97.492(4)^{\circ}$
$0.20 \times 0.16 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.632, T_{\text {max }}=0.829$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.072 \quad$ independent and constrained
$S=1.06$
954 reflections
76 parameters

2116 measured reflections 956 independent reflections 881 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$ refinement
$\Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.43 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

Ni1-N1 ${ }^{\text {i }}$	2.054 (2)	Ni1-O1 ${ }^{\text {i }}$	2.0916 (17)
$\mathrm{Ni} 1-\mathrm{N} 1^{\text {ii }}$	2.054 (2)	Ni1-O2	2.1185 (18)
$\mathrm{Ni} 1-\mathrm{O} 1^{\text {ii }}$	2.0916 (17)	$\mathrm{Ni} 1-\mathrm{O} 2^{\text {iii }}$	2.1185 (18)

Symmetry codes: (i) $-x+1,-y+2,-z+2$; (ii) $x-1, y, z$; (iii) $-x,-y+2,-z+2$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful to the Youth Foundation of Guangxi Province (No. 0832090) for funding this study. We also thank the startup foundation for Advanced Talents of Hechi University (No. 2008QS-N019)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2285).

References

Bottari, E. \& Festa, M. R. (1998). Talanta, 46, 91-99.
Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cai, J.-H., Jiang, Y.-M. \& Ng, S. W. (2006). Acta Cryst. E62, m3059-m3061.
Cai, J.-H., Jiang, Y.-M., Wang, X.-J. \& Liu, Z.-M. (2004). Acta Cryst. E60, m1659-m1661.
Jiang, Y.-M., Cai, J.-H., Liu, Z.-M. \& Liu, X.-H. (2005). Acta Cryst. E61, m878m880.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zeng, J.-L., Jiang, Y.-M. \& Yu, K.-B. (2003). Acta Cryst. E59, m1137-m1139.
Zhang, S. H. \& Jiang, Y. M. (2002). Chin. J. Inorg. Chem. 18, 497-500.
Zhong, F., Jiang, Y. M. \& Zhang, S. H. (2003). Chin. J. Inorg. Chem. 6, 559-602.

supporting information

Acta Cryst. (2010). E66, m748 [doi:10.1107/S1600536810020325]

catena-Poly[nickel(II)-bis(μ-2-aminoethanesulfonato- $\left.\left.\kappa^{3} N, O: O^{\prime} ; \kappa^{3} O: N, O^{\prime}\right)\right]$ Feng Yang, Zhi-Hong Wu and Jin-Hua Cai

S1. Comment

Taurine, an amino acid containing sulfur, is indispensable to human beings because of its applications in medicine and biochemistry (Bottari \& Festa, 1998; Zhang \& Jiang, 2002; Zeng et al., 2003; Zhong et al., 2003). Several taurine complexes and their derivatives have recently been prepared in our laboratory (Cai et al., 2004; Jiang et al., 2005; Cai et al., 2006). As part of our ongoing investigation, the title polymeric $\mathrm{Ni}^{\mathrm{II}}$ complex, (I), has been prepared and its structure determined.
A segment of the polymeric structure of (I) is illustrated in Fig. 1. The $\mathrm{Ni}^{\mathrm{II}}$ ion is coordinated by four sulfonate O atoms and to two N atoms of the taurine ligands, displaying distorted octahedral coordination geometry. The sulfonate anions act as bridging ligands in (I). Neighbouring Ni atoms are bridged by two sulfonate anions, to form a zigzag polymeric chain along the a axis, as shown in Fig. 2. The polymeric chain has a repeat unit formed by two taurine and two $\mathrm{Ni}^{\mathrm{II}}$ atoms related by an inversion centre, which coincides with the centre of the eight-membered $\mathrm{Ni}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ ring formed by the atoms of two bridging ligands and the Ni atoms; the distance between the two Ni atoms is 5.100 (12) \AA. In the structure of the title compound, there are two symmetry-independent "active" H atoms; both of them belong to the NH_{2} group of the taurine ligand. They form intramolecular hydrogen bonds with sulfonate atom O3.

S2. Experimental

A solution of taurine $(1.0 \mathrm{mmol})$ and $\mathrm{KOH}(1.0 \mathrm{mmol})$ in anhydrous methanol $(10 \mathrm{ml})$ was added slowly to a solution of $\mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(1.0 \mathrm{mmol})$ in anhydrous methanol $(10 \mathrm{ml})$. After stirring for 10 min , it was then dropped into a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for five days. Thereafter, the reactor was slowly cooled to room temperature and green block-shaped crystals suitable for X-ray diffraction were collected.

