metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hexakis(dimethylammonium) di- μ_6 oxido-tetra- μ_3 -oxido-tetradeca- μ_2 -oxidooctaoxidodecavanadate(V) monohydrate

Sulian Wang, Liping Lu,* Sisi Feng and Miaoli Zhu*

Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China

Correspondence e-mail: luliping@sxu.edu.cn, miaoli@sxu.edu.cn

Received 27 April 2010; accepted 5 May 2010

Key indicators: single-crystal X-ray study; T = 203 K; mean $\sigma(N-C) = 0.022$ Å; R factor = 0.096; wR factor = 0.177; data-to-parameter ratio = 11.7.

In the title compound, $(C_2H_8N)_6[V_{10}O_{28}] \cdot H_2O$, the $[V_{10}O_{28}]^{6-1}$ polymetalate anion has crystallographic mirror symmetry with six V atoms and 12 O atoms lying on the mirror plane. Each of the V^V atoms adopts a distorted octahedral geometry. Eight terminal O atoms are bonded to V^V atoms with double bonds and the others act as bridging atoms. In the crystal structure, a network of $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds helps to establish the packing.

Related literature

For the biological activity of oxovanadates and vanadium complexes, see: Pacigová et al. (2007); Yuan, Lu, Gao et al. (2009). For a related structure, see: Yuan, Lu, Zhu et al. (2009).

Experimental

Crystal data $(C_2H_8N)_6[V_{10}O_{28}]\cdot H_2O$ $M_r = 1251.98$ Orthorhombic, Cmca a = 13.6149 (18) Åb = 18.629 (3) Å c = 30.235 (2) Å

 $V = 7668.5 (16) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 2.42 \text{ mm}^{-1}$ T = 203 K0.35 \times 0.11 \times 0.05 mm

Data collection

Bruker SMART 1K CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.484, T_{\max} = 0.888$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.096$	6 restraints
$wR(F^2) = 0.177$	H-atom parameters constrained
S = 1.26	$\Delta \rho_{\rm max} = 1.70 \text{ e } \text{\AA}^{-3}$
3464 reflections	$\Delta \rho_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$
296 parameters	

18064 measured reflections

 $R_{\rm int} = 0.078$

3464 independent reflections

2951 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O21 - H21B \cdot \cdot \cdot O10^{i}$	0.85	2.30	2.950 (19)	133
$O21 - H21A \cdots O16$	0.85	2.26	3.101 (18)	171
$N4-H4D\cdots O5^{ii}$	0.91	1.77	2.673 (8)	170
$N4 - H4E \cdots O5$	0.91	1.77	2.673 (8)	170
$N2 - H2D \cdots O6$	0.91	1.88	2.759 (10)	162
$N2-H2E\cdots O6^{iii}$	0.91	2.22	2.986 (10)	141
$N2-H2E\cdots O7^{iii}$	0.91	2.05	2.812 (9)	140
$N1-H1A\cdots O8^{iv}$	0.91	1.86	2.732 (10)	161
$N1 - H1B \cdot \cdot \cdot O3$	0.91	1.79	2.674 (10)	164
			. /	

Symmetry codes: (i) $x, y = \frac{1}{2}, -z = \frac{3}{2}$; (ii) $-x = \frac{3}{2}, y, -z = \frac{3}{2}$; (iii) $-x = \frac{3}{2}, -y = \frac{3}{2}, -z = 2$; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, z$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

MZ acknowledges the National Natural Science Foundation of China (No. 20471033) and the Natural Science Foundation of Shanxi Province (No. 2010011011-2), LL thanks the Overseas Returned Scholar Foundation of Shanxi Province in 2008 and SF thanks the Natural Science Foundation for Young Scientists of Shanxi Province (No. 2010021010-1) and the Doctoral Startup Foundation of Shanxi University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2304).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Pacigová, S., Rakovský, E., Sivák, M. & Žák, Z. (2007). Acta Cryst. C63, m419m422

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yuan, C.-X., Lu, L.-P., Gao, X.-L., Wu, Y.-B., Guo, M.-L., Li, Y., Fu, X.-Q. & Zhu, M.-L. (2009). J. Biol. Inorg. Chem. 14, 841-851.

Yuan, C., Lu, L., Zhu, M., Ma, Q. & Wu, Y. (2009). Acta Cryst. E65, m267m268.

supporting information

Acta Cryst. (2010). E66, m632 [https://doi.org/10.1107/S1600536810016442]

Hexakis(dimethylammonium) di- μ_6 -oxido-tetra- μ_3 -oxido-tetradeca- μ_2 -oxido-octaoxidodecavanadate(V) monohydrate

Sulian Wang, Liping Lu, Sisi Feng and Miaoli Zhu

S1. Comment

Oxovanadates(V) and peroxovanadium compounds are of great interest in biochemistry and medicine because of their diverse biological activites (Pacigová *et al.*, 2007). Of them, decavanadates have shown high affinity for selected kinases and phosphorylase and have been used to facilitate crystallization of proteins. Vanadium complexes can inhibit effectively activity of protein tyrosine phosphatase (Yuan, Lu, Gao *et al.*, 2009). In our previous work, $(C_5H_7N_2)_6[V_{10}O_{28}]$.2H₂O was reported (Yuan, Lu, Zhu *et al.*, 2009). Herein, we report the structure of the title compound.

The title compound consists of a $[V_{10}O_{28}]^{6-}$ polyanion, six dimethylaminium cations and one water molecule (Fig. 1). The polyanion is constructed by ten edge-sharing VO₆ octahedra. Six V atoms and twelve O atoms lie on the mirror plane at x = 1/2. Different coordination O atoms existing in the anion result in different V—O bond distances. The V—O(terminal) double bond distances range from 1.551 (10) to 1.576 (6) Å, shorter than those in $(C_5H_7N_2)_6[V_{10}O_{28}].2H_2O$ (Yuan, Lu, Zhu *et al.*, 2009). The V—O(μ_3) single bond distances range from 1.638 (10) to 2.066 (10) Å. The V—O(μ_2) single bond distances range from 1.897 (6) to 1.991 (6)Å. The V—O (μ_6) single bond distances are more longer [2.137 (8) to 2.275 (9)Å].

