Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Triaqua(1,4,7-triazacyclononane$\kappa^{3} N^{1}, N^{4}, N^{7}$)nickel(II) bromide nitrate

Changchun Wen, Jianqi Lu and Zhong Zhang*

College of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
Correspondence e-mail: zhangzhong@mailbox.gxnu.edu.cn
Received 8 April 2010; accepted 3 May 2010
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.035 ; w R$ factor $=0.072 ;$ data-to-parameter ratio $=142.9$.

In the title half-sandwich compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$ $\mathrm{Br}\left(\mathrm{NO}_{3}\right)$, the central $\mathrm{Ni}^{\mathrm{II}}$ ion, lying on a threefold rotation axis, is six-coordinated by three amine N atoms from the facecapping triaza macrocycle and three water O atoms in a slightly distorted octahedral geometry. In the crystal, O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding and weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ interactions associate the $\mathrm{Ni}^{\mathrm{II}}$ cations and the counter-ions into a threedimensional supramolecular network.

Related literature

For the preparation of 1,4,7-triazacyclononane trihydrobromide, see: Koyama \& Yoshino (1972). For the applications of metal complexes containing 1,4,7-triazacyclononane as small-molecule models of metalloenzymes and metalloproteins and as molecule-based magnets, see: Berseth et al. (2000); Chaudhury et al. (1985); Cheng et al. (2004); Deal et al. (1996); Hegg \& Burstyn (1995); Hegg et al. (1997); Lin et al. (2001); Poganiuch et al. (1991); Williams et al. (1999). For related $\mathrm{Ni}^{\mathrm{II}}$ complexes with 1,4,7-triazacyclononane, see: Bencini et al. (1990); Stranger et al. (1992); Wang et al. (2003, 2005); Zompa \& Margulis (1978).

Experimental

Crystal data
$\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \operatorname{Br}\left(\mathrm{NO}_{3}\right)$
$M_{r}=383.89$
$Z=4$
Cubic, $P 2_{1} 3$
Mo $K \alpha$ radiation
$a=11.300$ (1) A
$V=1442.9(3) \AA^{3}$
$\mu=4.14 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.29 \times 0.27 \times 0.18 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1998)
$T_{\text {min }}=0.320, T_{\max }=0.480$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.072$
$S=1.03$
1110 reflections
61 parameters
H atoms treated by a mixture of independent and constrained refinement

15223 measured reflections 1110 independent reflections 985 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.080$
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.47 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 475 Friedel pairs
Flack parameter: 0.01 (3)

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.84(4)$	$1.95(5)$	$2.776(5)$	$162(4)$
$\mathrm{O} 1-\mathrm{H} 4 B \cdots \mathrm{Br} 1^{\mathrm{ii}}$	$0.85(5)$	$2.48(5)$	$3.312(3)$	$167(4)$
Symmetry codes: (i) $-x+2, y-\frac{1}{2},-z+\frac{3}{2} ;$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$				

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful for financial support from the Guangxi Science Foundation (grant No. 0832023) and the Scientific Research Foundation of Guangxi Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2027).

References

Bencini, A., Bianchi, A., Paoli, P., Garcia-Espana, E., Julve, M. \& Marcelino, V. (1990). J. Chem. Soc. Dalton Trans. pp. 2213-2217.

Berseth, P. A., Sokol, J. J., Shores, M. P., Heinrich, J. L. \& Long, J. R. (2000). J. Am. Chem. Soc. 122, 9655-9662.
Bruker (1998). SADABS. Bruker AXS inc., Madison, Wisconsin, USA.
Bruker (2002). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.
Chaudhury, P., Wieghardt, K., Nuber, B. \& Weiss, J. (1985). Angew. Chem. Int. Ed. Engl. 24, 778-779.
Cheng, P., Yan, S. P., Xie, C. Z., Zhao, B., Chen, X. Y., Liu, X. W., Li, C. H., Liao, D. Z., Jiang, Z. H. \& Wang, G. L. (2004). Eur. J. Inorg. Chem. pp. 23692378.

Deal, K. A., Hengge, A. C. \& Burstyn, J. N. (1996). J. Am. Chem. Soc. 118, 1713-1718.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.

metal-organic compounds

Hegg, E. L. \& Burstyn, J. N. (1995). J. Am. Chem. Soc. 117, 7015-7016.
Hegg, E. L., Deal, K. A., Kiessling, L. L. \& Burstyn, J. N. (1997). Inorg. Chem. 36, 1715-1718.
Koyama, H. \& Yoshino, T. (1972). Bully . Chem. Soc. Jpn, 45, 481-484.
Lin, G., Reid, G. \& Bugg, T. D. H. (2001). J. Am. Chem. Soc. 123, 5030-5039.
Poganiuch, P., Liu, S. C., Papaefthymiou, G. C. \& Lippard, S. J. (1991). J. Am. Chem. Soc. 113, 4645-4651.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stranger, R., Wallis, S. C., Gahan, L. R., Kennard, C. H. L. \& Byriel, K. A. (1992). J. Chem. Soc. Dalton Trans. pp. 2971-2976.

