

 $\gamma = 87.704 \ (7)^{\circ}$ V = 598.27 (15) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.08 \times 0.06 \times 0.04 \text{ mm}$ 

parameters; Parkin et al., 1995)

 $T_{\min} = 0.526, \ T_{\max} = 0.867$ 

H-atom parameters constrained

2623 measured reflections

154 parameters

 $\Delta \rho_{\text{max}} = 1.44 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -1.58 \text{ e } \text{\AA}^{-3}$ 

2623 independent reflections 2324 reflections with  $I > 2\sigma(I)$ 

 $\mu = 9.84 \text{ mm}^{-1}$ 

T = 293 K

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Pentacarbonyl(imidazolidine-2-thione-κS)tungsten(0)

## Salah Merniz,<sup>a</sup> Mahiedine Mokhtari,<sup>b</sup> Hénia Mousser,<sup>c</sup>\* Lahcène Ouahab<sup>d</sup> and Abdelhamid Mousser<sup>a</sup>

<sup>a</sup>Département de Chimie, Faculté des Sciences Exactes, Université Mentouri Constantine, Route de Ain El Bey, Constantine, Algeria, <sup>b</sup>Département de Chimie, Faculté des Sciences Exactes, Université Larbi Ben M'Hidi, Route de Constantine, Oum El Bouaghi, Algeria, <sup>c</sup>Département de Chimie Industrielle, Faculté des Sciences de l'Ingénieur, Université Mentouri Constantine, Campus Chaab Erssas, Constantine, Algeria, and <sup>d</sup>Equipe Organométallique et Matériaux Moléculaires, UMR6226 CNRS-Université de Rennes 1, Avenue du Général Leclerc, 35042, Rennes, France Correspondence e-mail: bouzidi\_henia@yahoo.fr

Received 6 April 2010; accepted 4 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.015 Å; R factor = 0.039; wR factor = 0.106; data-to-parameter ratio = 17.0.

In the title complex,  $[W(C_3H_6N_2S)(CO)_5]$ , the W atom displays an octahedral coordination with five CO molecules and an imidazolidine-2-thione molecule. The  $W(CO)_5$  unit is coordinated by the cyclic thione ligand through a W–S dative bond. The W–S and C–S bond lengths are 2.599 (2) and 1.711 (9) Å, respectively. This last distance is significantly longer than that of free cyclic thioureas. The geometry of the title compound suggests  $sp^3$ -hybridization of the S atom caused by the greatly polarized linkage W–S–C bond angle, which is close to tetrahedral [109.50 (3)°]. In the crystal packing, N–H···O and N–H···S hydrogen-bonding interactions stabilize the structure and build up chains parallel to [101].

#### **Related literature**

For the properties of imidazolinethiones or cyclic thioureas, see: Gok & Çetinkaya (2004); Kuhn & Kratz (1993); Reglinski *et al.* (1999); Crossley *et al.* (2006); Saito *et al.* (2007); Raper *et al.* (1983). For hydrogen-bond motifs, see: Etter *et al.* (1990); Bernstein *et al.* (1995); Beheshti *et al.* (2007). For related structures, see: Kuhn *et al.* (1998); Mak *et al.* (1985); Valdés-Martinez *et al.* (1988, 1996); Pasynsky *et al.* (2007); Darensbourg *et al.* (1999).



### Experimental

Crystal data [W(C<sub>3</sub>H<sub>6</sub>N<sub>2</sub>S)(CO)<sub>5</sub>]  $M_r = 426.06$ Triclinic, PI a = 6.652 (1) Å b = 7.8120 (12) Å c = 11.6240 (15) Å  $\alpha = 84.071$  (5)°  $\beta = 85.042$  (6)°

#### Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: refined from  $\Delta F$  (cubic fit to  $\sin\theta/\lambda$ , 24

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$   $wR(F^2) = 0.106$  S = 1.102623 reflections

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - \mathbf{H} \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|--------------------------------------|------|-------------------------|--------------|---------------------------|
| N1-H1···O5 <sup>i</sup>              | 0.86 | 2.39                    | 3.039 (11)   | 133                       |
| $N2-H2\cdots S1^{ii}$                | 0.86 | 2.88                    | 3.630 (9)    | 147                       |

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999), *PARST97* (Nardelli, 1995) and *Mercury* (Macrae *et al.*, 2006).

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2555).

#### References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Beheshti, A., Clegg, W., Dale, S. H., Hyvadi, R. & Hussaini, F. (2007). Dalton Trans. pp. 2949–2956.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2001). SMART. and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Crossley, I. R., Hill, A. F., Humphrey, E. R. & Smith, M. K. (2006). Organometallics, 25, 2242–2247.
- Darensbourg, D. J., Frost, B. J., Derecskei-Kovacs, A. & Reibenspies, J. H. (1999). Inorg. Chem. 38, 4715–4723.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gok, Y. & Çetinkaya, E. (2004). Turk. J. Chem. 28, 157-162.