A three-dimensional supramolecular hydrogen-bonding network is observed in the crystal structure and details are given in Table 1 and Fig. 2.

S2. Experimental

A mixture containing 1.5 mmol each of $VO(acac)_2$ (acac = acetylacetone), 1,10-phenanthroline and 2-(2-hydroxy-lphenyl)benzimidazole in methanol (24 ml) was refluxed for 30 min. Light green precipitate was filtrated and collected. The solid was dissolved in dimethylformamide. The solvent was slowly evaporated for one month and yellow crystals of the title compound were obtained.

S3. Refinement

The highest residual electron density was found 0.48 and 0.72 Å from H3D and N3 and the deepest hole 1.02 Å from O15. H atoms except those of water were included in calculated positions and treated as riding atoms, with C—H = 0.97 and N—H = 0.91 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C,N)$. H atoms attached to water molecule were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and $U_{iso}(H) = U_{eq}(O)$.

Figure 1

The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 3/2-x, y, 3/2-z; (ii) 1-x, y, z.]

Figure 2

The crystal packing in the title compound. Hydrogen bonds are indicated by dashed lines. [Red, O; green, V; blue, N; gray, C and green open circle, H.]

 $Hexakis (dimethylammonium) di-\mu_6-oxido-tetra-\mu_3-oxido- tetradeca-\mu_2-oxido-octaoxidodecavanadate (V) monohydrate$

F(000) = 5008

 $\theta = 2.3 - 22.0^{\circ}$ $\mu = 2.42 \text{ mm}^{-1}$

Needle, yellow

 $0.35 \times 0.11 \times 0.05 \text{ mm}$

T = 203 K

 $D_{\rm x} = 2.169 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1649 reflections

Crystal data

 $(C_2H_8N)_6[V_{10}O_{28}]$ ·H₂O $M_r = 1251.98$ Orthorhombic, Cmca Hall symbol: -C 2bc 2 a = 13.6149 (18) Å b = 18.629 (3) Å c = 30.235 (2) Å V = 7668.5 (16) Å³ Z = 8

Data collection

Bruker SMART 1K CCD	18064 measured reflections
diffractometer	3464 independent reflections
Radiation source: fine-focus sealed tube	2951 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.078$
φ and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -15 \rightarrow 16$
(SADABS; Sheldrick, 1996)	$k = -22 \rightarrow 22$
$T_{\min} = 0.484, \ T_{\max} = 0.888$	$l = -35 \rightarrow 28$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.096$	Hydrogen site location: inferred from
$wR(F^2) = 0.177$	neighbouring sites
S = 1.26	H-atom parameters constrained
3464 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0331P)^2 + 151.3848P]$
296 parameters	where $P = (F_o^2 + 2F_c^2)/3$
6 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.70 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.83 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Refinement. The structure was phased by direct methods. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F^2 . The Ueq of N3 is large. It is resulted from the severe systematic disorder of N3 atom, which is located at crystallographic mirror symmetry. ISOR instruction was employed to have ellipsoids of site N3 be restraint to more appropriate values. So, 6 restraints were used for anisotropic refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
V1	0.66109 (11)	0.75463 (8)	0.90694 (5)	0.0247 (4)	
V2	0.66020 (10)	0.61321 (8)	0.86058 (5)	0.0238 (4)	
V3	0.5000	0.86507 (12)	0.89222 (8)	0.0312 (6)	
V4	0.5000	0.72904 (12)	0.83754 (7)	0.0236 (5)	
V5	0.5000	0.58253 (13)	0.79179 (7)	0.0263 (5)	
V6	0.5000	0.78222 (13)	0.97603 (8)	0.0290 (6)	
V7	0.5000	0.63836 (11)	0.92977 (7)	0.0197 (5)	

V8	0.5000	0.50136 (12)	0.87744 (8)	0.0295 (6)	
01	0.7763 (4)	0.7541 (4)	0.9081 (2)	0.0376 (17)	
02	0.7759 (4)	0.6129 (4)	0.8602 (2)	0.0385 (17)	
03	0.6330 (5)	0.8441 (3)	0.8900 (2)	0.0338 (17)	
04	0.6366 (4)	0.7163 (3)	0.8497 (2)	0.0245 (14)	
05	0.6308 (4)	0.5943 (3)	0.8034 (2)	0.0266 (14)	
06	0.6325 (4)	0.7704 (3)	0.9642 (2)	0.0269 (15)	
07	0.6361 (4)	0.6511 (3)	0.91878 (19)	0.0218 (13)	
08	0.6329 (4)	0.5241 (3)	0.8785 (2)	0.0273 (14)	
09	0.5000	0.9456 (5)	0.8775(4)	0.047 (3)	
010	0.5000	0.8170(5)	0.8307(3)	0.035(2)	
011	0.5000	0.6170(5)	0.0507(3) 0.7888(3)	0.032(2) 0.031(2)	
012	0.5000	0.5557 (6)	0.7600(3) 0.7412(3)	0.031(2) 0.049(3)	
012	0.5000	0.3637(6) 0.8687(5)	0.9508(3)	0.049(3) 0.034(2)	
013	0.5000	0.0007(3)	0.9052(3)	0.034(2) 0.0171(17)	
015	0.5000	0.7400(4) 0.6211(4)	0.9032(3)	0.0171(17) 0.0220(10)	
015	0.5000	0.0211(4) 0.4058(5)	0.8052(5)	0.0229(19)	
010	0.5000	0.4938(3)	1.0262(2)	0.031(2)	
01/	0.5000	0.8004(3)	1.0203(3)	0.041(3)	
018	0.5000	0.07/1(5)	0.9790 (3)	0.027(2)	
019	0.5000	0.5509 (5)	0.9370(3)	0.030(2)	
020	0.5000	0.4213 (5)	0.8915 (4)	0.048 (3)	
021	0.5000	0.3555 (9)	0.7640 (5)	0.119 (6)	
H2IA	0.5000	0.3911	0.7816	0.119*	
H21B	0.5000	0.3717	0.7377	0.119*	
N1	0.7294 (6)	0.9384 (4)	0.8394 (3)	0.037 (2)	
H1A	0.7635	0.9719	0.8551	0.044*	
H1B	0.6913	0.9134	0.8588	0.044*	
C1	0.6667 (9)	0.9744 (7)	0.8076 (4)	0.058 (3)	
H1C	0.7061	1.0065	0.7895	0.087*	
H1D	0.6170	1.0019	0.8231	0.087*	
H1E	0.6353	0.9390	0.7888	0.087*	
C2	0.7972 (10)	0.8902 (7)	0.8190 (5)	0.066 (4)	
H2A	0.7615	0.8509	0.8054	0.099*	
H2B	0.8419	0.8714	0.8411	0.099*	
H2C	0.8343	0.9156	0.7965	0.099*	
N2	0.7745 (6)	0.8610 (4)	0.9977 (3)	0.040 (2)	
H2D	0.7384	0.8266	0.9839	0.048*	
H2E	0.8145	0.8386	1.0175	0.048*	
C3	0.8341 (10)	0.8966 (7)	0.9655 (4)	0.063 (4)	
H3A	0.7924	0.9230	0.9452	0.094*	
H3B	0.8720	0.8613	0.9492	0.094*	
H3C	0.8784	0.9296	0.9803	0.094*	
C4	0.7104 (10)	0.9067 (7)	1.0209 (4)	0.061 (4)	
H4A	0.7484	0.9405	1.0383	0.092*	
H4B	0.6691	0.8784	1.0403	0.092*	
H4C	0.6697	0.9327	1.0000	0.092*	
N3	0.0000	0.6868 (16)	0.8841 (10)	0.177(12)	
H3D	-0.0530	0.6904	0.9023	0.177*	0.50
					0.00

