Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[bis(ethylenediamine)-copper(II)]- μ-sulfato]

Martin Lutz,* Stef Smeets and Pascal Parois

Bijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Correspondence e-mail: m.lutz@uu.nl

Received 4 May 2010; accepted 11 May 2010

Key indicators: single-crystal X-ray study; $T=110 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.019 ; w R$ factor $=0.048 ;$ data-to-parameter ratio $=25.6$.

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]_{n}$, the Cu, S and two O atoms lie on a mirror plane. The Cu atom is in a distorted octahedral environment and the ethylenediamine ligand is in a gauche conformation. The sulfate dianion is bridging, forming a one-dimensional chain. A two-dimensional net parallel to (001) is generated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the chains.

Related literature

For related $\mathrm{Cu}(\mathrm{II})$ ethylenediamine complexes, see: Cullen \& Lingafelter (1970); Bertini et al. (1979); Healy et al. (1978); Manriquez et al. (1996); Taylor et al. (2006). A similar variation of axial $\mathrm{Cu}-\mathrm{O}$ distances is found in many weakly coordinating anions such as sulfate (Castro et al., 2002), nitrate (Plater et al., 2008), perchlorate (Bernhardt et al., 2001) or triflate (Liu et al., 2007). The anisotropic mosaicity was treated according to Duisenberg (1983).

Experimental

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=279.81$

$$
\begin{aligned}
& a=14.4959(3) \AA \\
& b=9.63748(8) \AA \\
& c=13.87746(17) \AA
\end{aligned}
$$

$$
\begin{aligned}
& V=1938.73(5) \AA^{3} \\
& Z=8
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=2.47 \mathrm{~mm}^{-1}$
$T=110 \mathrm{~K}$
$0.36 \times 0.21 \times 0.06 \mathrm{~mm}$

Data collection
Nonius KappaCCD diffractometer Absorption correction: analytical
(SADABS; Sheldrick, 2008a)
$T_{\min }=0.489, T_{\max }=0.910$
167 measured reflections 2204 independent reflections 1990 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.048$
$S=1.10$
H atoms treated by a mixture of independent and constrained refinement
2204 reflections
86 parameters
$\Delta \rho_{\max }=0.44$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.56 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0173(8)$	$\mathrm{Cu} 1-\mathrm{O} 1$	$2.3575(9)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.0226(8)$	$\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$2.4673(9)$
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 1$	$91.62(4)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$87.27(3)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{ii}}$	$176.81(3)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$92.95(3)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$85.22(3)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$87.59(3)$
$\mathrm{N} 2^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 2$	$97.95(4)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$172.18(3)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$92.50(3)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$53.74(10)$		

Symmetry codes: (i) $-x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x, y, z$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N \cdots O2	$0.858(16)$	$2.280(16)$	$3.0944(11)$	$158.5(14)$
N1-H2N $\cdots 3^{\text {iii }}$	$0.839(17)$	$2.274(17)$	$3.0642(11)$	$157.1(17)$
N2-H3N $\cdots \mathrm{O}^{\text {iv }}$	$0.845(17)$	$2.125(17)$	$2.9636(10)$	$171.6(16)$
N2-H4N O^{v}	$0.859(15)$	$2.210(15)$	$3.0308(10)$	$159.7(14)$
S				

Data collection: COLLECT (Nonius, 1999); cell refinement: PEAKREF (Schreurs, 2005); data reduction: Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2008a); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2026).

References

Bernhardt, P. V., Moore, E. G. \& Riley, M. J. (2001). Inorg. Chem. 40, 57995805.

Bertini, I., Dapporto, P., Gatteschi, D. \& Scozzafava, A. (1979). J. Chem. Soc. Dalton Trans. pp. 1409-1414.
Castro, J., Pérez Lourido, P., Sousa-Pedrares, A., Labisbal, E., Carabel, M. \& García-Vázquez, J. A. (2002). Acta Cryst. C58, m65-m67.
Cullen, D. L. \& Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858-1864.
Duisenberg, A. J. M. (1983). Acta Cryst. A39, 211-216.

metal-organic compounds

Healy, P. C., Kennard, C. H. L., Smith, G. \& White, A. H. (1978). Cryst. Struct. Соттип. 7, 565-570.
Liu, Z.-M., Liu, Y., Zheng, S.-R., Yu, Z.-Q., Pan, M. \& Su, C.-Y. (2007). Inorg. Chem. 46, 5814-5816.
Manriquez, V., Campos-Vallette, M., Lara, N., Gonzalez-Tejeda, N., Wittke, O., Diaz, G., Diez, S., Munoz, R. \& Kriskovic, L. (1996). J. Chem. Crystallogr. 26, 15-22.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Plater, M. J., Gelbrich, T., Hursthouse, M. B. \& De Silva, B. M. (2008). CrystEngComm, 10, 125-130.