- Kuhn, N., Fahl, J., Fawzi, R. & Steimann, M. (1998). Z. Kristallogr. New Cryst. Struct. 213, 434.
- Kuhn, N. & Kratz, T. (1993). Synthesis, pp. 561-562.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Mak, T. C. W., Jasim, K. S. & Chieh, C. (1985). *Inorg. Chim. Acta*, **99**, 31–35. Nardelli, M. (1995). *J. Appl. Cryst.* **28**, 659.
- Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
- Pasynsky, A.A., Il'in, A.N., Shapovalov, S.S., Torubayev, Yu.V. (2007). Russ. J. Inorg. Chem. 52, 875–878.
- Raper, E. S., Creighton, J. R., Oughtred, R. E. & Nowell, I. W. (1983). Acta Cryst. B39, 355–360.
- Reglinski, J., Garner, M., Cassidy, I. D., Slavin, P. A., Spicer, M. D. & Armstrong, D. R. (1999). J. Chem. Soc. Dalton Trans. pp. 2119–2126.
- Saito, K., Kawno, Y. & Shimoi, M. (2007). Eur. J. Inorg. Chem., pp. 3195–3200.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Valdés-Martinez, J., Enriquez, A., Cabrera, A. & Espinosa-Perez, G. (1996). Polyhedron, 15, 897–901.

Valdés-Martinez, J., Sierra-Romero, A., Alvarez-Toledano, C., Toscano, R. A. & García-Tapia, H. (1988). J. Organomet. Chem. 352, 321–326.

# supporting information

Acta Cryst. (2010). E66, m629-m630 [https://doi.org/10.1107/S1600536810016314]

## Pentacarbonyl(imidazolidine-2-thione-kS)tungsten(0)

## Salah Merniz, Mahiedine Mokhtari, Hénia Mousser, Lahcène Ouahab and Abdelhamid Mousser

#### S1. Comment

Imidazolinethiones or cyclic thioureas are an important classe of compounds with a wide variety of applications (Gok & çetinkaya, 2004; Kuhn & Kratz, 1993). The chemical interests of these cyclic thioureas lie in their face capping character, in their structural analogy with thiolated nucleosides and in their application to enzyme models (Reglinski *et al.*, 1999; Crossley *et al.*, 2006; Saito *et al.*, 2007). The diverse properties of the cyclic thioureas have been attributed to the coordination ability of the heterocyclic RN—C(S)—NR' thioamide group, as a monodentate ligand, to both metallic and non-metallic elements, leading to stable electron donor–acceptor complexes (Raper *et al.*, 1983). Our research has been focused for some time on coordination compounds of sulfur containing ligands with carbonyl metals. The structure of the Imidazolidine-2-Thione-W(CO)<sub>5</sub> complex (I), was carried out and results are presented here.

The tungsten atom displays octahedral geometry with five CO and the Imidazolidine-2-Thione molecules (Fig. 1). The bond distances and angles in (I) are within normal range and are comparable to the corresponding values observed in similar structures (Saito *et al.*, 2007; Mak *et al.*, 1985; Valdés-Martinez *et al.*, 1988; Valdés-Martinez *et al.*, 1996; Pasynsky *et al.*, 2007; Darensbourg *et al.*, 1999). Such geometry of (I) suggests sp3 hybridization of the sulfur atom caused by the greatly polarized M—S—C linkage. Indeed, the W—S—C bond angles is 109.50 (3)° and is close to a tetrahedral angle. As expected, the C=S bond is elongated and the C(6)—S(1) interatomic distance is 1.711 (9) Å and it is significantly longer than that of free cyclic thiourea, 1.690 (2) Å (Mak *et al.*, 1985; Kuhn *et al.*, 1998). The bond length between the metal and trans-carbonyl carbon atoms is 1.970 (10) Å. This is substantially shorter than the metal cis carbonyl bonds. The average of the separations between the metal and cis carbonyls is 2.049 Å.

Intermolecular N—H···O hydrogen bonds generate  $R_2^2(14)$  graph-set motif (Etter *et al.*, 1990; Bernstein *et al.*, 1995) resulting in the formation of a pseudo dimer. Further N-H···O  $[R_2^2(14)]$  and N—H···S  $[R_2^2(8)]$  interactions link these dimers forming chains parallel to the [1 0 1] direction (Table 1, Fig.2). The N-H···S hydrogen bond distance is in the same range of there observed in the heterocyclic thione complexes (Beheshti *et al.*, 2007).

#### **S2. Experimental**

A solution of  $W(CO)_6$  (527 mg, 1.5 mmol) and Imidazolidine-2-thione (153 mg, 1.5 mmol) in 40 ml of dry THF was irradiated for 2 h with vigorous stirring. The excess of  $W(CO)_6$  was mouved by filtration and the solvent was evaporated under reduced pressure. The residue was recrystallised from THF/hexane (1:5 ratio). Bright yellow crystals were washed three times with portions of hexane, and dried under vacuum. Yield:(34%).

## S3. Refinement

H atoms were positined geometrically, using a riding model with C—H = 0.96 Å ( $U_{iso}(H) = 1.5$ ) (including free rotation about C—C and C—N bond) for methyl groups and with C—H = 0.93 and 0.97 Å (1.2 for aromatic and methylene groups) times  $U_{eq}(C)$ .



