Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(9-aminoacridinium) bis(pyridine-2,6dicarboxylato- $\kappa^3 O^2$, N, O⁶)nickelate(II) trihydrate

Zohreh Derikvand^a* and Marilyn M. Olmstead^b

^aDepartment of Chemistry, Faculty of Sciences, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran, and ^bDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5292, USA Correspondence e-mail: zderik@vahoo.com

Received 28 April 2010; accepted 7 May 2010

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.001 Å; R factor = 0.027; wR factor = 0.076; data-to-parameter ratio = 17.9.

The title compound, $(C_{13}H_{11}N_2)_2[Ni(C_7H_3NO_4)_2]\cdot 3H_2O$, consists of a mononuclear anionic complex, two 9-aminoacridinium cations and three uncoordinated water molecules. Two pyridine-2,6-dicarboxylate (pydc) ligands are bound to the Ni^{II} ion, giving an NiN₂O₄ bonded set. The coordination geometry around the Ni^{II} atom is distorted octahedral. There are two types of robust $O-H\cdots O$ hydrogen-bond synthons, namely $R_6^6(24)$ and $R_2^4(8)$, which link the complex anions and water molecules to each other. $N-H\cdots O$ hydrogen bonds connect the stacks of anions and cations in the structure. Other intermolecular interactions, including weak $C-H\cdots O$ hydrogen bonds, $\pi-\pi$ [shortest centroid–centroid distance = 3.336 (7) Å] and $C-O\cdots\pi$ [O···centroid distance = 3.562 (10) Å] interactions, connect the various components.

Related literature

For related structures containing $[Ni(pydc)_2]^{2-}$ species, see: Aghabozorg *et al.* (2008, 2009); Attar Gharamaleki *et al.* (2009); Cui *et al.* (2009); Hadadzadeh *et al.* (2010); Safaei-Ghomi *et al.* (2009).

Experimental

Crystal data

 $\begin{array}{l} (C_{13}H_{11}N_{2})_{2}[Ni(C_{7}H_{3}NO_{4})_{2}]\cdot 3H_{2}O\\ M_{r} = 833.44\\ \text{Triclinic, } P\overline{1}\\ a = 10.7939 (10) \text{ Å}\\ b = 13.3335 (12) \text{ Å}\\ c = 13.9370 (13) \text{ Å}\\ a = 102.288 (2)^{\circ}\\ \beta = 103.609 (2)^{\circ} \end{array}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.809, T_{max} = 0.887$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.076$ S = 1.0411816 reflections

Table 1

Hydrogen-bond	geometry	(A,	°)	
---------------	----------	-----	----	--

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3A\cdots O2W^{i}$	0.873 (18)	2.053 (18)	2.8793 (12)	157.6 (16)
$N3-H3B\cdots O7^{ii}$	0.878 (17)	2.109 (17)	2.9337 (11)	156.1 (15)
$N4 - H4A \cdots O6$	0.884 (17)	1.838 (17)	2.7214 (11)	178.1 (16)
$N5-H5A\cdots O3^{iii}$	0.894 (17)	1.925 (17)	2.7945 (11)	163.9 (16)
$N5-H5B\cdots O5$	0.889 (17)	2.046 (17)	2.9096 (11)	163.6 (15)
$N6-H6A\cdots O3W$	0.836 (18)	1.863 (18)	2.6903 (11)	170.3 (18)
$O1W-H1A\cdots O7$	0.83 (2)	1.99 (2)	2.8138 (11)	171 (2)
$O1W-H1B\cdots O7^{iv}$	0.861 (19)	1.955 (19)	2.8161 (11)	178.7 (17)
$O2W - H2A \cdots O8^{v}$	0.813 (19)	2.067 (19)	2.8717 (11)	170.1 (17)
$O2W - H2B \cdot \cdot \cdot O2$	0.79 (2)	2.02 (2)	2.8033 (11)	177 (2)
$O3W-H3C\cdots O3^{vi}$	0.79 (2)	1.97 (2)	2.7595 (11)	169.8 (19)
$O3W-H3D\cdots O1W^{vii}$	0.856 (19)	1.879 (19)	2.7328 (11)	175.4 (17)
C30−H30···O3 ⁱⁱⁱ	0.931 (16)	2.437 (16)	3.3386 (12)	163 (14)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1, y, z + 1; (iii) -x + 1, -y, -z; (iv) -x, -y + 1, -z; (v) -x, -y, -z; (vi) x, y, z + 1; (vii) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2305).

References

- Aghabozorg, H., Heidari, M., Bagheri, S., Attar Gharamaleki, J. & Ghadermazi, M. (2008). Acta Cryst. E64, m874–m875.
- Aghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 55–70.
- Attar Gharamaleki, J., Aghabozorg, H., Derikvand, Z. & Yousefi, M. (2009). Acta Cryst. E65, m824–m825.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cui, S., Zhao, Y., Zhang, J., Liu, Q. & Zhang, Y. (2009). Synth. Met. 159, 2191– 2193.

 $\gamma = 105.482 \ (2)^{\circ}$

Z = 2

V = 1795.6 (3) Å³

Mo $K\alpha$ radiation

 $0.36 \times 0.24 \times 0.20 \text{ mm}$

29993 measured reflections

11816 independent reflections

10951 reflections with $I > 2\sigma(I)$

All H-atom parameters refined

 $\mu = 0.62 \text{ mm}^{-3}$

T = 90 K

 $R_{\rm int} = 0.015$

659 parameters

 $\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.34$ e Å⁻³

- Hadadzadeh, H., Rezvani, A. R., Karimi Abdolmaleki, M., Ghasemi, Kh., Esfandiari, H. & Daryanavard, M. (2010). J. Chem. Crystallogr. 40, 48–57. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,
- R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Safaei-Ghomi, J., Aghabozorg, H., Motyeian, E. & Ghadermazi, M. (2009). *Acta Cryst.* E65, m2-m3.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, m642–m643 [https://doi.org/10.1107/S1600536810016776] Bis(9-aminoacridinium) bis(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$, N, O⁶)nickelate(II) trihydrate

Zohreh Derikvand and Marilyn M. Olmstead

S1. Comment

9-Aminoacridine is a highly fluorescent dye clinically used as a topical antiseptic and experimentally as a mutagen, an intracellular pH indicator and as a MALDI matrix. Acridine and related derivatives bind to DNA and RNA due to their abilities to intercalate. Many complexes containing pyridine-2,6-dicarboxylate (pydc), Ni^{II} ions and various bases have been reported (Aghabozorg *et al.*, 2008, 2009; Attar Gharamaleki *et al.*, 2009; Cui *et al.*, 2009; Hadadzadeh *et al.*, 2010; Safaei-Ghomi *et al.*, 2009).