H3E	0.0530	0.6904	0.9023	0.177*	0.50	
C5	0.0000	0.7485 (9)	0.8640 (6)	0.052 (4)		
H5A	0.0665	0.7669	0.8626	0.052*	0.50	
H5B	-0.0412	0.7821	0.8800	0.052*	0.50	
H5C	-0.0254	0.7422	0.8343	0.052*	0.50	
C6	0.0000	0.6194 (9)	0.8737 (6)	0.060 (5)		
H6A	-0.0588	0.5967	0.8852	0.060*	0.50	
H6B	0.0576	0.5963	0.8861	0.060*	0.50	
H6C	0.0000	0.6147	0.8417	0.060*		
N4	0.7500	0.6685 (6)	0.7500	0.040 (3)		
H4D	0.7849	0.6396	0.7315	0.047*	0.50	
H4E	0.7151	0.6396	0.7685	0.047*	0.50	
C7	0.8174 (10)	0.7099 (7)	0.7757 (4)	0.066 (4)		
H7A	0.8489	0.7453	0.7569	0.099*		
H7B	0.8668	0.6785	0.7883	0.099*		
H7C	0.7822	0.7341	0.7993	0.099*		

Atomic displacement parameters (\mathring{A}^2)

	<i>U</i> ¹¹	U ²²	U ³³	U^{12}	U ¹³	<i>U</i> ²³
V1	0.0161 (8)	0.0257 (8)	0.0322 (9)	-0.0038 (7)	-0.0006 (7)	-0.0023 (7)
V2	0.0152 (7)	0.0285 (8)	0.0277 (9)	0.0032 (6)	-0.0005 (7)	-0.0034 (7)
V3	0.0291 (13)	0.0183 (12)	0.0462 (16)	0.000	0.000	0.0019 (11)
V4	0.0233 (12)	0.0268 (12)	0.0207 (12)	0.000	0.000	0.0065 (10)
V5	0.0235 (12)	0.0358 (13)	0.0198 (12)	0.000	0.000	-0.0055 (10)
V6	0.0265 (12)	0.0349 (13)	0.0255 (13)	0.000	0.000	-0.0098 (11)
V7	0.0175 (10)	0.0250 (11)	0.0167 (11)	0.000	0.000	0.0037 (9)
V8	0.0340 (13)	0.0195 (11)	0.0351 (14)	0.000	0.000	0.0020 (10)
01	0.018 (3)	0.044 (4)	0.051 (5)	-0.008(3)	0.001 (3)	-0.006 (4)
O2	0.017 (3)	0.057 (5)	0.041 (4)	0.006 (3)	-0.003 (3)	-0.002 (4)
O3	0.031 (4)	0.027 (3)	0.044 (4)	-0.014 (3)	-0.001 (3)	0.004 (3)
O4	0.020 (3)	0.026 (3)	0.027 (3)	0.000 (3)	-0.001 (3)	0.003 (3)
O5	0.025 (3)	0.025 (3)	0.030 (4)	-0.003(3)	0.007 (3)	-0.006 (3)
O6	0.020 (3)	0.033 (4)	0.028 (3)	-0.006 (3)	-0.003 (3)	-0.009 (3)
O7	0.020 (3)	0.024 (3)	0.021 (3)	0.000 (3)	-0.008 (3)	-0.004 (3)
08	0.023 (3)	0.023 (3)	0.035 (4)	0.011 (3)	-0.002 (3)	0.000 (3)
09	0.042 (6)	0.035 (6)	0.063 (8)	0.000	0.000	0.001 (5)
O10	0.037 (6)	0.032 (5)	0.035 (6)	0.000	0.000	0.009 (4)
O11	0.021 (5)	0.035 (5)	0.035 (6)	0.000	0.000	0.010 (4)
O12	0.052 (7)	0.071 (8)	0.023 (6)	0.000	0.000	-0.014 (5)
O13	0.036 (5)	0.030 (5)	0.038 (6)	0.000	0.000	-0.012 (5)
O14	0.016 (4)	0.012 (4)	0.023 (5)	0.000	0.000	0.004 (4)
O15	0.019 (4)	0.028 (5)	0.022 (5)	0.000	0.000	0.006 (4)
O16	0.035 (5)	0.034 (5)	0.024 (5)	0.000	0.000	-0.003 (4)
O17	0.039 (6)	0.050 (6)	0.034 (6)	0.000	0.000	-0.018 (5)
O18	0.023 (5)	0.041 (5)	0.017 (5)	0.000	0.000	-0.004 (4)
O19	0.033 (5)	0.025 (5)	0.033 (6)	0.000	0.000	0.008 (4)
O20	0.053 (7)	0.029 (6)	0.062 (8)	0.000	0.000	-0.004 (5)