Schreurs, A. M. M. (2005). PEAKREF. Utrecht University, The Netherlands. Schreurs, A. M. M., Xian, X. \& Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70-82.
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Taylor, M. K., Stevenson, D. E., Berlouis, L. E. A., Kennedy, A. R. \& Reglinski, J. (2006). J. Inorg. Biochem. 100, 250-259.

supporting information

Acta Cryst. (2010). E66, m671-m672 [https://doi.org/10.1107/S160053681001737X]
catena-Poly[[bis(ethylenediamine)copper(II)]- μ-sulfato]

Martin Lutz, Stef Smeets and Pascal Parois

S1. Comment

Ethylenediamine (en) complexes of transition metals belong to the most studied compounds in inorganic chemistry. In the case of copper sulfate the tris(ethylenediamine) complex is known at room temperature (Cullen \& Lingafelter, 1970) as well as at 120 K after a solid-solid phase transition (Bertini et al., 1979). These crystal structures show the copper in an octahedral geometry and the sulfate is not coordinated to the metal but hydrogen bonded to the amine groups.
Here, we report the crystal structure of the bis(ethylenediamine) complex of copper sulfate (I), in which the sulfate is bridging two copper centers. The compound thus forms a polymeric chain by coordination, which runs in the direction of the c axis (Fig. 1). The copper, the sulfur and two O atoms are in special positions on the crystallographic mirror plane of the orthorhombic space group Cmca. Bridging sulfate ions are very common in copper complexes. For example, in $\left[\mathrm{Cu}(\mathrm{en})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{SO}_{4}$, the sulfate is a bridging ligand and a one-dimensional chain is formed by coordination (Healy et al., 1978; Manriquez et al., 1996; Taylor et al., 2006).
As expected, the ethylenediamine ligand is in a gauche conformation (Table 1) and the copper is in a distorted octahedral environment. The nitrogen atoms form the equatorial plane with $\mathrm{Cu}-\mathrm{N}$ distances (2.0173 (8) and 2.0226 (8) \AA), which are shorter than in the room temperature structure of the tris(ethylenediamine) complex (2.150 (2) \AA). The two axial positions are occupied by oxygen atoms of sulfate anions with much longer distances than in the equatorial plane. This can be explained by the Jahn-Teller effect in $\mathrm{Cu}(\mathrm{II})$ compounds. The $\mathrm{Cu}-\mathrm{O}$ distances (2.3575 (9) and 2.4673 (9) \AA) also differ significantly compared to each other. Such differences are not uncommon with copper complexes of weakly coordinating anions like sulfate (Castro et al., 2002), nitrate (Plater et al., 2008), perchlorate (Bernhardt et al., 2001) or trifluoromethanesulfonate (Liu et al., 2007).
The coordinated NH_{2} groups act as hydrogen bond donors and the non-coordinated sulfate O -atoms act as acceptors (Table 2). Two hydrogen bonds are formed within the coordination polymer via H 1 N and H 4 N . Two hydrogen bonds via H 2 N and H 3 N are between the chains resulting in a two-dimensional net in the b,c-plane (Figures 2 and 3). This twodimensional motif is also reflected in the plate shaped crystal habitus, where the a-direction has the smallest dimension.

S2. Experimental

2.04 g of copper sulfate pentahydrate $(8.17 \mathrm{mmol})$ were dissolved in 150 ml of water and brought to boiling temperature. Then 2 ml of ethylenediamine (37 mmol) were added dropwise. The resulting deep blue solution was concentrated at 333 K and atmospheric pressure. In the concentrated solution, crystals appeared after 2 days of evaporation at room temperature.

S3. Refinement

An anisotropic mosaic model was used in the intensity integration with $h k l=(0,0,1)$ as anisotropic vector (Duisenberg, 1983). Hydrogen atoms were located in difference Fourier maps. N—H hydrogen atoms were refined freely with
isotropic displacement parameters. $\mathrm{C}-\mathrm{H}$ hydrogen atoms were refined using a riding model with $\mathrm{C}-\mathrm{H}=0.99 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2$ times $U_{\text {eq }}(\mathrm{C})$.

Figure 1
Displacement ellipsoid plot of (I), drawn at the 50% probability level. Only three units of the polymeric chain are shown. View along the b axis. Symmetry operations i: $-x, 0.5-y, z-1 / 2$; ii: $-x, 0.5-y, z+1 / 2$; iii: $-x, y, z$.

Figure 2
Packing of (I) in the crystal viewed along the b axis. C-H hydrogen atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines.