The asymmetric unit of the title compound consists of one $[Ni(pydc)_2]^{2-}$ anion, two 9-aminoacridinuum cations and three uncoordinated water molecules (Fig. 1). In the synthesis, two carboxylic acid protons are transferred to the endocyclic N atoms of 9-aminoacridines. Two pydc ligands are bound to the metal ion to give a NiN₂O₄ bonded set, using all the coordination sites of the pydc ligand. The resulting coordination polyhedron can be described as distorted octahedral. In the anionic complex, the Ni—N bond distances [1.9648 (8) and 1.9760 (8) Å] are shorter than the Ni—O bond distances [2.1003 (7), 2.1120 (7), 2.1360 (7) and 2.1776 (7) Å]. It is worth pointing out that there are two types of robust hydrogen bond synthons, namely R⁶₆(24) and R²₄(8), which link the complex anions and water molecules to each other, as shown in Fig. 2. The dihedral angle between two coordinated pydc ligands is 85.14 (3)°, which shows that two ligands are almost perpendicular to each other. A feature of the title compound is the presence of π - π and C—O··· π interactions. The shortest π - π distance is 3.336 (7) Å and C—O··· π distances is 3.562 (10) Å (Fig. 3). Another feature in this crystal structure is intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds with D···A distances ranging from 2.6903 (11) to 3.3386 (12)Å (Table 1).

The packing consists of distinctive stacks of cations and anions that propagate along the *a* direction. These stacks are connected to each other by N—H···O hydrogen bonds, as shown in Fig. 4. This crystal structure is comparable to $(H_3O)^+(creatH)^+[Ni(pydc)_2].3H_2O$ (creat = creatinine) (Attar Gharamaleki *et al.*, 2009).

S2. Experimental

An aqueous solution of Ni(NO₃)₂.6H₂O (145 mg, 0.5 mmol) in distilled water (5 ml) was added to methanolic solution of pyridine-2,6-dicarboxylic acid (167 mg, 1 mmol) in water (20 ml) and 9-aminoacridine (194 mg, 1 mmol) in methanol (5 ml) under stirring at 80°C in a 1:2:2 molar ratio. The green colored precipitated product was obtained. The precipitation was dissolved in solution of H₂O/DMSO in a volume ratio of 1:2 (5/10 ml). Green block crystals, suitable for X-ray characterization, were obtained after 4 d at room temperature.

S3. Refinement

All H atoms were located in difference Fourier maps and refined isotropically.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level.

Figure 2

A view of the two types of robust hydrogen bond synthons, $R_{6}^{6}(24)$ and $R_{4}^{2}(8)$, which link the complex anions and water molecules to each other.

Figure 3

A view of the extensive π - π stacking interactions (dashed lines) between aromatic rings of 9-aminoacridinium ions and the C—O… π interaction (dashed line) between C7—O3 and the centroid of the pyridyl ring of a neighboring pydc ligand. [Distances: (i) 3.336; (ii) 3.834; (iii) 3.429; (iv) 3.621; (v) 3.562 Å.]

Figure 4

A view showing how the cations and anions are connected by N-H…O hydrogen bonds (dashed lines).

Bis(9-aminoacridinium) bis(pyridine-2,6-dicarboxylato- κ³O²,N,O⁶)nickelate(II) trihydrate

Crystal data

 $\begin{array}{l} ({\rm C}_{13}{\rm H}_{11}{\rm N}_2)_2[{\rm Ni}({\rm C}_7{\rm H}_3{\rm NO}_4)_2]\cdot 3{\rm H}_2{\rm O}\\ M_r = 833.44\\ {\rm Triclinic}, P\overline{1}\\ {\rm Hall \ symbol: -P \ 1}\\ a = 10.7939\ (10)\ {\rm \mathring{A}}\\ b = 13.3335\ (12)\ {\rm \mathring{A}}\\ c = 13.9370\ (13)\ {\rm \mathring{A}}\\ a = 102.288\ (2)^{\circ}\\ \beta = 103.609\ (2)^{\circ}\\ \gamma = 105.482\ (2)^{\circ}\\ V = 1795.6\ (3)\ {\rm \mathring{A}}^3 \end{array}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0.83 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.809, T_{\max} = 0.887$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.076$ S = 1.0411816 reflections Z = 2 F(000) = 864 $D_x = 1.542 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9659 reflections $\theta = 2.9-31.5^{\circ}$ $\mu = 0.62 \text{ mm}^{-1}$ T = 90 K Block, green $0.36 \times 0.24 \times 0.20 \text{ mm}$

29993 measured reflections 11816 independent reflections 10951 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 31.5^\circ, \ \theta_{min} = 2.8^\circ$ $h = -15 \rightarrow 15$ $k = -19 \rightarrow 19$ $l = -20 \rightarrow 20$