supporting information

O21	0.172 (18)	0.101 (13)	0.084 (13)	0.000	0.000	-0.009 (10)
N1	0.045 (5)	0.030 (4)	0.036 (5)	-0.017 (4)	-0.001 (4)	-0.004(4)
C1	0.066 (8)	0.060 (8)	0.048 (7)	-0.017 (7)	-0.014 (7)	-0.009 (6)
C2	0.069 (9)	0.055 (8)	0.074 (10)	0.017 (7)	0.000(7)	-0.015 (7)
N2	0.047 (5)	0.035 (5)	0.039 (5)	-0.013 (4)	-0.029 (5)	0.011 (4)
C3	0.080 (10)	0.059 (8)	0.049 (8)	-0.018 (7)	-0.014 (7)	0.017 (6)
C4	0.064 (9)	0.052 (7)	0.068 (9)	-0.013 (7)	-0.022 (7)	-0.008 (7)
N3	0.207 (15)	0.163 (14)	0.160 (15)	0.000	0.000	-0.003 (10)
C5	0.036 (9)	0.045 (10)	0.075 (13)	0.000	0.000	0.003 (10)
C6	0.057 (11)	0.045 (10)	0.078 (14)	0.000	0.000	-0.042 (10)
N4	0.044 (7)	0.035 (7)	0.040 (7)	0.000	0.019 (6)	0.000
C7	0.068 (9)	0.065 (8)	0.064 (9)	-0.013 (7)	0.032 (7)	-0.031 (7)

Geometric parameters (Å, °)

V1-01	1.569 (6)	V8—015	2.272 (9)
V1—O3	1.784 (7)	O21—H21A	0.8500
V1—O6	1.799 (6)	O21—H21B	0.8500
V1—O4	1.902 (6)	N1—C2	1.428 (13)
V1—07	1.991 (6)	N1—C1	1.452 (14)
V1—014	2.200 (2)	N1—H1A	0.9100
V2—O2	1.576 (6)	N1—H1B	0.9100
V2—O8	1.785 (6)	C1—H1C	0.9700
V2—O5	1.810 (6)	C1—H1D	0.9700
V2—O7	1.924 (6)	C1—H1E	0.9700
V2—O4	1.975 (6)	C2—H2A	0.9700
V2—O15	2.188 (2)	C2—H2B	0.9700
V3—O9	1.565 (10)	C2—H2C	0.9700
V3—O13	1.771 (10)	N2—C4	1.406 (14)
V3—O3	1.854 (7)	N2—C3	1.431 (14)
V3—O10	2.066 (10)	N2—H2D	0.9100
V3—014	2.254 (8)	N2—H2E	0.9100
V4—O11	1.638 (10)	С3—НЗА	0.9700
V4—O10	1.651 (9)	C3—H3B	0.9700
V4—O4	1.910 (6)	С3—НЗС	0.9700
V4—O14	2.071 (8)	C4—H4A	0.9700
V4—O15	2.155 (8)	C4—H4B	0.9700
V5—O12	1.561 (10)	C4—H4C	0.9700
V5—O16	1.814 (9)	N3—C6	1.29 (3)
V5—O5	1.829 (6)	N3—C5	1.30 (3)
V5—011	2.015 (9)	N3—H3D	0.9100
V5—O15	2.275 (9)	N3—H3E	0.9100
V6—O17	1.556 (10)	C5—H5A	0.9700
V6—O13	1.782 (10)	C5—H5B	0.9700
V6—O6	1.852 (6)	C5—H5C	0.9700
V6—018	1.961 (9)	C6—H6A	0.9700
V6—O14	2.244 (8)	C6—H6B	0.9700
V7—O19	1.643 (9)	С6—Н6С	0.9700

supporting information

V7—O18	1.655 (8)	N4—C7 ⁱ	1.428 (13)
V7—O7	1.897 (6)	N4—C7	1.428 (13)
V7—O15	2.039 (9)	N4—H4D	0.9100
V7—O14	2.137 (8)	N4—H4E	0.9100
V8—O20	1.551 (10)	С7—Н7А	0.9700
V8-016	1 766 (9)	C7—H7B	0.9700
V8-08	1.858 (6)	C7—H7C	0.9700
V8_019	2.025(10)	C, II,C	0.9700
V0-017	2.025 (10)		
01 VI 03	103 1 (3)	O20 V8 O16	102 6 (5)
01 - V1 - 05	103.1(3) 101.2(2)	$020 - \sqrt{8} - 010$	102.0(3)
01 - 1 - 00	101.3(3)	$020 - \sqrt{8} - 08$	102.41(19)
03 - V1 - 00	94.4 (5)		91.8 (2)
01 - 1 - 04	101.1(3)	020—V8—08"	102.41 (19)
03-1-04	93.0 (3)	016	91.8 (2)
06-1-04	154.0 (3)	08-08-08	153.5 (4)
01	99.3 (3)	020—V8—019	101.2 (5)
O3—V1—O7	156.8 (3)	O16—V8—O19	156.2 (4)
06—V1—07	87.0 (3)	O8—V8—O19	83.1 (2)
O4—V1—O7	76.7 (2)	O8 ⁱⁱ —V8—O19	83.1 (2)
01—V1—014	175.5 (3)	O20—V8—O15	175.0 (5)
O3—V1—O14	81.3 (3)	O16—V8—O15	82.4 (4)
O6—V1—O14	79.5 (3)	O8—V8—O15	77.24 (19)
O4—V1—O14	77.1 (3)	O8 ⁱⁱ —V8—O15	77.24 (19)
O7—V1—O14	76.3 (3)	O19—V8—O15	73.8 (3)
O2—V2—O8	102.0 (3)	O20-V8-V2 ⁱⁱ	134.48 (5)
O2—V2—O5	102.3 (3)	O16—V8—V2 ⁱⁱ	82.7 (2)
O8—V2—O5	93.6 (3)	08—V8—V2 ⁱⁱ	122.8 (2)
O2—V2—O7	100.3 (3)	O8 ⁱⁱ —V8—V2 ⁱⁱ	32.15 (18)
08—V2—07	91.6 (3)	O19—V8—V2 ⁱⁱ	80.65 (18)
05—V2—07	155.2 (3)	O15—V8—V2 ⁱⁱ	45.55 (4)
02—V2—04	99.5 (3)	V1-03-V3	113.4 (3)
08-V2-04	157.0(3)	V1-04-V4	1074(3)
05-V2-04	897(3)	V1-04-V2	100.6(3)
07-V2-04	76.6 (2)	V4 - 04 - V2	100.0(3) 108.1(3)
0^{2} V2 04	176.0(2)	$V_{2}^{-05} V_{5}^{-10}$	114.9(3)
$02 - \sqrt{2} - 015$	81.0.(3)	$V_2 = 05 = V_5$	114.9(3)
05 V2 015	80.1 (3)	V7_07_V2	114.0(3) 106.3(3)
$03 - \sqrt{2} - 013$	30.1(3)	$\sqrt{-07}$	100.3(3)
$0/-\sqrt{2}-013$	70.8(3)	V = 07 = V1	108.7(3)
$04 - \sqrt{2} - 013$	11.2 (5)	$V_2 = 0^7 = V_1$	99.5 (5)
09-013	104.4 (5)	V2	114.2 (3)
$09 - \sqrt{3} - 03^{n}$	101.1 (2)	V4—010—V3	108.5 (5)
$013 - V3 - 03^{"}$	92.5 (2)	V4—011—V5	113.3 (5)
09—V3—03	101.1 (2)	V3-013-V6	113.2 (5)
013—V3—O3	92.5 (2)	V4—O14—V7	101.6 (3)
O3"—V3—O3	155.3 (4)	V4—O14—V1	92.0 (2)
O9—V3—O10	99.1 (5)	V7—O14—V1	93.49 (19)
O13—V3—O10	156.5 (4)	V4—O14—V1 ⁱⁱ	92.0 (2)
O3 ⁱⁱ —V3—O10	82.9 (2)	V7—O14—V1 ⁱⁱ	93.49 (19)

