

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(2-Methylanilino)pent-3-en-2-one

Gertruida J. S. Venter,* Gideon Steyl and Andreas Roodt

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

Correspondence e-mail: truidie@hotmail.com

Received 3 May 2010; accepted 2 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.150; data-to-parameter ratio = 17.9.

The title enamino ketone, $C_{12}H_{15}NO$, a derivative of 4-(phenylamino)pent-3-en-2-one, presents a roughly planar [greatest displacement of an atom from the pentenone plane is 0.033 (2) Å] pentenone backbone, enhanced by an intramolecular N-H···O hydrogen bond; the asymmetry in C--C distances in the group suggests the presence of unsaturated bonds. The overall geometry in the free ligand differs significantly from that in other reported compounds, in which it is coordinated to rhodium; this is reflected in the bond distances [the N···O distance is significantly increased (0.2 Å) upon coordination to the metal] and the dihedral angle between the benzene ring and the pentenone backbone [49.53 (5)°]. All of the methyl goups are rotationally disordered over two orientations of equal occupancy.

Related literature

For synthetic background, see: Shaheen *et al.* (2006). For applications of enaminoketones in liquid crystals, see: Pyżuk *et al.* (1993), in fluorescence, see: Xia *et al.* (2008), in complexes of medical interest, see: Tan *et al.* (2008); Chen & Rhodes (1996), in catalysis, see: Nair *et al.* (2002); Van Aswegen *et al.* (1991); Steyn *et al.* (1992, 1997); Otto *et al.* (1998); Roodt & Steyn (2000); Brink *et al.* (2010). For the structures of related ligand systems, see: Damoense *et al.* (1994); Venter *et al.* (2009*a*,*b*).

Experimental

Crystal data $C_{12}H_{15}NO$ $M_r = 189.25$

Monoclinic, $P2_1/c$ a = 7.5674 (7) Å organic compounds

b = 11.5075 (9) Å Mo Kα radiation c = 12.0996 (11) Å $\mu = 0.08 \text{ mm}^{-1}$ β = 92.154 (5)° T = 100 KV = 1052.91 (16) Å³ 0.55 × 0.23 × 0.12 mm

Data collection

Z = 4

Bruker X8 APEXII 4K Kappa CCD	10022 measured reflections
diffractometer	2308 independent reflections
Absorption correction: multi-scan	1854 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2004)	$R_{\rm int} = 0.034$
$T_{\min} = 0.960, \ T_{\max} = 0.991$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	129 parameters
$wR(F^2) = 0.150$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$
2308 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	Н…А	$D \cdots A$	$D - \mathbf{H} \cdots A$
N11-H11···O12	0.91	1.90	2.6345 (19)	136

Table 2

Comparative geometrical parameters (Å, °) for free and coordinated N,O-bidendate (N,O-bid) compounds.

Parameters	(I)	(II)	(III)	(IV)
C111-N11	1.422 (2)	1.521 (4)/1.463 (3)	1.440 (4)	-
C2-N11	1.345 (2)	1.320 (4)	1.319 (4)	1.303 (6)
C4-O12	1.257 (2)	1.290 (3)	1.291 (4)	1.281 (6)
C2-C3	1.383 (3)	1.410 (4)	1.423 (4)	1.396 (7)
C3-C4	1.420 (2)	1.365 (3)	1.382 (3)	1.388 (9)
012···N11	2.635 (2)	2.885 (3)	2.886 (3)	2.826 (6)
N11-C2-C4-O12	-0.5(1)	4.1 (2)	-2.6(2)	1.2 (4)
Dihedral angle	49.53 (5)	87.47 (4)/89.36 (8)	85.58 (8)	-

Notes: (I) This work; (II) N,O-bid = 4-(2,3-dimethyl phenylamino)pent-3-en-2-onato (Venter *et al.*, 2009*a*); (III) N,O-bid = 4-(2,6-dimethyl phenylamino)pent-3-en-2-onato (Venter *et al.*, 2009*b*). (IV) N,O-bid = 4-amino-pent-3-en-2-onato (Damoense *et al.*, 1994). The dihedral angle is defined as the torsion angle between the N-C-C-C-O plane and the benzene ring. A positive angle denotes a clockwise rotation.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the University of the Free State is gratefully acknowledged. We also express our gratitude towards SASOL, the UFS Materials and Nanosciences Academic Cluster and the South African National Research Foundation (SA-NRF/THRIP) for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2348).