Wang, Z. D., Gao, F. X., Han, W., Xie, C. Z. \& Yan, S. P. (2005). Ultramicroscopy, 38, 80-82.
Wang, Q. L., Yu, L. H., Liao, D. Z., Yan, S. P., Jiang, Z. H. \& Cheng, P. (2003). Helv. Chim. Acta, 86, 2441-2451.
Williams, N. H., Lebuis, A. M. \& Chin, J. (1999). J. Am. Chem. Soc. 121, 33413348.

Zompa, L. J. \& Margulis, T. N. (1978). Inorg. Chim. Acta, 28, L157-L159.

supporting information

Acta Cryst. (2010). E66, m624-m625 [https://doi.org/10.1107/S160053681001620X]

Triaqua(1,4,7-triazacyclononane- $\kappa^{3} N^{1}, N^{4}, N^{7}$)nickel(II) bromide nitrate

Changchun Wen, Jianqi Lu and Zhong Zhang

S1. Comment

The coordination chemistry of 1,4,7-triazacyclononane (TACN) has been extensively studied for its applications in the simulation of metalloenzymes and metalloproteins (Chaudhury et al., 1985; Deal et al., 1996; Hegg \& Burstyn, 1995; Hegg et al., 1997; Lin et al., 2001; Williams et al., 1999) as well as in constructing molecule-based magnetic materials (Berseth et al., 2000; Cheng et al., 2004; Poganiuch et al., 1991). In general, TACN ligand can form stable sandwich complexes with many transition metals (Stranger et al., 1992; Zompa \& Margulis, 1978) or functions as a terminal chelator for the assembly of binuclear/polynuclear species and coordination polymers supported by bridging ligands (Bencini et al., 1990; Wang et al., 2005; Wang et al., 2003). In this paper, a half-sandwich type $\mathrm{Ni}^{I I}$ complex with TACN has been synthesized and characterized.

In the selected crystal, the title compound (I) crystallizes in a chiral space group $P 2_{l} 3$ and Flack parameter of 0.01 (3) indicates that a spontaneous resolution has been achieved during crystallization. As depicted in Fig. 1, the $\mathrm{Ni}^{I I}$ center in the complex cation lies on a three-fold rotation axis and three amine N atoms from facially coordinated TACN and three water molecules complete the slightly distorted octahedral arrangement. Upon coordination, three five-membered $\mathrm{Ni}-\mathrm{N}$ $-\mathrm{C}-\mathrm{C}-\mathrm{N}$ chelating rings subtended at metal center adopt $(\lambda \lambda \lambda)$ conformation, which is the source of the chirality of the crystal. $\mathrm{Ni}-\mathrm{N}[2.091$ (3) $\AA]$ and $\mathrm{Ni}-\mathrm{O}[2.089(3) \AA]$ bond lengths are both in the normal ranges, meanwhile $\mathrm{N}-\mathrm{Ni}$ -N bond angle is smaller than that of $\mathrm{O}-\mathrm{Ni}-\mathrm{O}$ due to the small size of TACN ring. Counter-ions $\mathrm{NO}_{3}{ }^{-}$and Br^{-} interconnect neighbouring cations by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ weak interaction (Table 1) into threedimensional supramolecular network (Fig. 2).

S2. Experimental

$1,4,7-$ Triazacyclononane trihydrobromide (TACN 3 HBr) was prepared by following a modified published method (Koyama \& Yoshino, 1972).
To a solution of $0.074 \mathrm{~g}(0.02 \mathrm{mmol})$ of TACN 3 HBr in water $(10 \mathrm{ml}), 0.1 \mathrm{M} \mathrm{NaOH}$ was added to adjust the pH to 6 . Then aqueous solution $(5 \mathrm{ml})$ of $0.058 \mathrm{~g}(0.02 \mathrm{mmol})$ of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} 0$ was added and the resulting mixture was stirred under reflux for 6 h . After cooling, the mixture was filtered, and the filtrate was allowed to standing at ambient temperature. Plate-like green single crystals suitable for X-ray crystallographic analysis were collected by slow evaporation of the filtrate within two months.

S3. Refinement

All methylene H atoms were placed at calculated positions and refined as riding on their parent atoms [$\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$. The H atoms of amine groups and water molecules were located in a difference Fourier map as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{N})$ and $1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Figure 1
An ORTEP plot for the title compound (I) with the atom labelling scheme and 30% displacement ellipsoids. Symmetry codes: (i) $y+1 / 2,-z+3 / 2,-x+2$; (ii) $-z+2, x-1 / 2,-y+3 / 2$.