O3—V3—O10	82.9 (2)	V1-014-V1 ⁱⁱ	171.2 (4)
O9—V3—O14	173.5 (5)	V4—O14—V6	171.2 (4)
O13—V3—O14	82.1 (4)	V7—014—V6	87.2 (3)
O3 ⁱⁱ —V3—O14	78.4 (2)	V1—014—V6	87.5 (2)
03—V3—014	78.4 (2)	V1 ⁱⁱ —O14—V6	87.5 (2)
010-V3-014	74.4 (3)	V4-014-V3	88.7 (3)
$09 - V3 - V1^{ii}$	133.66 (5)	V7-014-V3	169.8(4)
013—V3—V1 ⁱⁱ	83 1 (2)	V1-014-V3	86.08 (19)
$O_{3i} V_{3} V_{1i}$	32.60(19)	$V1^{ii} - 014 - V3$	86.08 (19)
$O_3 V_3 V_1^{ii}$	1245(2)	V6_014_V3	82 5 (3)
$03 - \sqrt{3} - \sqrt{1}$	124.5(2)	V_{7} O_{15} V_{4}	102.0(3)
$010 - \sqrt{3} - \sqrt{1}$	46.22(4)	$\sqrt{-015}$ $\sqrt{2}$	102.0(4)
$014 - \sqrt{3} - \sqrt{1}$	40.22(4)	V = 015 = V2	92.0(2)
$011 - \sqrt{4} - 010$	108.7(3)	$V4 - 015 - V2^{-1}$	92.9 (2)
010 14 04	90.8 (2)	V = 015 = V2	92.6 (2)
$010 - \sqrt{4} - 04$	98.5 (2)	V4—015—V2	92.9 (2)
011	96.8 (2)	V2"-015-V2	1/1.3 (5)
010	98.5 (2)	V/015V8	88.1 (3)
$O4$ — $V4$ — $O4^{n}$	153.5 (4)	V4—O15—V8	169.8 (4)
011—V4—014	162.8 (4)	V2 ⁿ —O15—V8	86.6 (2)
O10—V4—O14	88.5 (4)	V2—O15—V8	86.6 (2)
O4—V4—O14	80.13 (19)	V7—O15—V5	170.7 (4)
O4 ⁱⁱ —V4—O14	80.13 (19)	V4—015—V5	87.3 (3)
O11—V4—O15	85.2 (4)	V2 ⁱⁱ —O15—V5	86.8 (2)
O10—V4—O15	166.1 (4)	V2—O15—V5	86.8 (2)
O4—V4—O15	79.34 (19)	V8—O15—V5	82.5 (3)
O4 ⁱⁱ —V4—O15	79.34 (19)	V8—O16—V5	113.7 (5)
O14—V4—O15	77.7 (3)	V7—O18—V6	113.2 (5)
O11—V4—V1 ⁱⁱ	133.00 (8)	V7—O19—V8	109.4 (5)
O10—V4—V1 ⁱⁱ	86.1 (2)	H21A—O21—H21B	108.0
O4	125.6 (2)	C2—N1—C1	112.5 (9)
O4 ⁱⁱ —V4—V1 ⁱⁱ	36.19 (19)	C2—N1—H1A	109.1
O14—V4—V1 ⁱⁱ	45.69 (4)	C1—N1—H1A	109.1
015—V4—V1 ⁱⁱ	84.21 (17)	C2—N1—H1B	109.1
012—V5—016	105.5 (5)	C1—N1—H1B	109.1
012—V5—05 ⁱⁱ	102.2 (2)	H1A—N1—H1B	107.8
016—V5—05 ⁱⁱ	91.1 (2)	N1—C1—H1C	109.5
012	102.2(2)	N1—C1—H1D	109.5
012 + 5 = 05	91 1 (2)	HIC-C1-HID	109.5
$05^{ii} - V5 - 05$	153 9 (4)	N1—C1—H1F	109.5
012 - V5 - 011	99.0 (5)	HIC-C1-HIF	109.5
016 V5 011	155 5 (4)	HID CI HIE	109.5
$010 - \sqrt{5} - 011$	133.3(4)	$\mathbf{M} = \mathbf{M} = $	109.5
05 V5 011	83.6 (2)	N1 C2 H2B	109.5
012 V5 015	(2) (2) (2) (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$012 - v_{3} - 013$	173.2(3)	$\frac{112}{112} - \frac{112}{112} - $	107.3
$010 - v_{J} = 013$	(3)	111 - 02 - 1120	109.3
$05 - v_{5} - 015$	(1,3)(2)	$\frac{112}{112} - \frac{112}{112} - $	109.5
03 - 15	77.3(2)	$\Pi 2D - U2 - \Pi 2U$	109.5
011-10-013	/4.2 (3)	U4-N2-U3	114.2 (10)