659 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map	$(\Delta/\sigma)_{\rm max} = 0.008$
All H-atom parameters refined	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0406P)^2 + 0.6602P]$	$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nil	0.359601 (12)	0.243203 (9)	0.083985 (9)	0.01101 (3)	
01	0.24161 (7)	0.20633 (6)	0.18019 (5)	0.01602 (13)	
O2	0.09729 (8)	0.06546 (6)	0.20554 (6)	0.01894 (14)	
O3	0.47436 (8)	0.07283 (6)	-0.14184(5)	0.01698 (13)	
O4	0.45471 (7)	0.21101 (5)	-0.02971 (5)	0.01462 (12)	
05	0.54671 (7)	0.27912 (6)	0.20078 (5)	0.01500 (12)	
O6	0.73195 (8)	0.42266 (7)	0.30005 (6)	0.02066 (15)	
O7	0.14490 (7)	0.42729 (6)	-0.04067 (5)	0.01533 (13)	
08	0.20247 (7)	0.28295 (5)	-0.01471 (5)	0.01506 (12)	
N1	0.28850 (8)	0.08335 (6)	0.03374 (6)	0.01215 (13)	
N2	0.43332 (8)	0.40357 (6)	0.11994 (6)	0.01076 (13)	
C1	0.17544 (10)	0.10551 (8)	0.16048 (7)	0.01420 (16)	
C2	0.20048 (9)	0.02963 (7)	0.07382 (7)	0.01305 (15)	
C3	0.14477 (10)	-0.08340 (8)	0.03748 (8)	0.01671 (17)	
H3	0.0808 (16)	-0.1233 (13)	0.0667 (12)	0.026 (4)*	
C4	0.18596 (11)	-0.13846 (8)	-0.03952 (8)	0.01748 (17)	
H4	0.1504 (15)	-0.2174 (13)	-0.0647 (12)	0.023 (4)*	
C5	0.27985 (10)	-0.08048 (8)	-0.07890 (7)	0.01533 (16)	
H5	0.3120 (16)	-0.1156 (13)	-0.1310 (12)	0.024 (4)*	
C6	0.32823 (9)	0.03235 (7)	-0.04062 (7)	0.01215 (15)	
C7	0.42722 (9)	0.11096 (7)	-0.07411 (7)	0.01279 (15)	
C8	0.61936 (10)	0.37940 (8)	0.23293 (7)	0.01360 (15)	
C9	0.55891 (9)	0.45375 (7)	0.18393 (7)	0.01160 (15)	
C10	0.62363 (9)	0.56455 (8)	0.20244 (7)	0.01367 (15)	
H10	0.7148 (16)	0.5980 (13)	0.2491 (12)	0.025 (4)*	
C11	0.55385 (10)	0.62207 (7)	0.15184 (7)	0.01395 (16)	
H11	0.5949 (15)	0.6953 (12)	0.1617 (11)	0.019 (3)*	
C12	0.42193 (9)	0.56827 (7)	0.08503 (7)	0.01255 (15)	
H12	0.3741 (15)	0.6076 (12)	0.0478 (11)	0.019 (3)*	
C13	0.36452 (9)	0.45752 (7)	0.07089 (7)	0.01066 (14)	
C14	0.22569 (9)	0.38391 (7)	-0.00075 (7)	0.01211 (15)	
N3	1.01535 (9)	0.30800 (7)	0.73932 (6)	0.01601 (15)	
H3A	1.0262 (18)	0.2447 (15)	0.7348 (13)	0.035 (4)*	
H3B	1.0349 (16)	0.3518 (14)	0.8016 (13)	0.028 (4)*	
N4	0.85905 (8)	0.38995 (6)	0.47807 (6)	0.01216 (13)	
H4A	0.8176 (17)	0.4019 (13)	0.4211 (13)	0.029 (4)*	
C15	0.96750 (9)	0.33591 (7)	0.65564 (7)	0.01238 (15)	
C16	0.92971 (9)	0.43231 (7)	0.66353 (7)	0.01277 (15)	
C17	0.94175 (10)	0.50324 (8)	0.75957 (7)	0.01699 (17)	
H17	0.9776 (15)	0.4885 (12)	0.8207 (12)	0.022 (4)*	

C18	0.89975 (11)	0.59228 (8)	0.76344 (8)	0.01865 (18)
H18	0.9081 (15)	0.6410 (12)	0.8279 (12)	0.023 (4)*
C19	0.84486 (10)	0.61508 (8)	0.67144 (8)	0.01701 (17)
H19	0.8169 (17)	0.6750 (13)	0.6743 (13)	0.029 (4)*
C20	0.83206 (10)	0.54841 (8)	0.57722 (8)	0.01467 (16)
H20	0 7949 (15)	0 5620 (12)	0.5123(12)	0 024 (4)*
C21	0.87392 (9)	0.45595 (7)	0.57219(7)	0.021(1)
C22	0.87592(9) 0.89545(9)	0.19999 (7) 0.29898 (7)	0.37219(7) 0.46724(7)	0.01210(19) 0.01138(14)
C23	0.87734(9)	0.23509 (8)	0.46724 (7)	0.01150(14) 0.01369(15)
С25 H23	0.87734(5)	0.25307(0)	0.3080(11)	0.01307(13)
C24	0.0404(13) 0.01252(10)	0.2382(12) 0.14200(8)	0.3030(11) 0.35302(7)	0.019(3)
U24	0.91232(10)	0.14290(8) 0.1003(13)	0.33392(7)	0.01327(10) 0.027(4)*
П24 С25	0.9000(10)	0.1003 (13)	0.2030(12)	$0.027(4)^{10}$
C25	0.90092 (9)	0.11129(8)	0.44075 (8)	0.01504 (16)
H25	0.9882 (15)	0.0445 (12)	0.4304 (11)	$0.021(4)^{*}$
C26	0.98/06 (9)	0.1/326 (8)	0.53888 (7)	0.01362 (15)
H26	1.0261 (15)	0.1520 (12)	0.59/3 (11)	0.020 (3)*
C27	0.95095 (9)	0.26932 (7)	0.55488 (7)	0.01163 (15)
N5	0.54540 (8)	0.10654 (7)	0.29830 (6)	0.01346 (14)
H5B	0.5307 (17)	0.1587 (14)	0.2716 (12)	0.028 (4)*
H5A	0.5530 (17)	0.0488 (14)	0.2569 (13)	0.032 (4)*
N6	0.66618 (8)	0.17508 (7)	0.61591 (6)	0.01321 (14)
H6A	0.6815 (18)	0.1842 (14)	0.6793 (14)	0.035 (4)*
C28	0.58088 (9)	0.12538 (7)	0.39986 (7)	0.01094 (14)
C29	0.63617 (9)	0.05563 (7)	0.44931 (7)	0.01157 (14)
C30	0.65177 (9)	-0.04016 (7)	0.39368 (7)	0.01397 (15)
H30	0.6252 (15)	-0.0608 (12)	0.3218 (12)	0.020 (3)*
C31	0.70392 (10)	-0.10461 (8)	0.44482 (8)	0.01636 (17)
H31	0.7130 (15)	-0.1690 (13)	0.4074 (12)	0.021 (3)*
C32	0.74404 (9)	-0.07552 (8)	0.55373 (8)	0.01687 (17)
H32	0.7815 (15)	-0.1210 (12)	0.5896 (12)	0.023 (4)*
C33	0.73293 (9)	0.01756 (8)	0.61017 (8)	0.01544 (16)
H33	0.7632 (16)	0.0396 (13)	0.6863 (12)	0.027 (4)*
C34	0.67789 (9)	0.08377 (7)	0.55852 (7)	0.01229(15)
C35	0.60723 (9)	0.23954 (7)	0.57198 (7)	0.01228 (15)
C36	0.58907 (10)	0.32831 (8)	0.63673 (7)	0.01603(17)
H36	0.6224 (16)	0.3430(13)	0 7095 (13)	0.027(4)*
C37	0.5227(10) 0.52273(11)	0.38982 (8)	0.59321 (8)	0.027(1) 0.01782(17)
H37	0.5095 (16)	0.36762(0) 0.4525(13)	0.53521(0) 0.6367(12)	0.01702(17)
C38	0.3073(10) 0.47143(10)	0.36511 (8)	0.0307(12) 0.48487(8)	0.020(4)
U38	0.47145(10)	0.30511(0) 0.4061(12)	0.4546(11)	0.010+1(17)
C20	0.4195(15) 0.40140(0)	0.4001(12) 0.28085(7)	0.4340(11) 0.42143(7)	$0.021(4)^{-1}$
U39	0.49140(9) 0.4518(14)	0.26065(7)	0.42143(7) 0.3470(11)	0.01340(13) 0.017(3)*
П39 С40	0.4318(14)	0.2041(12)	0.3479(11)	$0.017(3)^{10}$
C40	0.30190 (9)	0.21081(7)	0.40304 (7)	0.01130(14)
	0.11001(8)	0.03289(0)	0.0209/(6)	0.01901 (14)
HIA	0.132(2)	0.5/45 (16)	0.0089 (15)	0.045 (5)*
HIR	0.0366 (19)	0.0100 (14)	0.0272 (13)	0.033 (4)*
02W	-0.08266 (9)	-0.12483 (7)	0.21495 (6)	0.02072 (15)
H2A	-0.1191 (18)	-0.1637 (15)	0.1557 (14)	0.033 (4)*