Figure 2
A view of the packing diagram of the title compound (I), showing the hydrogen-bonding supramolecular network. Hydrogen bonds are drawn in dashed lines. H atoms not involved in hydrogen bonds are omitted for clarity.

Triaqua(1,4,7-triazacyclononane- $\kappa^{3} N^{1}, N^{4}, N^{7}$)nickel(II) bromide nitrate

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \mathrm{Br}\left(\mathrm{NO}_{3}\right)$
$M_{r}=383.89$
Cubic, $P 2_{1} 3$
Hall symbol: P 2ac 2ab 3
$a=11.300$ (1) \AA
$V=1442.9(3) \AA^{3}$
$Z=4$
$F(000)=784$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\min }=0.320, T_{\text {max }}=0.480$
$D_{\mathrm{x}}=1.767 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 13409 reflections
$\theta=3.1-27.4^{\circ}$
$\mu=4.14 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Plate, green
$0.29 \times 0.27 \times 0.18 \mathrm{~mm}$

15223 measured reflections
1110 independent reflections
985 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.080$
$\theta_{\text {max }}=27.4^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-14 \rightarrow 14$
$k=-14 \rightarrow 14$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.072$
$S=1.03$

8717 reflections
61 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0232 P)^{2}+1.6516 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
\(\Delta \rho_{\text {max }}=0.36\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.47 \mathrm{e}^{-3}\)
```

Absolute structure: Flack (1983), 475 Friedel pairs
Absolute structure parameter: 0.01 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ni1	$1.06169(4)$	$0.56169(4)$	$0.93831(4)$	$0.02729(19)$
Br1	$0.25347(4)$	$0.24653(4)$	$0.75347(4)$	$0.0437(2)$
C1	$0.8566(4)$	$0.4233(4)$	$0.8872(4)$	$0.0437(11)$
H1A	0.8123	0.3498	0.8858	0.052^{*}
H1B	0.8438	0.4636	0.8125	0.052^{*}
C2	$1.0118(4)$	$0.3128(4)$	$0.9995(4)$	$0.0449(11)$
H2A	1.0326	0.2365	0.9660	0.054^{*}
H2B	0.9417	0.3022	1.0478	0.054^{*}
N1	$0.9850(3)$	$0.3973(3)$	$0.9019(3)$	$0.0353(8)$
H3	1.0226	0.3631	0.8407	0.053^{*}
N2	$0.9466(3)$	$0.9466(3)$	$0.9466(3)$	$0.0316(11)$
O1	$1.0196(3)$	$0.6447(3)$	$0.7786(3)$	$0.0391(8)$
O2	$0.8854(3)$	$1.0345(3)$	$0.9196(3)$	$0.0577(9)$
H4B	$0.947(5)$	$0.659(4)$	$0.765(4)$	$0.050(14)^{*}$
H4A	$1.040(4)$	$0.598(4)$	$0.723(4)$	$0.050(14)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.02729(19)$	$0.02729(19)$	$0.02729(19)$	$-0.0011(2)$	$0.0011(2)$	$0.0011(2)$
Br1	$0.0437(2)$	$0.0437(2)$	$0.0437(2)$	$-0.0012(2)$	$0.0012(2)$	$-0.0012(2)$
C1	$0.041(2)$	$0.042(3)$	$0.049(3)$	$-0.016(2)$	$-0.009(2)$	$0.005(2)$
C2	$0.054(3)$	$0.027(2)$	$0.054(3)$	$-0.0022(19)$	$0.010(2)$	$0.0063(19)$
N1	$0.0365(19)$	$0.0349(19)$	$0.0346(19)$	$-0.0022(14)$	$0.0050(14)$	$-0.0021(14)$
N2	$0.0316(11)$	$0.0316(11)$	$0.0316(11)$	$0.0002(15)$	$0.0002(15)$	$0.0002(15)$
O1	$0.0424(18)$	$0.0419(18)$	$0.0330(18)$	$0.0052(14)$	$-0.0007(13)$	$0.0024(12)$
O2	$0.055(2)$	$0.054(2)$	$0.065(2)$	$0.0156(16)$	$0.0149(17)$	$0.0133(18)$

Geometric parameters ($\AA,{ }^{\circ}$)

Ni1-O1 ${ }^{\text {i }}$	2.089 (3)	C2-N1	1.490 (5)
Ni1-O1	2.089 (3)	$\mathrm{C} 2-\mathrm{C} 1^{\text {ii }}$	1.520 (6)
Ni1-O1 ${ }^{\text {ii }}$	2.089 (3)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
Ni1-N1	2.091 (3)	C2-H2B	0.9700
Ni1-N1 ${ }^{\text {ii }}$	2.091 (3)	N1-H3	0.8987
Ni1-N1 ${ }^{\text {i }}$	2.091 (3)	$\mathrm{N} 2-\mathrm{O} 2{ }^{\text {iii }}$	1.248 (3)
C1-N1	1.490 (6)	$\mathrm{N} 2-\mathrm{O} 2^{\text {iv }}$	1.248 (3)
$\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$	1.520 (6)	$\mathrm{N} 2-\mathrm{O} 2$	1.248 (3)