References

- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572-5578
- Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H. & Rhodes, J. (1996). J. Mol. Med. 74, 497-504.
- Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10-13.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Nair, V. A., Suni, M. M. & Sreekumar, K. (2002). Proc. Indian Acad. Sci. (Chem. Sci.), 114, 481-486.

- Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447-2453
- Pyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Lig. Cryst. 237, 75-84
- Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1-23. Trivandrum: Transworld Research Network.
- Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62,
- 0873-0874. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.
- Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536/7, 197–205.
- Tan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab. Chip, 8, 885-891.
- Van Aswegen, K. G., Leipoldt, J. G., Potgieter, I. M., Roodt, A. & Van Zyl, G. J. (1991). Transition Met. Chem. 16, 369-371.
- Venter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321-m1322.
- Venter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606-m1607.
- Xia, M., Wu, B. & Xiang, G. (2008). J. Fluorine Chem. 129, 402-408.

supporting information

Acta Cryst. (2010). E66, o1593-o1594 [doi:10.1107/S1600536810021045]

4-(2-Methylanilino)pent-3-en-2-one

Gertruida J. S. Venter, Gideon Steyl and Andreas Roodt

S1. Comment

A well-known system in organometallic chemistry is the β -diketone compound AcacH (acetylacetone; or when coordinated acetylacetonato, acac⁻). A multitude of derivatives have been synthesized to date, with enaminoketones being one type. Since enaminoketones contain nitrogen and oxygen atoms as well as an unsaturated C—C bond, these electronrich compounds are of interest in various fields including liquid crystals [Pyżuk *et al.* (1993)], fluorescence studies [Xia *et al.* (2008)] as well as formation of complexes of medical interest [Tan *et al.* (2008); Chen & Rhodes (1996)]. It also has significant application possibilities in catalysis [Nair *et al.* (2002); Van Aswegen *et al.* (1991); Steyn *et al.* (1992; 1997); Otto *et al.* (1998); Roodt & Steyn (2000); Brink *et al.* (2010)].

The title enaminoketone is a derivative of 4-(phenylamino)pent-3-en-2-one [PhonyH; Shaheen *et al.* (2006)]. Fig. 1 shows a view of the molecule. The C₂–C₃ distance of 1.383 (3) Å, versus the C₃–C₄ distance of 1.420 (2)Å indicates an unsaturated bond in the pentenone backbone, which is otherwise planar, probably helped by an intramolecular N₁— H_1 ···O₁ bond (N₁— H_1 : 0.91Å; H_1 ···O₁: 1.90Å; N₁...O₁:2.635 (2)Å, N₁— H_1 ···O: 136.4°). In general terms, the geometry in the free ligand differs significantly from that in other reported compounds where it is coordinated to rhodium [Table1; Venter *et al.* (2009a; 2009b); Damoense *et al.* (1994)]; fon instance, the N₁···O₁ distance is greatly ncreased (~0.2 Å) upon coordination to the metal, as it is the dihedral angle between the phenyl ring and the pentenone backbone. All the methyl goups appear rotationally disordered in two sites of similar occupation.

S2. Experimental

A solution of acetylacetone (11.07 g, 0.1106 mol), 2-Me-aniline (10.73 g, 0.1008 mol) and 2 drops of $H_2SO_4(\text{conc.})$ in 150 ml benzene was refluxed for 6 hours in a DeanStark trap, filtered and left to crystallize. Crystals suitable for X-Ray diffraction were obtained in 17.86 g (94.32 %) yield. This compound is stable in air and light over a period of several months.

S3. Refinement

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98Å and $U_{iso}(H) = 1.5U_{eq}(C)$ and $1.2U_{eq}(C)$, respectively. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The highest residual electron-density peak is 0.47Å from H1F.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level.