H2B	-0.031 (2)	-0.0729 (16)	0.2114 (15)	0.041 (5)*
O3W	0.68638 (9)	0.20630 (7)	0.81693 (6)	0.02351 (16)
H3C	0.628 (2)	0.1734 (16)	0.8358 (14)	0.039 (5)*
H3D	0.7472 (19)	0.2544 (15)	0.8698 (14)	0.035 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ni1	0.01530 (6)	0.00874 (5)	0.01001 (5)	0.00488 (4)	0.00442 (4)	0.00317 (4)
01	0.0215 (3)	0.0127 (3)	0.0155 (3)	0.0059 (3)	0.0089 (3)	0.0036 (2)
O2	0.0230 (3)	0.0193 (3)	0.0185 (3)	0.0069 (3)	0.0120 (3)	0.0076 (3)
O3	0.0217 (3)	0.0153 (3)	0.0143 (3)	0.0052 (3)	0.0095 (3)	0.0019 (2)
O4	0.0214 (3)	0.0106 (3)	0.0139 (3)	0.0057 (2)	0.0081 (2)	0.0042 (2)
05	0.0196 (3)	0.0138 (3)	0.0142 (3)	0.0080 (2)	0.0048 (2)	0.0067 (2)
O6	0.0178 (3)	0.0236 (4)	0.0188 (3)	0.0065 (3)	-0.0008(3)	0.0105 (3)
07	0.0145 (3)	0.0158 (3)	0.0152 (3)	0.0072 (2)	0.0014 (2)	0.0044 (2)
08	0.0166 (3)	0.0112 (3)	0.0148 (3)	0.0038 (2)	0.0018 (2)	0.0030(2)
N1	0.0163 (3)	0.0105 (3)	0.0107 (3)	0.0052 (3)	0.0048 (3)	0.0036 (3)
N2	0.0133 (3)	0.0105 (3)	0.0097 (3)	0.0054 (3)	0.0039 (3)	0.0033 (2)
C1	0.0173 (4)	0.0153 (4)	0.0121 (4)	0.0071 (3)	0.0054 (3)	0.0050 (3)
C2	0.0164 (4)	0.0120 (4)	0.0121 (4)	0.0051 (3)	0.0053 (3)	0.0050 (3)
C3	0.0208 (4)	0.0128 (4)	0.0166 (4)	0.0036 (3)	0.0074 (3)	0.0052 (3)
C4	0.0230 (5)	0.0107 (4)	0.0166 (4)	0.0031 (3)	0.0063 (3)	0.0029 (3)
C5	0.0212 (4)	0.0113 (4)	0.0131 (4)	0.0053 (3)	0.0055 (3)	0.0026 (3)
C6	0.0162 (4)	0.0107 (3)	0.0101 (3)	0.0051 (3)	0.0042 (3)	0.0033 (3)
C7	0.0165 (4)	0.0121 (4)	0.0105 (3)	0.0052 (3)	0.0044 (3)	0.0041 (3)
C8	0.0162 (4)	0.0161 (4)	0.0122 (4)	0.0082 (3)	0.0054 (3)	0.0071 (3)
C9	0.0138 (4)	0.0126 (4)	0.0101 (3)	0.0058 (3)	0.0041 (3)	0.0046 (3)
C10	0.0135 (4)	0.0137 (4)	0.0127 (4)	0.0035 (3)	0.0028 (3)	0.0043 (3)
C11	0.0161 (4)	0.0113 (4)	0.0147 (4)	0.0040 (3)	0.0049 (3)	0.0048 (3)
C12	0.0151 (4)	0.0116 (4)	0.0130 (4)	0.0062 (3)	0.0050 (3)	0.0048 (3)
C13	0.0124 (4)	0.0107 (3)	0.0097 (3)	0.0051 (3)	0.0036 (3)	0.0032 (3)
C14	0.0132 (4)	0.0129 (4)	0.0101 (3)	0.0045 (3)	0.0034 (3)	0.0033 (3)
N3	0.0186 (4)	0.0169 (4)	0.0116 (3)	0.0068 (3)	0.0016 (3)	0.0047 (3)
N4	0.0133 (3)	0.0124 (3)	0.0116 (3)	0.0051 (3)	0.0034 (3)	0.0045 (3)
C15	0.0101 (3)	0.0132 (4)	0.0124 (4)	0.0028 (3)	0.0022 (3)	0.0039 (3)
C16	0.0118 (4)	0.0128 (4)	0.0125 (4)	0.0035 (3)	0.0027 (3)	0.0031 (3)
C17	0.0185 (4)	0.0167 (4)	0.0134 (4)	0.0055 (3)	0.0031 (3)	0.0022 (3)
C18	0.0203 (4)	0.0162 (4)	0.0168 (4)	0.0055 (3)	0.0052 (3)	0.0008 (3)
C19	0.0168 (4)	0.0133 (4)	0.0206 (4)	0.0056 (3)	0.0064 (3)	0.0029 (3)
C20	0.0142 (4)	0.0130 (4)	0.0178 (4)	0.0054 (3)	0.0050 (3)	0.0054 (3)
C21	0.0107 (3)	0.0116 (4)	0.0135 (4)	0.0032 (3)	0.0038 (3)	0.0036 (3)
C22	0.0101 (3)	0.0120 (3)	0.0125 (4)	0.0036 (3)	0.0038 (3)	0.0044 (3)
C23	0.0142 (4)	0.0154 (4)	0.0121 (4)	0.0054 (3)	0.0043 (3)	0.0046 (3)
C24	0.0156 (4)	0.0162 (4)	0.0149 (4)	0.0064 (3)	0.0062 (3)	0.0034 (3)
C25	0.0136 (4)	0.0147 (4)	0.0186 (4)	0.0066 (3)	0.0059 (3)	0.0049 (3)
C26	0.0119 (4)	0.0143 (4)	0.0160 (4)	0.0055 (3)	0.0042 (3)	0.0060 (3)
C27	0.0100 (3)	0.0124 (4)	0.0124 (4)	0.0036 (3)	0.0030 (3)	0.0043 (3)