S3. Refinement

H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.80 \AA)$ and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Figure 1
A segment of the polymeric structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms)

Figure 2
The one-dimensional polymeric chain of the title complex.
catena-Poly[nickel(II)-bis(μ-2-aminoethanesulfonato- $\left.\left.\kappa^{3} N, O: O^{\prime} ; \kappa^{3} O: N, O^{\prime}\right)\right]$

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}\right]$
$M_{r}=306.99$
Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2 yn
$a=5.1003$ (17) \AA
$b=8.231$ (3) \AA
$c=11.673(4) \AA$
$\beta=97.492(4)^{\circ}$
$V=485.9(3) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
$F(000)=316$
$D_{\mathrm{x}}=2.098 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 783 reflections
$\theta=3.0-27.6^{\circ}$
$\mu=2.44 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, green
$0.20 \times 0.16 \times 0.08 \mathrm{~mm}$

Graphite monochromator
φ and ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\min }=0.632, T_{\max }=0.829$
2116 measured reflections
956 independent reflections
881 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.072$
$S=1.06$
954 reflections
76 parameters
0 restraints
0 constraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& R_{\text {int }}=0.026 \\
& \theta_{\max }=26.0^{\circ}, \theta_{\min }=3.0^{\circ} \\
& h=-5 \rightarrow 6 \\
& k=-6 \rightarrow 10 \\
& l=-14 \rightarrow 14
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.044 P)^{2}+0.1 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.43$ e \AA^{-3}