O12—V5—V2 ⁱⁱ	134.56 (5)	C4—N2—H2D	108.7
O16—V5—V2 ⁱⁱ	81.8 (2)	C3—N2—H2D	108.7
O5 ⁱⁱ —V5—V2 ⁱⁱ	32.34 (19)	C4—N2—H2E	108.7
O5—V5—V2 ⁱⁱ	122.7 (2)	C3—N2—H2E	108.7
O11—V5—V2 ⁱⁱ	81.0 (2)	H2D—N2—H2E	107.6
015—V5—V2 ⁱⁱ	45.40 (4)	N2—C3—H3A	109.5
017—V6—013	102.8 (5)	N2—C3—H3B	109.5
$017 - V6 - 06^{ii}$	102.4(2)	$H_3A - C_3 - H_3B$	109.5
$013 - V6 - 06^{ii}$	914(2)	N2—C3—H3C	109.5
017 - V6 - 06	1024(2)	$H_{3}A - C_{3} - H_{3}C_{3}$	109.5
013 - V6 - 06	91.4(2)	$H_{3}B_{3}C_{3}H_{3}C_{3}$	109.5
0.00000000000000000000000000000000000	$153 \ 8 \ (4)$	N2 - C4 - H4A	109.5
017 V6 018	100.0(+)	$N_2 = C_4 = H_4 R$	109.5
017 - 100 - 018	33.3(3)		109.5
015-V0-018	137.3(4)	N2 C4 H4C	109.5
00 - 10 - 018	83.7(2)	$N_2 - C_4 - H_4C$	109.5
00 - 0 - 018	03.7(2)	H4A - C4 - H4C	109.5
017 - 00 - 014	1/5.1(5)	H4B - C4 - H4C	109.5
013-06-014	82.1 (4)	C_{0} N3 C_{2}	138 (3)
06	//.30 (19)	C6-N3-H3D	102.6
06—V6—014	77.30 (19)	C5—N3—H3D	102.5
018-014	75.1 (3)	C6—N3—H3E	102.6
017—V6—V1 ⁿ	134.43 (4)	C5—N3—H3E	102.5
013—V6—V1 ⁿ	81.9 (2)	H3D—N3—H3E	105.0
$O6^{ii}$ —V6—V1 ⁱⁱ	32.18 (19)	N3—C5—H5A	109.5
06—V6—V1 ⁱⁱ	123.0 (2)	N3—C5—H5B	109.8
O18—V6—V1 ⁱⁱ	82.20 (18)	H5A—C5—H5B	109.5
O14—V6—V1 ⁱⁱ	45.67 (4)	N3—C5—H5C	109.1
O19—V7—O18	108.1 (5)	H5A—C5—H5C	109.5
O19—V7—O7 ⁱⁱ	98.49 (19)	H5B—C5—H5C	109.5
O18—V7—O7 ⁱⁱ	95.91 (19)	N3—C6—H6A	109.6
O19—V7—O7	98.49 (19)	N3—C6—H6B	109.6
O18—V7—O7	95.91 (19)	H6A—C6—H6B	109.5
O7 ⁱⁱ —V7—O7	155.1 (4)	N3—C6—H6C	109.3
O19—V7—O15	88.6 (4)	Н6А—С6—Н6С	108.6
O18—V7—O15	163.2 (4)	H6B—C6—H6C	110.3
O7 ⁱⁱ —V7—O15	81.19 (18)	C7 ⁱ —N4—C7	114.6 (14)
O7—V7—O15	81.19 (18)	C7 ⁱ —N4—H4D	108.6
O19—V7—O14	167.4 (4)	C7—N4—H4D	108.6
O18—V7—O14	84.5 (4)	C7 ⁱ —N4—H4E	108.6
O7 ⁱⁱ —V7—O14	79.73 (18)	C7—N4—H4E	108.6
O7—V7—O14	79.73 (18)	H4D—N4—H4E	107.6
O15—V7—O14	78.8 (3)	N4—C7—H7A	109.5
019—V7—V2 ⁱⁱ	86.5 (2)	N4—C7—H7B	109.5
018—V7—V2 ⁱⁱ	133.03 (8)	H7A—C7—H7B	109.5
$07^{ii} - V7 - V2^{ii}$	37 15 (17)	N4—C7—H7C	109.5
07—V7—V2 ⁱⁱ	126.58 (19)	H7A - C7 - H7C	109.5
015—V7—V2 ⁱⁱ	45 60 (4)	H7B-C7-H7C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84 63 (16)		109.5
$O_1 = V_1 = V_2$	01) 20.40		