N5	0.0185 (4)	0.0127 (3)	0.0107 (3)	0.0076 (3)	0.0045 (3)	0.0037 (3)
N6	0.0130 (3)	0.0163 (3)	0.0101 (3)	0.0042 (3)	0.0037 (3)	0.0043 (3)
C28	0.0096 (3)	0.0113 (3)	0.0118 (3)	0.0029 (3)	0.0037 (3)	0.0035 (3)
C29	0.0105 (3)	0.0121 (4)	0.0128 (4)	0.0038 (3)	0.0038 (3)	0.0049 (3)
C30	0.0131 (4)	0.0127 (4)	0.0165 (4)	0.0047 (3)	0.0045 (3)	0.0047 (3)
C31	0.0142 (4)	0.0140 (4)	0.0228 (4)	0.0058 (3)	0.0060 (3)	0.0075 (3)
C32	0.0121 (4)	0.0184 (4)	0.0235 (5)	0.0054 (3)	0.0056 (3)	0.0126 (4)
C33	0.0120 (4)	0.0197 (4)	0.0167 (4)	0.0048 (3)	0.0042 (3)	0.0105 (3)
C34	0.0095 (3)	0.0145 (4)	0.0130 (4)	0.0027 (3)	0.0037 (3)	0.0057 (3)
C35	0.0112 (3)	0.0132 (4)	0.0117 (4)	0.0025 (3)	0.0045 (3)	0.0032 (3)
C36	0.0180 (4)	0.0159 (4)	0.0127 (4)	0.0037 (3)	0.0067 (3)	0.0016 (3)
C37	0.0224 (4)	0.0149 (4)	0.0179 (4)	0.0068 (3)	0.0107 (4)	0.0026 (3)
C38	0.0186 (4)	0.0141 (4)	0.0191 (4)	0.0072 (3)	0.0083 (3)	0.0052 (3)
C39	0.0145 (4)	0.0131 (4)	0.0141 (4)	0.0054 (3)	0.0054 (3)	0.0046 (3)
C40	0.0112 (3)	0.0115 (3)	0.0113 (3)	0.0036 (3)	0.0042 (3)	0.0030 (3)
O1W	0.0175 (3)	0.0149 (3)	0.0243 (4)	0.0041 (3)	0.0058 (3)	0.0040 (3)
O2W	0.0258 (4)	0.0174 (3)	0.0157 (3)	0.0039 (3)	0.0037 (3)	0.0055 (3)
O3W	0.0238 (4)	0.0272 (4)	0.0120 (3)	-0.0023 (3)	0.0057 (3)	0.0041 (3)

Geometric parameters (Å, °)

Ni1—N1	1.9648 (8)	C18—H18	0.959 (15)
Ni1—N2	1.9760 (8)	C19—C20	1.3732 (14)
Ni1—O1	2.1003 (7)	C19—H19	0.923 (17)
Nil—O4	2.1120 (7)	C20—C21	1.4158 (12)
Ni1—O5	2.1360 (7)	C20—H20	0.974 (15)
Nil—O8	2.1776 (7)	C22—C27	1.4124 (12)
01—C1	1.2770 (12)	C22—C23	1.4158 (12)
O2—C1	1.2420 (12)	C23—C24	1.3692 (13)
O3—C7	1.2523 (11)	C23—H23	0.969 (15)
O4—C7	1.2655 (11)	C24—C25	1.4148 (13)
O5—C8	1.2741 (12)	C24—H24	0.955 (16)
O6—C8	1.2434 (12)	C25—C26	1.3725 (13)
O7—C14	1.2580 (11)	C25—H25	0.968 (15)
O8—C14	1.2642 (11)	C26—C27	1.4240 (12)
N1—C2	1.3359 (12)	C26—H26	0.960 (15)
N1—C6	1.3361 (11)	N5—C28	1.3249 (11)
N2—C9	1.3318 (12)	N5—H5B	0.889 (17)
N2-C13	1.3385 (11)	N5—H5A	0.894 (17)
C1—C2	1.5280 (13)	N6—C35	1.3606 (12)
C2—C3	1.3919 (13)	N6—C34	1.3613 (12)
C3—C4	1.3970 (14)	N6—H6A	0.836 (18)
С3—Н3	0.977 (16)	C28—C29	1.4393 (12)
C4—C5	1.3963 (14)	C28—C40	1.4405 (12)
C4—H4	0.971 (16)	C29—C34	1.4157 (12)
С5—С6	1.3888 (12)	C29—C30	1.4197 (12)
С5—Н5	0.963 (16)	C30—C31	1.3760 (13)
C6—C7	1.5176 (13)	С30—Н30	0.930 (15)