F(000) = 408

 $D_x = 1.194 \text{ Mg m}^{-3}$

4-(2-Methylanilino)pent-3-en-2-one

Crystal data

C₁₂H₁₅NO $M_r = 189.25$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.5674 (7) Å b = 11.5075 (9) Å c = 12.0996 (11) Å $\beta = 92.154$ (5)° V = 1052.91 (16) Å³ Z = 4

Data collection

Bruker X8 APEXII 4K Kappa CCD	10022 measured reflections
diffractometer	2308 independent reflections
Radiation source: fine-focus sealed tube	1854 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.034$
ω and φ scans	$\theta_{\rm max} = 27^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 2004)	$k = -14 \rightarrow 12$
$T_{\min} = 0.960, \ T_{\max} = 0.991$	$l = -15 \rightarrow 15$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 2889 reflections $\theta = 2.7-28.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.55 \times 0.23 \times 0.12 \text{ mm}$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.150$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.07	H-atom parameters constrained
2308 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0654P)^2 + 0.9506P]$
129 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\text{max}} = 0.45 \text{ e A}^{-3}$ $\Delta \rho_{\text{max}} = -0.35 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta p_{\rm min} = 0.55 \mathrm{cm}$

Special details

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 seconds/frame. A total of 688 frames were collected with a frame width of 0.5° covering up to $\theta = 28.24^{\circ}$ with 99.1% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.4288 (3)	0.30725 (17)	0.73241 (16)	0.0212 (4)	
H1A	0.4068	0.3907	0.723	0.032*	0.5
H1B	0.3886	0.2659	0.6653	0.032*	0.5
H1C	0.5557	0.2939	0.7458	0.032*	0.5
H1D	0.4939	0.243	0.6998	0.032*	0.5
H1E	0.5121	0.3678	0.7575	0.032*	0.5
H1F	0.345	0.3397	0.6769	0.032*	0.5
C2	0.3300(2)	0.26340 (16)	0.82877 (15)	0.0172 (4)	
C3	0.3410 (2)	0.14730 (15)	0.85770 (15)	0.0174 (4)	
H3	0.4142	0.0982	0.8159	0.021*	
C4	0.2494 (2)	0.09702 (15)	0.94616 (14)	0.0162 (4)	
C5	0.2647 (3)	-0.03183 (16)	0.96633 (16)	0.0217 (4)	
H5A	0.1945	-0.0532	1.0296	0.033*	0.5
H5B	0.3889	-0.0521	0.982	0.033*	0.5
H5C	0.2208	-0.0739	0.9005	0.033*	0.5
H5D	0.3417	-0.0663	0.9118	0.033*	0.5
H5E	0.1472	-0.0674	0.9594	0.033*	0.5
H5F	0.3153	-0.0456	1.0409	0.033*	0.5
C12	0.2730 (3)	0.49042 (17)	1.07167 (15)	0.0218 (4)	
H12A	0.2961	0.4067	1.0685	0.033*	0.5
H12B	0.1797	0.5055	1.1238	0.033*	0.5
H12C	0.3812	0.5311	1.0964	0.033*	0.5
H12D	0.2752	0.5555	1.1239	0.033*	0.5
H12E	0.3917	0.4567	1.0687	0.033*	0.5
H12F	0.1901	0.4311	1.0961	0.033*	0.5
012	0.15430 (17)	0.15514 (11)	1.00878 (10)	0.0195 (3)	