C1-H1A	0.9700	$\mathrm{O} 1-\mathrm{H} 4 \mathrm{~B}$	0.85 (5)
C1-H1B	0.9700	$\mathrm{O} 1-\mathrm{H} 4 \mathrm{~A}$	0.84 (4)
O1- ${ }^{\text {i }}$ Ni1-O1	84.90 (14)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.1
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 1^{1 i}$	84.90 (14)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1^{\mathrm{ii}}$	111.7 (3)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 1^{\text {ii }}$	84.90 (14)	N1-C2-H2A	109.3
O1- ${ }^{\text {i }}$ Ni1- N 1	177.00 (13)	$\mathrm{C} 1{ }^{\text {ii- }} \mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.3
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1$	97.72 (13)	N1-C2-H2B	109.3
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Ni} 1-\mathrm{N} 1$	93.87 (12)	$\mathrm{C} 1{ }^{\text {ii- }} \mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.3
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1^{1 i}$	93.87 (12)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.0
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1^{\text {ii }}$	177.00 (13)	C1-N1-C2	114.0 (3)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Ni} 1-\mathrm{N} 1^{\text {ii }}$	97.72 (12)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1$	104.5 (3)
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 1{ }^{\text {ii }}$	83.58 (14)	C2-N1-Ni1	109.8 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	97.72 (12)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 3$	117.3
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1^{1}$	93.87 (12)	C2-N1-H3	101.4
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	177.00 (13)	Ni1-N1-H3	109.7
N1-Nil-N1 ${ }^{\text {i }}$	83.58 (14)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{N} 2-\mathrm{O} 2{ }^{\text {iv }}$	119.999 (2)
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Ni} 1-\mathrm{N} 1^{\text {i }}$	83.58 (14)	$\mathrm{O} 2 \mathrm{iii}-\mathrm{N} 2-\mathrm{O} 2$	120.000 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {i }}$	110.3 (4)	$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{N} 2-\mathrm{O} 2$	120.000 (2)
N1-C1-H1A	109.6	Ni1-O1-H4B	117 (4)
C 2 - $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.6	Ni1-O1-H4A	107 (4)
N1-C1-H1B	109.6	$\mathrm{H} 4 \mathrm{~B}-\mathrm{O} 1-\mathrm{H} 4 \mathrm{~A}$	104 (5)
C2 ${ }^{\text {i }}$ C1- H 1 B	109.6		
$\mathrm{C} 2 \mathrm{i}-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	72.1 (5)	N1 ${ }^{\text {ii }}-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 1$	114.6 (2)
$\mathrm{C} 2{ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1$	-47.8 (4)	N1- ${ }^{\text {i }}$ Ni1-N1-C1	30.4 (3)
$\mathrm{C} 1{ }^{\text {ii }}-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	-133.2 (4)	O1-Ni1-N1-C2	174.6 (3)
C1 ${ }^{\text {ii }}-\mathrm{C} 2-\mathrm{N} 1-\mathrm{Ni} 1$	-16.3 (4)	$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 2$	89.3 (3)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 1$	-62.7 (3)	N1i- ${ }^{\text {ii }} 11-\mathrm{N} 1-\mathrm{C} 2$	-8.1 (3)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 1$	-148.0 (3)	N1- ${ }^{\text {i }}$ Ni1—N1-C2	-92.3 (2)

Symmetry codes: (i) $y+1 / 2,-z+3 / 2,-x+2$; (ii) $-z+2, x-1 / 2,-y+3 / 2$; (iii) z, x, y; (iv) y, z, x.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 4 A \cdots \mathrm{O} 2^{v}$	$0.84(4)$	$1.95(5)$	$2.776(5)$	$162(4)$

supporting information

$\mathrm{O} 1 — \mathrm{H} 4 B \cdots \mathrm{Br} 1^{\mathrm{vi}}$	$0.85(5)$	$2.48(5)$	$3.312(3)$

Symmetry codes: (v) $-x+2, y-1 / 2,-z+3 / 2$; (vi) $-x+1, y+1 / 2,-z+3 / 2$.