C8—C9	1.5162 (12)	C31—C32	1.4116 (14)
C9—C10	1.3925 (13)	C31—H31	0.947 (15)
C10—C11	1.3934 (13)	C32—C33	1.3717 (14)
C10—H10	0.965 (16)	С32—Н32	0.973 (15)
C11—C12	1.3984 (13)	C33—C34	1.4141 (13)
C11—H11	0.923 (15)	С33—Н33	0.985 (16)
C12—C13	1.3906 (12)	C35—C40	1.4104 (12)
С12—Н12	0.971 (15)	C35—C36	1.4163 (13)
C13—C14	1.5164 (12)	C36—C37	1.3691 (14)
N3—C15	1 3301 (12)	C36—H36	0.950 (16)
N3—H3A	0.873(18)	$C_{37} - C_{38}$	1 4116 (14)
N3—H3B	0.878(17)	$C_{37} - H_{37}$	0.987(16)
N4_C22	1.3612(11)	C_{38} C_{39}	1.3736(13)
N4 C21	1.3620(12)	C38 H38	0.970(15)
N4 H4A	1.3020(12)	$C_{30} = C_{40}$	1.4161(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.004(17) 1 4240(12)	$C_{39} = C_{40}$	1.4101(12)
C15 - C17	1.4349(12) 1.4202(12)	C39—II39	0.903(14)
	1.4392 (13)	OIW—HIA	0.83(2)
C16—C21	1.4121 (12)	OIW—HIB	0.861 (19)
	1.4201 (13)	O2W—H2A	0.813 (19)
C17—C18	1.3/46 (14)	O2W—H2B	0.79 (2)
С17—Н17	0.934 (15)	O3W—H3C	0.79 (2)
C18—C19	1.4115 (15)	O3W—H3D	0.856 (19)
N1—Ni1—N2	173.93 (3)	C18—C17—H17	119.7 (9)
N1—Ni1—O1	78.42 (3)	С16—С17—Н17	119.4 (9)
N2—Ni1—O1	107.10 (3)	C17—C18—C19	120.21 (9)
N1—Ni1—O4	78.42 (3)	C17—C18—H18	121.5 (9)
N2—Ni1—O4	96.15 (3)	C19—C18—H18	118.3 (9)
01—Ni1—04	156.71 (3)	C20-C19-C18	120.50 (9)
N1—Ni1—O5	104.16 (3)	C20-C19-H19	119.5 (10)
N2—Ni1—O5	78 28 (3)	C18 - C19 - H19	120.0(10)
01_Ni1_05	94.00(3)	C19-C20-C21	119.82 (9)
04—Ni1— 05	89.26(3)	C19 - C20 - H20	119.62(9) 122 5 (9)
N1Ni108	100.69(3)	C_{21} C_{20} H_{20}	122.5(9) 117.6(9)
N2Ni108	76.88 (3)	N4-C21-C16	120.52(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70.00(3)	N4 C21 C20	120.32(8)
01 - Ni1 = 08	92.00(3)	$C_{16} C_{21} C_{20}$	119.08 (8)
05 Nil 08	155 12 (3)	$N_{10} = C_{21} = C_{20}$	120.40(8)
$C_1 = 0$	155.12(5) 115.28(6)	N4 - C22 - C27	120.34(8)
$C_1 = O_1 = N_1$	113.38 (0)	N4-C22-C23	110.77(8)
$C^{2} = 04$ NII	114.39 (0)	$C_2/-C_{22}-C_{23}$	120.09 (8)
C8 = O5 = N11	114.08 (6)	C_{24} C_{23} C_{22}	119.72 (8)
$C_{14} = O_{\delta} = N_{11}$	114.13 (0)	$C_{24} = C_{23} = H_{23}$	121.5 (9)
$C_2 = N_1 = C_0$	122.34 (8)	C22—C23—H23	118.8 (9)
C2—N1—N11	118.90 (6)	C23—C24—C25	120.38 (9)
C6—N1—N1	118.75 (6)	C23—C24—H24	119.2 (10)
C9—N2—C13	121.37 (8)	C25—C24—H24	120.4 (10)
C9—N2—Ni1	118.02 (6)	C26—C25—C24	120.59 (9)
C13—N2—Ni1	120.08 (6)	C26—C25—H25	120.0 (9)

O2—C1—O1	126.47 (9)	С24—С25—Н25	119.4 (9)
O2—C1—C2	118.90 (8)	C25—C26—C27	120.51 (8)
O1—C1—C2	114.61 (8)	С25—С26—Н26	119.9 (9)
N1—C2—C3	120.31 (8)	С27—С26—Н26	119.6 (9)
N1—C2—C1	112.49 (8)	C22—C27—C26	118.10 (8)
C3—C2—C1	127.18 (8)	C22—C27—C15	119.12 (8)
C2—C3—C4	118.28 (9)	C26—C27—C15	122.79 (8)
С2—С3—Н3	120.8 (9)	C28—N5—H5B	119.4 (10)
С4—С3—Н3	120.9 (9)	C28—N5—H5A	121.4 (11)
C5—C4—C3	120.26 (9)	H5B—N5—H5A	117.9 (15)
C5—C4—H4	119.9 (9)	C_{35} —N6—C34	122.20 (8)
C3—C4—H4	119.8 (9)	C35—N6—H6A	118.9 (12)
C6-C5-C4	118 08 (9)	C34—N6—H6A	117.8(12)
С6—С5—Н5	119.2 (9)	N5-C28-C29	121.91 (8)
C4—C5—H5	122 7 (9)	N5-C28-C40	119 80 (8)
N1-C6-C5	120.68 (8)	$C_{29} - C_{28} - C_{40}$	118 29 (8)
N1-C6-C7	112 46 (8)	C_{34} C_{29} C_{30}	118 18 (8)
C_{5}	126.86 (8)	C_{34} C_{29} C_{30} C_{28}	118 75 (8)
03-07-04	125.33(9)	C_{30} C_{29} C_{20}	123.06(8)
03-C7-C6	118 52 (8)	C_{31} C_{30} C_{29} C_{20}	120.68 (9)
04 - C7 - C6	115 76 (8)	$C_{31} = C_{30} = H_{30}$	120.00(9)
04 - 07 - 00	127 62 (9)	C_{29} C_{30} H_{30}	120.2(9)
06-C8-C9	127.02(9) 117.00(8)	C_{2}^{30} C_{30}^{31} C_{32}^{32}	120.2(9) 120.25(9)
05 $C8$ $C9$	117.00 (8)	$C_{30} = C_{31} = C_{32}$	120.23(9)
$N_2 = C_9 = C_10$	121 18 (8)	$C_{30} = C_{31} = H_{31}$	120.4(9)
$N_2 = C_9 = C_{10}$	121.10(0) 113.61(8)	$C_{32} = C_{31} = 1151$	119.3(9) 120.72(9)
112 - 03 - 08	115.01 (8)	$C_{33} = C_{32} = C_{31}$	120.72(9)
$C_{10} = C_{20} = C_{30}$	123.21(6) 118.21(8)	$C_{33} = C_{32} = H_{32}$	119.3(9)
C_{0} C_{10} H_{10}	118.31(6)	$C_{31} = C_{32} = C_{34}$	120.0(9)
C_{11}	110.0(9)	$C_{32} = C_{33} = C_{34}$	119.39 (9)
	122.9 (9)	С32—С33—П33	121.2(9)
C10 - C11 - C12	119.85 (8)	С34—С35—П55	119.2(9)
	120.2 (9)	No-C34-C33	118.07(8)
	120.0 (9)	$N_0 = C_3 4 = C_2 9$	120.76 (8)
C13 - C12 - C11	118.26 (8)	$C_{33} - C_{34} - C_{29}$	120.56 (9)
C13—C12—H12	121.7 (9)	$N_{0} = C_{35} = C_{40}$	120.56 (8)
CII—CI2—HI2	120.0 (9)	$N_{0} - C_{35} - C_{36}$	118.90 (8)
N2-C13-C12	121.04 (8)	C40 - C35 - C36	120.52 (8)
N2—C13—C14	112.51 (7)	$C_{37} - C_{36} - C_{35}$	119.41 (9)
C12 - C13 - C14	126.41 (8)	$C_{3}/-C_{3}6-H_{3}6$	121.7 (10)
0/	125.99 (9)	C35—C36—H36	118.9 (10)
07	118.26 (8)	$C_{36} - C_{37} - C_{38}$	120.74 (9)
08—C14—C13	115.75 (8)	C36—C37—H37	120.9 (9)
C15—N3—H3A	121.6 (12)	C38—C37—H37	118.3 (9)
C15—N3—H3B	121.1 (11)	C39—C38—C37	120.27 (9)
H3A—N3—H3B	117.2 (15)	C39—C38—H38	119.4 (9)
C22—N4—C21	122.33 (8)	С37—С38—Н38	120.3 (9)
C22—N4—H4A	117.4 (11)	C38—C39—C40	120.57 (9)
C21—N4—H4A	120.0 (11)	С38—С39—Н39	118.2 (8)