C111	0.1994 (2)	0.45704 (15)	0.86788 (15)	0.0160 (4)
C112	0.2147 (2)	0.53330 (16)	0.95849 (15)	0.0172 (4)
C113	0.1737 (2)	0.64979 (16)	0.94050 (16)	0.0203 (4)
H113	0.1821	0.7026	1.0008	0.024*
C114	0.1207 (2)	0.69078 (16)	0.83647 (16)	0.0208 (4)
H114	0.0932	0.7707	0.8262	0.025*
C115	0.1081 (2)	0.61469 (16)	0.74784 (15)	0.0192 (4)
H115	0.0738	0.6426	0.6763	0.023*
C116	0.1456 (2)	0.49751 (16)	0.76367 (15)	0.0180 (4)
H116	0.1344	0.445	0.7032	0.022*
N11	0.2320 (2)	0.33691 (13)	0.88747 (13)	0.0176 (3)
H11	0.1801	0.3060	0.9471	0.021*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0225 (9)	0.0206 (9)	0.0210 (9)	0.0019 (7)	0.0057 (7)	0.0032 (7)
C2	0.0167 (8)	0.0190 (9)	0.0159 (9)	0.0001 (7)	0.0001 (7)	-0.0007 (7)
C3	0.0192 (9)	0.0163 (9)	0.0168 (9)	0.0028 (7)	0.0029 (7)	-0.0015 (7)
C4	0.0176 (8)	0.0157 (9)	0.0152 (8)	0.0008 (7)	-0.0013 (7)	-0.0010 (7)
C5	0.0254 (10)	0.0152 (9)	0.0250 (10)	0.0014 (7)	0.0062 (8)	0.0005 (7)
C12	0.0221 (9)	0.0244 (10)	0.0188 (9)	-0.0010 (8)	0.0000 (7)	-0.0015 (7)
012	0.0254 (7)	0.0157 (6)	0.0176 (7)	0.0015 (5)	0.0051 (5)	-0.0001 (5)
C111	0.0158 (8)	0.0122 (8)	0.0202 (9)	-0.0008 (6)	0.0032 (7)	0.0003 (7)
C112	0.0164 (8)	0.0177 (9)	0.0177 (9)	-0.0018 (7)	0.0023 (7)	-0.0002 (7)
C113	0.0222 (9)	0.0170 (9)	0.0220 (9)	-0.0018 (7)	0.0033 (7)	-0.0059 (7)
C114	0.0214 (9)	0.0129 (8)	0.0284 (10)	0.0004 (7)	0.0047 (8)	0.0012 (7)
C115	0.0189 (9)	0.0190 (9)	0.0198 (9)	-0.0001 (7)	0.0024 (7)	0.0031 (7)
C116	0.0200 (9)	0.0163 (9)	0.0178 (9)	-0.0020 (7)	0.0020 (7)	-0.0018 (7)
N11	0.0232 (8)	0.0132 (7)	0.0168 (8)	0.0009 (6)	0.0053 (6)	0.0012 (6)

Geometric parameters (Å, °)

C1—C2	1.496 (2)	C12—C112	1.506 (3)	
C1—H1A	0.98	C12—H12A	0.98	
C1—H1B	0.98	C12—H12B	0.98	
C1—H1C	0.98	C12—H12C	0.98	
C1—H1D	0.98	C12—H12D	0.98	
C1—H1E	0.98	C12—H12E	0.98	
C1—H1F	0.98	C12—H12F	0.98	
C2—N11	1.345 (2)	C111—C116	1.391 (3)	
C2—C3	1.383 (3)	C111—C112	1.406 (3)	
C3—C4	1.420 (2)	C111—N11	1.422 (2)	
С3—Н3	0.95	C112—C113	1.391 (3)	
C4—O12	1.257 (2)	C113—C114	1.389 (3)	
C4—C5	1.506 (2)	C113—H113	0.95	
С5—Н5А	0.98	C114—C115	1.385 (3)	
С5—Н5В	0.98	C114—H114	0.95	