O1—V1—O3—V3	-172.9 (4)	O3—V3—O13—V6	-77.9 (2)
O6—V1—O3—V3	-70.1 (4)	O11—V4—O14—V1	94.0 (2)
O4—V1—O3—V3	85.0 (4)	O10—V4—O14—V1	-86.0 (2)
O7—V1—O3—V3	22.6 (9)	O4—V4—O14—V1	12.8 (2)
O14—V1—O3—V3	8.6 (4)	O15—V4—O14—V1	94.0 (2)
O9—V3—O3—V1	178.2 (5)	O11—V4—O14—V1 ⁱⁱ	-94.0 (2)
O13—V3—O3—V1	73.0 (4)	O10-V4-O14-V1 ⁱⁱ	86.0 (2)
O3 ⁱⁱ —V3—O3—V1	-28.6 (13)	O4V4O14V1 ⁱⁱ	-175.1 (3)
O10—V3—O3—V1	-83.9 (4)	O15—V4—O14—V1 ⁱⁱ	-94.0 (2)
O14—V3—O3—V1	-8.4 (4)	O19—V7—O14—V1	-92.7 (2)
V1 ⁱⁱ —V3—O3—V1	-10.4 (5)	O18—V7—O14—V1	87.3 (2)
O1—V1—O4—V4	-169.4 (3)	O7 ⁱⁱ —V7—O14—V1	-175.7 (3)
O3—V1—O4—V4	-65.5 (3)	O7—V7—O14—V1	-9.8 (3)
O6—V1—O4—V4	41.0 (7)	O15—V7—O14—V1	-92.7 (2)
O7—V1—O4—V4	93.5 (3)	O19—V7—O14—V1 ⁱⁱ	92.7 (2)
O14—V1—O4—V4	14.8 (3)	O18—V7—O14—V1 ⁱⁱ	-87.3 (2)
O1—V1—O4—V2	77.6 (3)	O7 ⁱⁱ —V7—O14—V1 ⁱⁱ	9.8 (3)
O3—V1—O4—V2	-178.5 (3)	O7—V7—O14—V1 ⁱⁱ	175.7 (3)
O6—V1—O4—V2	-72.1 (7)	O15—V7—O14—V1 ⁱⁱ	92.7 (2)
O7—V1—O4—V2	-19.5 (2)	O3—V1—O14—V4	82.1 (3)
O14—V1—O4—V2	-98.2 (3)	O6—V1—O14—V4	178.3 (3)
O11—V4—O4—V1	-178.5 (4)	O4—V1—O14—V4	-13.0 (3)
O10—V4—O4—V1	71.3 (4)	O7—V1—O14—V4	-92.3 (3)
O4 ⁱⁱ —V4—O4—V1	-57.9 (9)	O3—V1—O14—V7	-176.2 (3)
O14—V4—O4—V1	-15.6 (3)	O6—V1—O14—V7	-80.0 (3)
O15—V4—O4—V1	-94.8 (3)	O4—V1—O14—V7	88.7 (3)
V1 ⁱⁱ —V4—O4—V1	-19.9 (4)	O7—V1—O14—V7	9.4 (3)
O11—V4—O4—V2	-70.7 (4)	O6—V1—O14—V6	7.0 (3)
O10—V4—O4—V2	179.2 (4)	O4—V1—O14—V6	175.7 (3)
O4 ⁱⁱ —V4—O4—V2	49.9 (10)	O7—V1—O14—V6	96.5 (3)
O14—V4—O4—V2	92.2 (3)	O3—V1—O14—V3	-6.5 (3)
O15—V4—O4—V2	13.1 (3)	O6—V1—O14—V3	89.7 (3)
V1 ⁱⁱ —V4—O4—V2	87.9 (3)	O4—V1—O14—V3	-101.6 (3)
O2—V2—O4—V1	-78.2 (3)	O7—V1—O14—V3	179.2 (3)
O8—V2—O4—V1	80.9 (7)	O6—V6—O14—V7	86.7 (2)
O5—V2—O4—V1	179.4 (3)	O6—V6—O14—V1	-6.9 (2)
O7—V2—O4—V1	20.2 (2)	O6 ⁱⁱ —V6—O14—V1 ⁱⁱ	6.9 (2)
O15—V2—O4—V1	99.5 (3)	O6—V6—O14—V1 ⁱⁱ	-179.6 (3)
O2—V2—O4—V4	169.3 (3)	O3—V3—O14—V4	-85.8 (2)
O8—V2—O4—V4	-31.6 (9)	O3—V3—O14—V7	94.2 (2)
O5—V2—O4—V4	66.9 (3)	O13—V3—O14—V1	-87.9 (2)
O7—V2—O4—V4	-92.3 (3)	O3 ⁱⁱ —V3—O14—V1	177.8 (3)
O15—V2—O4—V4	-13.0 (3)	O3—V3—O14—V1	6.3 (3)
O2—V2—O5—V5	174.9 (4)	O10—V3—O14—V1	92.1 (2)
08—V2—05—V5	71.8 (4)	O13—V3—O14—V1 ⁱⁱ	87.9 (2)
O7—V2—O5—V5	-30.0 (8)	O3 ⁱⁱ —V3—O14—V1 ⁱⁱ	-6.3 (3)
O4—V2—O5—V5	-85.5 (3)	O3—V3—O14—V1 ⁱⁱ	-177.8 (3)