N3—C15—C27	120.41 (8)	С40—С39—Н39	121.1 (8)
N3—C15—C16	121.15 (8)	C35—C40—C39	118.39 (8)
C27—C15—C16	118.44 (8)	C35—C40—C28	119.18 (8)
C21—C16—C17	118.21 (8)	C39—C40—C28	122.30 (8)
C21—C16—C15	119.03 (8)	H1A—O1W—H1B	104.2 (17)
C17—C16—C15	122.73 (8)	H2A—O2W—H2B	105.1 (18)
C18—C17—C16	120.87 (9)	H3C—O3W—H3D	108.3 (17)
N1—Ni1—O1—C1	-3.81 (7)	C9—N2—C13—C14	178.01 (8)
N2—Ni1—O1—C1	173.57 (7)	Ni1—N2—C13—C14	6.49 (10)
O4—Ni1—O1—C1	-10.03 (12)	C11—C12—C13—N2	0.10(13)
O5—Ni1—O1—C1	-107.47 (7)	C11—C12—C13—C14	-177.60 (8)
O8—Ni1—O1—C1	96.69 (7)	Ni1-08-C14-07	-172.58 (7)
N1—Ni1—O4—C7	-1.21 (7)	Ni1-08-C14-C13	7.53 (10)
N2—Ni1—O4—C7	-178.46 (7)	N2-C13-C14-O7	170.84 (8)
O1—Ni1—O4—C7	5.00 (12)	C12—C13—C14—O7	-11.29 (14)
O5—Ni1—O4—C7	103.41 (7)	N2-C13-C14-O8	-9.27 (11)
O8—Ni1—O4—C7	-101.19 (7)	C12—C13—C14—O8	168.60 (9)
N1—Ni1—O5—C8	170.05 (6)	N3-C15-C16-C21	-177.27 (9)
N2—Ni1—O5—C8	-4.26 (6)	C27—C15—C16—C21	2.02 (13)
O1—Ni1—O5—C8	-110.90 (6)	N3-C15-C16-C17	0.48 (14)
O4—Ni1—O5—C8	92.18 (6)	C27—C15—C16—C17	179.76 (9)
O8—Ni1—O5—C8	-7.38 (11)	C21—C16—C17—C18	0.23 (14)
N1-Ni1-08-C14	-177.64 (6)	C15—C16—C17—C18	-177.54 (9)
N2—Ni1—O8—C14	-3.33 (6)	C16—C17—C18—C19	-0.57 (16)
O1—Ni1—O8—C14	103.77 (7)	C17—C18—C19—C20	0.39 (16)
O4—Ni1—O8—C14	-98.56 (7)	C18—C19—C20—C21	0.13 (15)
O5—Ni1—O8—C14	-0.19 (11)	C22—N4—C21—C16	0.55 (13)
O1—Ni1—N1—C2	3.91 (7)	C22—N4—C21—C20	-179.16 (8)
O4—Ni1—N1—C2	-178.59 (7)	C17—C16—C21—N4	-179.41 (8)
O5—Ni1—N1—C2	95.16 (7)	C15-C16-C21-N4	-1.56 (13)
O8—Ni1—N1—C2	-85.94 (7)	C17—C16—C21—C20	0.30 (13)
O1—Ni1—N1—C6	-177.21 (7)	C15—C16—C21—C20	178.15 (8)
O4—Ni1—N1—C6	0.29 (7)	C19—C20—C21—N4	179.24 (9)
O5—Ni1—N1—C6	-85.96 (7)	C19—C20—C21—C16	-0.48 (14)
O8—Ni1—N1—C6	92.93 (7)	C21—N4—C22—C27	-0.01 (13)
O1—Ni1—N2—C9	97.94 (7)	C21—N4—C22—C23	-179.65 (8)
O4—Ni1—N2—C9	-80.63 (7)	N4—C22—C23—C24	-179.61 (8)
O5—Ni1—N2—C9	7.33 (6)	C27—C22—C23—C24	0.74 (13)
O8—Ni1—N2—C9	-174.02 (7)	C22—C23—C24—C25	-0.06 (14)
O1—Ni1—N2—C13	-90.26 (7)	C23—C24—C25—C26	-0.96 (14)
O4—Ni1—N2—C13	91.17 (7)	C24—C25—C26—C27	1.28 (14)
O5—Ni1—N2—C13	179.13 (7)	N4—C22—C27—C26	179.94 (8)
O8—Ni1—N2—C13	-2.22 (6)	C23—C22—C27—C26	-0.42 (13)
Ni1—O1—C1—O2	-178.27 (8)	N4—C22—C27—C15	0.51 (13)
Ni1—O1—C1—C2	3.09 (10)	C23—C22—C27—C15	-179.85 (8)
C6—N1—C2—C3	-0.99 (14)	C25—C26—C27—C22	-0.60 (13)
Ni1—N1—C2—C3	177.85 (7)	C25—C26—C27—C15	178.82 (9)