С5—Н5С	0.98	C115—C116	1.390 (3)
C5—H5D	0.98	C115—H115	0.95
С5—Н5Е	0.98	C116—H116	0.95
C5—H5F	0.98	N11—H11	0.9071
C2—C1—H1A	109.5	H5B—C5—H5F	56.3
C2—C1—H1B	109.5	H5C—C5—H5F	141.1
H1A—C1—H1B	109.5	H5D—C5—H5F	109.5
C2—C1—H1C	109.5	H5E—C5—H5F	109.5
H1A—C1—H1C	109.5	C112—C12—H12A	109.5
H1B—C1—H1C	109.5	C112—C12—H12B	109.5
C2—C1—H1D	109.5	H12A—C12—H12B	109.5
H1A—C1—H1D	141.1	C112—C12—H12C	109.5
H1B—C1—H1D	56.3	H12A—C12—H12C	109.5
H1C—C1—H1D	56.3	H12B—C12—H12C	109.5
C2—C1—H1E	109.5	C112—C12—H12D	109.5
H1A—C1—H1E	56.3	H12A—C12—H12D	141.1
H1B—C1—H1E	141.1	H12B—C12—H12D	56.3
H1C—C1—H1E	56.3	H12C—C12—H12D	56.3
H1D—C1—H1E	109.5	C112—C12—H12E	109.5
C2—C1—H1F	109.5	H12A—C12—H12E	56.3
H1A—C1—H1F	56.3	H12B—C12—H12E	141.1
H1B—C1—H1F	56.3	H12C—C12—H12E	56.3
H1C—C1—H1F	141.1	H12D—C12—H12E	109.5
H1D—C1—H1F	109.5	C112—C12—H12F	109.5
H1E—C1—H1F	109.5	H12A—C12—H12F	56.3
N11—C2—C3	120.21 (16)	H12B—C12—H12F	56.3
N11—C2—C1	120.06 (16)	H12C—C12—H12F	141.1
C3—C2—C1	119.73 (16)	H12D—C12—H12F	109.5
C2—C3—C4	123.91 (16)	H12E—C12—H12F	109.5
С2—С3—Н3	118	C116—C111—C112	120.72 (16)
С4—С3—Н3	118	C116—C111—N11	121.30 (16)
O12—C4—C3	122.97 (16)	C112—C111—N11	117.91 (16)
O12—C4—C5	117.93 (16)	C113—C112—C111	117.91 (17)
C3—C4—C5	119.10 (15)	C113—C112—C12	120.93 (16)
С4—С5—Н5А	109.5	C111—C112—C12	121.16 (16)
С4—С5—Н5В	109.5	C114—C113—C112	121.61 (17)
H5A—C5—H5B	109.5	C114—C113—H113	119.2
C4—C5—H5C	109.5	C112—C113—H113	119.2
H5A—C5—H5C	109.5	C115—C114—C113	119.74 (17)
H5B—C5—H5C	109.5	C115—C114—H114	120.1
C4—C5—H5D	109.5	C113—C114—H114	120.1
H5A—C5—H5D	141.1	C114—C115—C116	119.93 (17)
H5B—C5—H5D	56.3	C114—C115—H115	120
H5C—C5—H5D	56.3	C116—C115—H115	120
С4—С5—Н5Е	109.5	C115—C116—C111	120.08 (17)
Н5А—С5—Н5Е	56.3	C115—C116—H116	120
H5B—C5—H5E	141.1	C111—C116—H116	120

H5C—C5—H5E H5D—C5—H5E C4—C5—H5F H5A—C5—H5F	56.3 109.5 109.5 56.3	C2—N11—C111 C2—N11—H11 C111—N11—H11	128.22 (16) 115.9 115.9
N11—C2—C3—C4 C1—C2—C3—C4 C2—C3—C4—O12 C2—C3—C4—C5 C116—C111—C112—C113 N11—C111—C112—C113 C116—C111—C112—C12 N11—C111—C112—C12 C111—C112—C113—C114 C12—C112—C113—C114	1.9 (3) -178.62 (17) -2.6 (3) 177.01 (17) 0.3 (3) -176.63 (16) -179.96 (16) 3.1 (3) -0.6 (3) 179.64 (17)	C112—C113—C114—C115 C113—C114—C115—C116 C114—C115—C116—C111 C112—C111—C116—C115 N11—C111—C116—C115 C3—C2—N11—C111 C1—C2—N11—C111 C116—C111—N11—C2 C112—C111—N11—C2	-0.1 (3) 1.1 (3) -1.4 (3) 0.7 (3) 177.51 (16) -177.32 (17) 3.2 (3) 48.9 (3) -134.19 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N11—H11…O12	0.91	1.90	2.6345 (19)	136