O15—V2—O5—V5	-8.4 (4)	O10-V3-O14-V1 ⁱⁱ	-92.1 (2)
O12—V5—O5—V2	-178.8 (5)	O3—V3—O14—V6	94.2 (2)
O16—V5—O5—V2	-72.7 (4)	O7—V7—O15—V2 ⁱⁱ	-174.7 (3)
O5 ⁱⁱ —V5—O5—V2	22.2 (11)	O14—V7—O15—V2 ⁱⁱ	-93.5 (2)
O11—V5—O5—V2	83.3 (4)	O19—V7—O15—V2	-86.5(2)
015—V5—05—V2	8.2 (3)	018—V7—015—V2	93.5 (2)
V2 ⁱⁱ —V5—O5—V2	8.3 (4)	07 ⁱⁱ —V7—O15—V2	174.7 (3)
01—V1—06—V6	175.2 (4)	07—V7—015—V2	12.3 (3)
03—V1—06—V6	70.9 (4)	014—V7—015—V2	93.5 (2)
04—V1—06—V6	-35.3(8)	04—V4—015—V7	82.1 (2)
07 - V1 - 06 - V6	-85.9(3)	014-V4-015-V7	0.0
014 - V1 - 06 - V6	-94(3)	$011 - V4 - 015 - V2^{ii}$	-86.7(2)
017 - V6 - 06 - V1	-175.8(5)	$010 - V4 - 015 - V2^{ii}$	933(2)
013 - V6 - 06 - V1	-724(4)	0.10^{-1} V4 0.15^{-1} V2	1754(3)
$O6^{ii} - V6 - O6 - V1$	72.4(4) 23.8(12)	$04^{ii} V4 015 V2^{ii}$	173.4(3)
018 - V6 - 06 - V1	25.0 (12) 85.4 (4)	$04 - V4 - 015 - V2^{ii}$	93.3(2)
014 V6 06 V1	0.3(3)	$V1^{ii}$ $V4$ $O15$ $V2^{ii}$	33.3(2)
014 - 00 - 00 - 01	9.5(3)	V1 = V4 = 015 = V2	+7.3(2)
019 - 07 - 07 - 02	72.7(4) -177.9(4)	$011 - \sqrt{4} - 015 - \sqrt{2}$	-033(2)
$O_{18} V_{7} O_{7} V_{2}$	177.9(4)	$010 - \sqrt{4} - 015 - \sqrt{2}$	-11.2(2)
$0/-\sqrt{-0}/-\sqrt{2}$	-39.9(9)	04 - v4 - 015 - v2	-11.2(3)
$013 - \sqrt{-07} - \sqrt{2}$	-14.0(3)	$04^{-}-\sqrt{4}-015-\sqrt{2}$	-173.4(3)
$014 - \sqrt{-0} - \sqrt{2}$	-94.7(3)	$014 - \sqrt{4} - 015 - \sqrt{2}$	-93.3(2)
$019 - \sqrt{-07} - \sqrt{1}$	1/8./(4)	04 - v4 - 015 - v8	-97.9 (2)
018—V/—0/—VI	-/1.9 (4)	04	-97.9(2)
0//"V/0/V1	46.1 (10)	08—V2—015—V7	81.5 (3)
015—V7—07—V1	91.5 (3)	O5—V2—O15—V7	176.8 (3)
014—V7—07—V1	11.4 (3)	07—V2—015—V7	-12.3 (3)
O2—V2—O7—V7	-169.1 (3)	O4—V2—O15—V7	-91.3 (3)
08—V2—07—V7	-66.6 (3)	08—V2—015—V4	-176.3(3)
O5—V2—O7—V7	35.6 (7)	O5—V2—O15—V4	-81.0 (3)
O4—V2—O7—V7	93.5 (3)	07—V2—015—V4	89.9 (3)
O15—V2—O7—V7	13.8 (3)	O4—V2—O15—V4	10.9 (3)
O2—V2—O7—V1	78.2 (3)	O8—V2—O15—V8	-6.5 (3)
O8—V2—O7—V1	-179.3 (3)	O5—V2—O15—V8	88.8 (3)
O5—V2—O7—V1	-77.1 (7)	O7—V2—O15—V8	-100.3 (3)
O4—V2—O7—V1	-19.2 (2)	O4—V2—O15—V8	-179.2 (3)
O15—V2—O7—V1	-98.9 (3)	O8—V2—O15—V5	-89.2 (3)
O1—V1—O7—V7	169.8 (3)	O5—V2—O15—V5	6.2 (3)
O3—V1—O7—V7	-25.5 (9)	O7—V2—O15—V5	177.0 (3)
O6—V1—O7—V7	68.7 (3)	O4—V2—O15—V5	98.1 (3)
O4—V1—O7—V7	-90.9 (3)	O8—V8—O15—V7	-86.5 (2)
O14—V1—O7—V7	-11.2 (3)	O8 ⁱⁱ —V8—O15—V7	86.5 (2)
01—V1—07—V2	-79.4 (3)	08—V8—015—V4	93.5 (2)
O3—V1—O7—V2	85.3 (7)	O8 ⁱⁱ —V8—O15—V4	-93.5 (2)
06—V1—07—V2	179.6 (3)	O16—V8—O15—V2 ⁱⁱ	87.2 (2)
O4—V1—O7—V2	19.9 (2)	08—V8—015—V2 ⁱⁱ	-179.2 (3)
O14—V1—O7—V2	99.6 (3)	O8 ⁱⁱ —V8—O15—V2 ⁱⁱ	-6.3 (3)
O2—V2—O8—V8	-174.0 (4)	O19—V8—O15—V2 ⁱⁱ	-92.8 (2)
		· · · · · · · -	

O5—V2—O8—V8	-70.6 (4)	O16—V8—O15—V2	-87.2 (2)
O7—V2—O8—V8	85.1 (4)	O8—V8—O15—V2	6.3 (3)
O4—V2—O8—V8	27.1 (9)	08 ⁱⁱ —V8—O15—V2	179.2 (3)
O15—V2—O8—V8	8.7 (4)	O19—V8—O15—V2	92.8 (2)
O20—V8—O8—V2	176.6 (5)	O8—V8—O15—V5	93.5 (2)
O16—V8—O8—V2	73.4 (4)	O5—V5—O15—V4	86.9 (2)
O8 ⁱⁱ —V8—O8—V2	-24.1 (12)	O16—V5—O15—V2 ⁱⁱ	-87.0 (2)
O19—V8—O8—V2	-83.3 (4)	O5—V5—O15—V2 ⁱⁱ	179.9 (3)
O15—V8—O8—V2	-8.5 (3)	O16—V5—O15—V2	87.0 (2)
O4—V4—O10—V3	-79.8 (2)	O5—V5—O15—V2	-6.1 (3)
O3 ⁱⁱ —V3—O10—V4	-79.9 (2)	O11—V5—O15—V2	-93.0 (2)
O3—V3—O10—V4	79.9 (2)	O5—V5—O15—V8	-93.1 (2)
O5—V5—O11—V4	-78.6 (2)	O6—V6—O18—V7	-78.5 (2)
O15—V5—O11—V4	0.0	V1 ⁱⁱ —V6—O18—V7	46.10 (4)

Symmetry codes: (i) -x+3/2, y, -z+3/2; (ii) -x+1, y, z.

Hydrogen-bond geometry (Å, °)

	D—H	Н…А	D…A	D—H···A
O21—H21 <i>B</i> ···O10 ⁱⁱⁱ	0.85	2.30	2.950 (19)	133
O21—H21A···O16	0.85	2.26	3.101 (18)	171
N4—H4 D ···O5 ⁱ	0.91	1.77	2.673 (8)	170
N4—H4 <i>E</i> …O5	0.91	1.77	2.673 (8)	170
N2—H2 <i>D</i> ···O6	0.91	1.88	2.759 (10)	162
N2—H2 E ···O6 ^{iv}	0.91	2.22	2.986 (10)	141
N2—H2 E ···O7 ^{iv}	0.91	2.05	2.812 (9)	140
N1— $H1A$ ···O8 ^v	0.91	1.86	2.732 (10)	161
N1—H1 <i>B</i> ···O3	0.91	1.79	2.674 (10)	164

Symmetry codes: (i) -*x*+3/2, *y*, -*z*+3/2; (iii) *x*, *y*-1/2, -*z*+3/2; (iv) -*x*+3/2, -*y*+3/2, -*z*+2; (v) -*x*+3/2, *y*+1/2, *z*.