C6—N1—C2—C1	177.73 (8)	N3—C15—C27—C22	177.79 (8)
Ni1—N1—C2—C1	-3.44 (10)	C16—C15—C27—C22	-1.50 (12)
O2—C1—C2—N1	-178.73 (9)	N3—C15—C27—C26	-1.62 (14)
O1—C1—C2—N1	0.02 (12)	C16—C15—C27—C26	179.09 (8)
O2—C1—C2—C3	-0.13 (15)	N5-C28-C29-C34	176.98 (8)
O1—C1—C2—C3	178.62 (9)	C40-C28-C29-C34	-4.17 (12)
N1—C2—C3—C4	1.59 (15)	N5-C28-C29-C30	-2.62 (14)
C1—C2—C3—C4	-176.92 (9)	C40—C28—C29—C30	176.22 (8)
C2—C3—C4—C5	-0.51 (15)	C34—C29—C30—C31	1.09 (13)
C3—C4—C5—C6	-1.13 (15)	C28—C29—C30—C31	-179.30 (9)
C2—N1—C6—C5	-0.74 (14)	C29—C30—C31—C32	-0.67 (14)
Ni1—N1—C6—C5	-179.58 (7)	C30—C31—C32—C33	-0.61 (14)
C2—N1—C6—C7	179.35 (8)	C31—C32—C33—C34	1.41 (14)
Ni1—N1—C6—C7	0.52 (10)	C35—N6—C34—C33	-176.15 (8)
C4—C5—C6—N1	1.78 (14)	C35—N6—C34—C29	4.00 (13)
C4—C5—C6—C7	-178.33 (9)	C32—C33—C34—N6	179.19 (8)
Ni1—O4—C7—O3	-178.14 (8)	C32—C33—C34—C29	-0.96 (13)
Ni1-04-C7-C6	1.82 (10)	C30—C29—C34—N6	179.57 (8)
N1—C6—C7—O3	178.38 (8)	C28—C29—C34—N6	-0.06 (13)
C5—C6—C7—O3	-1.52 (14)	C30—C29—C34—C33	-0.28 (13)
N1—C6—C7—O4	-1.58 (12)	C28—C29—C34—C33	-179.91 (8)
C5—C6—C7—O4	178.52 (9)	C34—N6—C35—C40	-3.45 (13)
Ni1	179.89 (8)	C34—N6—C35—C36	175.03 (8)
Ni1—O5—C8—C9	0.92 (10)	N6-C35-C36-C37	-176.16 (9)
C13—N2—C9—C10	0.07 (13)	C40—C35—C36—C37	2.32 (14)
Ni1—N2—C9—C10	171.76 (7)	C35—C36—C37—C38	0.56 (15)
C13—N2—C9—C8	179.37 (8)	C36—C37—C38—C39	-2.15 (15)
Ni1—N2—C9—C8	-8.94 (10)	C37—C38—C39—C40	0.84 (15)
O6—C8—C9—N2	-174.13 (8)	N6-C35-C40-C39	174.90 (8)
O5—C8—C9—N2	4.96 (12)	C36—C35—C40—C39	-3.55 (13)
O6—C8—C9—C10	5.13 (14)	N6-C35-C40-C28	-1.02 (13)
O5—C8—C9—C10	-175.78 (9)	C36—C35—C40—C28	-179.47 (8)
N2—C9—C10—C11	-0.28 (13)	C38—C39—C40—C35	1.97 (13)
C8—C9—C10—C11	-179.49 (8)	C38—C39—C40—C28	177.75 (9)
C9—C10—C11—C12	0.39 (14)	N5-C28-C40-C35	-176.42 (8)
C10-C11-C12-C13	-0.31 (13)	C29—C28—C40—C35	4.71 (12)
C9—N2—C13—C12	0.02 (13)	N5-C28-C40-C39	7.83 (13)
Ni1—N2—C13—C12	-171.51 (7)	C29—C28—C40—C39	-171.04 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N3—H3 <i>A</i> ···O2 <i>W</i> ⁱ	0.873 (18)	2.053 (18)	2.8793 (12)	157.6 (16)
N3—H3 <i>B</i> ···O7 ⁱⁱ	0.878 (17)	2.109 (17)	2.9337 (11)	156.1 (15)
N4—H4 <i>A</i> …O6	0.884 (17)	1.838 (17)	2.7214 (11)	178.1 (16)
N5—H5A···O3 ⁱⁱⁱ	0.894 (17)	1.925 (17)	2.7945 (11)	163.9 (16)
N5—H5 <i>B</i> ···O5	0.889 (17)	2.046 (17)	2.9096 (11)	163.6 (15)
N6—H6 <i>A</i> ···O3 <i>W</i>	0.836 (18)	1.863 (18)	2.6903 (11)	170.3 (18)

O1W—H1 A ···O7 O1W—H1 B ···O7	0.83 (2)	1.99 (2) 1 955 (19)	2.8138 (11)	171 (2) 178 7 (17)
$O1'' = H1B^{-}O7^{-}$ $O2W = H2A \cdots O8^{v}$	0.813 (19)	2.067 (19)	2.8717 (11)	170.1 (17)
O2 <i>W</i> —H2 <i>B</i> ···O2	0.79 (2)	2.02 (2)	2.8033 (11)	177 (2)
O3 <i>W</i> —H3 <i>C</i> ···O3 ^{vi}	0.79 (2)	1.97 (2)	2.7595 (11)	169.8 (19)
O3 <i>W</i> —H3 <i>D</i> ···O1 <i>W</i> ^{vii}	0.856 (19)	1.879 (19)	2.7328 (11)	175.4 (17)
C30—H30···O3 ⁱⁱⁱ	0.931 (16)	2.437 (16)	3.3386 (12)	163 (14)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*+1, *y*, *z*+1; (iii) -*x*+1, -*y*, -*z*; (iv) -*x*, -*y*+1, -*z*; (v) -*x*, -*y*, -*z*; (vi) *x*, *y*, *z*+1; (vii) -*x*+1, -*y*+1, -*z*+1.