Figure 3
Packing of (I) in the crystal viewed along the a axis. C-H hydrogen atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines.
catena-Poly[[bis(ethylenediamine)copper(II)]- μ-sulfato]

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=279.81$
Orthorhombic, Cmca
Hall symbol: -C 2bc 2
$a=14.4959$ (3) \AA
$b=9.63748(8) \AA$
$c=13.87746(17) \AA$
$V=1938.73(5) \AA^{3}$
$Z=8$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: rotating anode
Graphite monochromator
φ and ω scans
Absorption correction: analytical
(SADABS; Sheldrick, 2008a)
$T_{\min }=0.489, T_{\text {max }}=0.910$
$F(000)=1160$
$D_{\mathrm{x}}=1.917 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 21936 reflections
$\theta=2.5-35.0^{\circ}$
$\mu=2.47 \mathrm{~mm}^{-1}$
$T=110 \mathrm{~K}$
Plate, blue
$0.36 \times 0.21 \times 0.06 \mathrm{~mm}$

29167 measured reflections
2204 independent reflections
1990 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=35.0^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-23 \rightarrow 23$
$k=-15 \rightarrow 15$
$l=-20 \rightarrow 22$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.048$
$S=1.10$
2204 reflections
86 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Cu1	0.0000	$0.226359(15)$	$0.385553(11)$	$0.00587(4)$
S1	0.0000	$0.24252(3)$	$0.13888(2)$	$0.00541(5)$
O1	0.0000	$0.32265(9)$	$0.22939(6)$	$0.00932(16)$
O2	$0.08343(5)$	$0.15354(7)$	$0.13383(5)$	$0.01049(12)$
O3	0.0000	$0.34145(9)$	$0.05699(7)$	$0.00990(16)$
N1	$0.09978(5)$	$0.08890(8)$	$0.35157(6)$	$0.00890(13)$
H1N	$0.0983(10)$	$0.0830(15)$	$0.2899(12)$	$0.018(4)^{*}$
H2N	$0.0882(13)$	$0.0121(18)$	$0.3774(10)$	$0.022(4)^{*}$
N2	$0.10526(6)$	$0.35659(8)$	$0.41674(6)$	$0.00842(12)$
H3N	$0.0944(12)$	$0.4387(18)$	$0.3986(11)$	$0.020(4)^{*}$
H4N	$0.1142(11)$	$0.3552(15)$	$0.4779(11)$	$0.016(4)^{*}$
C1	$0.18950(6)$	$0.14531(9)$	$0.38195(7)$	$0.01121(15)$
H1A	0.2397	0.1034	0.3434	0.013^{*}
H1B	0.2007	0.1241	0.4508	0.013^{*}
C2	$0.18704(7)$	$0.30147(9)$	$0.36647(7)$	$0.01045(15)$
H2A	0.2438	0.3445	0.3926	0.013^{*}
H2B	0.1833	0.3227	0.2968	0.013^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.00700(7)$	$0.00409(6)$	$0.00652(7)$	0.000	0.000	$-0.00089(4)$
S 1	$0.00864(12)$	$0.00388(10)$	$0.00371(11)$	0.000	0.000	$-0.00008(8)$
O 1	$0.0172(4)$	$0.0071(4)$	$0.0036(4)$	0.000	0.000	$-0.0017(3)$
O 2	$0.0111(3)$	$0.0101(3)$	$0.0102(3)$	$0.0040(2)$	$0.0003(2)$	$-0.0006(2)$