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Ni1	0.0000	1.0000	1.0000	$0.01738(17)$
S1	$0.46761(11)$	$0.95864(7)$	$0.81432(5)$	$0.01601(18)$
O1	$0.6637(3)$	$1.0584(2)$	$0.88498(15)$	$0.0213(4)$
O2	$0.2125(3)$	$0.9622(2)$	$0.85798(16)$	$0.0241(4)$
O3	$0.4412(4)$	$1.0004(2)$	$0.69297(16)$	$0.0255(4)$
C1	$0.5831(5)$	$0.7569(3)$	$0.8243(2)$	$0.0228(5)$
H1A	0.4468	0.6865	0.7857	0.027^{*}
H1B	0.7363	0.7484	0.7833	0.027^{*}
C2	$0.6583(4)$	$0.6964(3)$	$0.9465(2)$	$0.0222(5)$
H2A	0.5292	0.7340	0.9946	0.027^{*}
H2B	0.6568	0.5785	0.9469	0.027^{*}
N1	$0.9230(4)$	$0.7550(3)$	$0.99449(19)$	$0.0196(4)$
H1C	$0.963(6)$	$0.719(4)$	$1.058(3)$	0.024^{*}
H1D	$1.023(6)$	$0.715(4)$	$0.956(3)$	0.024^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0148(2)$	$0.0200(3)$	$0.0172(3)$	$-0.00114(15)$	$0.00144(18)$	$-0.00013(16)$
S1	$0.0137(3)$	$0.0212(3)$	$0.0132(3)$	$0.0001(2)$	$0.0022(2)$	$-0.0009(2)$
O1	$0.0194(8)$	$0.0201(9)$	$0.0230(9)$	$-0.0006(7)$	$-0.0025(7)$	$-0.0012(7)$
O2	$0.0156(8)$	$0.0361(10)$	$0.0216(10)$	$-0.0001(7)$	$0.0062(7)$	$0.0006(7)$
O3	$0.0274(10)$	$0.0341(11)$	$0.0153(10)$	$-0.0008(7)$	$0.0038(8)$	$0.0021(7)$
C1	$0.0224(12)$	$0.0205(12)$	$0.0243(13)$	$0.0017(10)$	$-0.0015(10)$	$-0.0071(10)$
C2	$0.0196(11)$	$0.0190(11)$	$0.0287(13)$	$-0.0028(9)$	$0.0060(10)$	$0.0014(10)$
N1	$0.0204(10)$	$0.0213(10)$	$0.0171(10)$	$0.0001(9)$	$0.0018(8)$	$0.0032(9)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Ni1-N1 ${ }^{\text {i }}$	2.054 (2)	$\mathrm{O} 1-\mathrm{Ni} 1{ }^{\text {iv }}$	2.0916 (17)
Ni1-N1 $1^{\text {ii }}$	2.054 (2)	$\mathrm{C} 1-\mathrm{C} 2$	1.513 (3)
Ni1-O1 ${ }^{\text {ii }}$	2.0916 (17)	C1-H1A	0.9700
Ni1-O1 ${ }^{\text {i }}$	2.0916 (17)	C1-H1B	0.9700
Ni1-O2	2.1185 (18)	$\mathrm{C} 2-\mathrm{N} 1$	1.474 (3)
$\mathrm{Ni} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.1185 (18)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{S} 1-\mathrm{O} 3$	1.447 (2)	C2-H2B	0.9700
S1-O2	1.4584 (18)	N1-Ni1 ${ }^{\text {iv }}$	2.054 (2)
S1-O1	1.4630 (18)	N1-H1C	0.80 (3)
S1-C1	1.760 (2)	N1-H1D	0.80 (3)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Ni} 1{ }^{\text {- }}$ - $1^{\text {ii }}$	180.000 (1)	S1-O1-Ni1 ${ }^{\text {iv }}$	132.53 (11)
N1 ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{O} 1^{\text {ii }}$	86.09 (8)	S1-O2-Ni1	147.91 (12)
N1 ${ }^{\text {iii }}$ - $\mathrm{Ni} 1-\mathrm{Ol}^{\text {ii }}$	93.91 (8)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	114.49 (17)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{Ol}^{\text {i }}$	93.91 (8)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.6
$\mathrm{N} 1^{\text {ii- }}$ - $\mathrm{Ni} 1-\mathrm{O} 1^{\text {i }}$	86.09 (8)	S1-C1-H1A	108.6
O1ii-Ni1-O1 ${ }^{\text {i }}$	180.000 (1)	C2-C1-H1B	108.6
$\mathrm{N} 1 \mathrm{i}^{-} \mathrm{Ni} 1-\mathrm{O} 2$	93.06 (8)	S1-C1-H1B	108.6
$\mathrm{N} 1 \mathrm{i}-\mathrm{Ni} 1-\mathrm{O} 2$	86.94 (8)	H1A-C1-H1B	107.6
$\mathrm{O}^{1 i}-\mathrm{Ni} 1-\mathrm{O} 2$	89.52 (7)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	110.97 (19)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 2$	90.48 (7)	N1-C2-H2A	109.4
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{O} 2{ }^{\text {iii }}$	86.94 (8)	C1-C2-H2A	109.4
$\mathrm{N} 1^{\text {iii }}$ - $\mathrm{Ni} 1-\mathrm{O} 2{ }^{\text {iii }}$	93.06 (8)	N1-C2-H2B	109.4
$\mathrm{O} 1^{\text {iii }}$ - $\mathrm{Ni} 1-\mathrm{O} 2{ }^{\text {iii }}$	90.48 (7)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4
$\mathrm{O} 1^{\text {i }}-\mathrm{Ni} 1-\mathrm{O} 2{ }^{\text {iii }}$	89.52 (7)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.0
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 2{ }^{\text {iii }}$	180.000 (1)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Ni} 1{ }^{\text {iv }}$	119.67 (16)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$	111.34 (11)	C2-N1-H1C	110 (2)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 1$	112.85 (11)	Ni1 ${ }^{\text {iv }}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	108 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	111.54 (11)	C2-N1-H1D	106 (2)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 1$	106.05 (11)	Ni1 ${ }^{\text {iv }}$ - N1-H1D	107 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	107.59 (12)	H1C-N1-H1D	106 (3)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	107.09 (11)		

Symmetry codes: (i) $-x+1,-y+2,-z+2$; (ii) $x-1, y, z$; (iii) $-x,-y+2,-z+2$; (iv) $x+1, y, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H}^{\cdots} A$
$\mathrm{~N} 1 — \mathrm{H} 1 D \cdots 3^{\text {v }}$	$0.80(3)$	$2.50(3)$	$3.171(3)$	$143(3)$
$\mathrm{N} 1 — \mathrm{H} 1 C \cdots \mathrm{O}^{\text {vi }}$	$0.80(3)$	$2.41(3)$	$3.121(3)$	$149(3)$

[^0]
[^0]: Symmetry codes: (v) $-x+3 / 2, y-1 / 2,-z+3 / 2$; (vi) $x+1 / 2,-y+3 / 2, z+1 / 2$.