O 3	$0.0192(4)$	$0.0057(3)$	$0.0048(4)$	0.000	0.000	$0.0012(3)$
N 1	$0.0094(3)$	$0.0064(3)$	$0.0109(3)$	$-0.0003(2)$	$-0.0013(3)$	$-0.0010(2)$
N 2	$0.0126(3)$	$0.0064(3)$	$0.0063(3)$	$-0.0012(2)$	$0.0005(2)$	$-0.0004(2)$
C 1	$0.0091(4)$	$0.0088(3)$	$0.0157(4)$	$0.0001(3)$	$-0.0027(3)$	$-0.0002(3)$
C 2	$0.0103(4)$	$0.0094(3)$	$0.0116(4)$	$-0.0024(3)$	$0.0012(3)$	$-0.0003(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Cul-N1 ${ }^{\text {i }}$	2.0172 (8)	N1-H1N	0.858 (16)
Cu1-N1	2.0173 (8)	$\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	0.839 (17)
$\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	2.0226 (8)	N2-C2	1.4745 (12)
Cu1-N2	2.0226 (8)	N2-H3N	0.845 (17)
$\mathrm{Cu}-\mathrm{O} 1$	2.3575 (9)	N2-H4N	0.859 (15)
$\mathrm{Cu}-\mathrm{O}^{\text {ii }}$	2.4673 (9)	C1-C2	1.5207 (13)
S1-O1	1.4745 (9)	C1-H1A	0.9900
S1-03	1.4834 (9)	C1-H1B	0.9900
S1-O2 ${ }^{\text {i }}$	1.4842 (7)	C2-H2A	0.9900
S1-O2	1.4842 (7)	C2-H2B	0.9900
N1-C1	1.4712 (12)		
N1 ${ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 1$	91.62 (4)	C1-N1-H1N	109.4 (10)
$\mathrm{N} 1^{i}-\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	85.22 (3)	$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	105.0 (10)
N1-Cu1-N2 ${ }^{\text {i }}$	176.81 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	112.3 (12)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{N} 2$	176.81 (3)	$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N}$	109.6 (12)
N1-Cu1-N2	85.22 (3)	H1N-N1-H2N	111.3 (14)
N2- ${ }^{\text {i }}$ Cu1- 22	97.95 (4)	C2-N2-Cu1	106.36 (5)
$\mathrm{N1}{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{O} 1$	92.50 (3)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	110.2 (11)
N1-Cu1-O1	92.50 (3)	$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	112.1 (11)
N2- ${ }^{\text {i }}$ Cu1-O1	87.27 (3)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 4 \mathrm{~N}$	110.0 (10)
N2-Cu1-O1	87.27 (3)	$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{H} 4 \mathrm{~N}$	108.4 (10)
$\mathrm{N} 1^{\text {i }}-\mathrm{Cu} 1-\mathrm{O3}^{\text {ii }}$	92.95 (3)	H3N-N2-H4N	109.7 (14)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {ii }}$	92.95 (3)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	107.73 (7)
$\mathrm{N} 2^{\text {i }}-\mathrm{Cu} 1-\mathrm{O}^{\text {ii }}$	87.59 (3)	N1-C1-H1A	110.2
N2-Cu1-O33	87.59 (3)	C2-C1-H1A	110.2
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {ii }}$	172.18 (3)	N1-C1-H1B	110.2
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3$	108.42 (5)	C2-C1-H1B	110.2
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O}^{\text {i }}$	110.05 (3)	H1A-C1-H1B	108.5
O3-S1-O2 ${ }^{\text {i }}$	109.58 (3)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	107.97 (7)
O1-S1-O2	110.05 (3)	N2-C2-H2A	110.1
O3-S1-O2	109.59 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.1
O2- ${ }^{\text {- }}$ 1- 22	109.14 (6)	N2-C2-H2B	110.1
$\mathrm{S} 1-\mathrm{O} 1-\mathrm{Cu} 1$	125.23 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.1
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	108.92 (5)	H2A-C2-H2B	108.4
O3-S1-O1-Cu1	180.0	N2-Cu1-N1-C1	9.25 (6)
O2- ${ }^{\text {S }} 1-\mathrm{O} 1-\mathrm{Cu} 1$	60.16 (3)	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	96.30 (6)
O2-S1-O1-Cu1	-60.16 (3)	N1-Cu1-N2-C2	19.71 (6)
N1-Cul-O1-S1	-45.86 (2)	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 2$	-159.89 (4)

supporting information

$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{S} 1$	$45.86(2)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 2$	$-73.03(6)$
$\mathrm{N} 2 \mathrm{Cu}-\mathrm{Cu} 1-\mathrm{O} 1$	$-130.95(2)$	$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-35.63(9)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{S} 1$	$130.95(2)$	$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$-44.31(8)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	$-171.12(4)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$53.74(10)$

Symmetry codes: (i) $-x, y, z$; (ii) $-x,-y+1 / 2, z+1 / 2$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 2$	$0.858(16)$	$2.280(16)$	$3.0944(11)$	$158.5(14)$
$\mathrm{N} 1 — \mathrm{H} 2 N \cdots \mathrm{O} 3^{\text {iii }}$	$0.839(17)$	$2.274(17)$	$3.0642(11)$	$157.1(17)$
$\mathrm{N} 2 — \mathrm{H} 3 N \cdots \mathrm{O} 2^{\text {iv }}$	$0.845(17)$	$2.125(17)$	$2.9636(10)$	$171.6(16)$
$\mathrm{N} 2 — \mathrm{H} 4 N \cdots 2^{v}$	$0.859(15)$	$2.210(15)$	$3.0308(10)$	$159.7(14)$

Symmetry codes: (iii) $-x, y-1 / 2,-z+1 / 2$; (iv) $x, y+1 / 2,-z+1 / 2$; (v) $x,-y+1 / 2, z+1 / 2$.