#### Figure 1

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. H atoms are represented as small spheres of arbitrary radii.



Figure 2

Partial packing view of (I) showing the chain formed by N-H···O and N-H···S hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+1].

Pentacarbonyl(imidazolidine-2-thione)tungsten(0)

| Hall symbol: -P 1                    |
|--------------------------------------|
| a = 6.652 (1) A<br>b = 7.8120 (12) Å |
|                                      |

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

 $\theta = 1.0-27.1^{\circ}$ 

 $\mu = 9.84 \text{ mm}^{-1}$ 

Prism, yellow

 $0.08 \times 0.06 \times 0.04 \text{ mm}$ 

T = 293 K

Cell parameters from 9229 reflections

c = 11.6240 (15) Å  $\alpha = 84.071 (5)^{\circ}$   $\beta = 85.042 (6)^{\circ}$   $\gamma = 87.704 (7)^{\circ}$   $V = 598.27 (15) \text{ Å}^{3}$  Z = 2 F(000) = 396 $D_{x} = 2.365 \text{ Mg m}^{-3}$ 

### Data collection

| Bruker SMART 1K CCD area-detector                                          | $T_{\min} = 0.526, T_{\max} = 0.867$                                |
|----------------------------------------------------------------------------|---------------------------------------------------------------------|
| diffractometer                                                             | 2623 measured reflections                                           |
| Radiation source: fine-focus sealed tube                                   | 2623 independent reflections                                        |
| Graphite monochromator                                                     | 2324 reflections with $I > 2\sigma(I)$                              |
| Detector resolution: 8.192 pixels mm <sup>-1</sup>                         | $R_{ m int}=0.000$                                                  |
| $\omega$ scan                                                              | $\theta_{\rm max} = 27.2^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$ |
| Absorption correction: part of the refinement                              | $h = -8 \rightarrow 8$                                              |
| model ( $\Delta F$ )                                                       | $k = -9 \rightarrow 10$                                             |
| (cubic fit to $\sin\theta/\lambda$ , 24 parameters; Parkin <i>et al.</i> , | $l = 0 \rightarrow 14$                                              |
| 1995)                                                                      |                                                                     |
|                                                                            |                                                                     |

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.039$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.106$                               | neighbouring sites                                         |
| S = 1.10                                        | H-atom parameters constrained                              |
| 2623 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0555P)^2 + 0.8559P]$          |
| 154 parameters                                  | where $P = (F_0^2 + 2F_c^2)/3$                             |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 1.44 \  m e \  m \AA^{-3}$          |
| direct methods                                  | $\Delta \rho_{\rm min} = -1.58 \text{ e } \text{\AA}^{-3}$ |
|                                                 |                                                            |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|--------------|--------------|--------------|-----------------------------|--|
| W1 | 0.04631 (4)  | 0.22504 (4)  | 0.75225 (2)  | 0.05469 (14)                |  |
| S1 | 0.1747 (3)   | 0.4882 (3)   | 0.61423 (18) | 0.0631 (5)                  |  |
| 01 | -0.0857 (14) | -0.1215 (10) | 0.8903 (7)   | 0.093 (2)                   |  |
| O2 | 0.4366 (12)  | 0.1909 (13)  | 0.8942 (7)   | 0.097 (2)                   |  |
| O3 | -0.3638 (10) | 0.2376 (10)  | 0.6320 (6)   | 0.0757 (17)                 |  |
| O4 | 0.2472 (17)  | 0.0053 (12)  | 0.5555 (8)   | 0.106 (3)                   |  |
| 05 | -0.1845 (13) | 0.4202 (12)  | 0.9529 (6)   | 0.088 (2)                   |  |
| N1 | 0.3318 (15)  | 0.6250 (13)  | 0.7912 (7)   | 0.088 (3)                   |  |

# supporting information

| H1 | 0.2360       | 0.5882      | 0.8409     | 0.106*      |  |
|----|--------------|-------------|------------|-------------|--|
| N2 | 0.5082 (13)  | 0.6600 (11) | 0.6281 (7) | 0.075 (2)   |  |
| H2 | 0.5434       | 0.6543      | 0.5556     | 0.090*      |  |
| C1 | -0.0386 (15) | 0.0069 (13) | 0.8400 (8) | 0.071 (2)   |  |
| C2 | 0.3013 (13)  | 0.2079 (12) | 0.8406 (7) | 0.0634 (19) |  |
| C3 | -0.2170 (11) | 0.2399 (10) | 0.6719 (7) | 0.0533 (15) |  |
| C4 | 0.1775 (14)  | 0.0833 (12) | 0.6262 (8) | 0.0626 (19) |  |
| C5 | -0.0988 (13) | 0.3583 (12) | 0.8803 (8) | 0.0624 (19) |  |
| C6 | 0.3454 (12)  | 0.5942 (10) | 0.6806 (7) | 0.0587 (17) |  |
| C7 | 0.4921 (17)  | 0.7255 (14) | 0.8196 (9) | 0.077 (2)   |  |
| H3 | 0.5645       | 0.6660      | 0.8816     | 0.093*      |  |
| H4 | 0.4420       | 0.8365      | 0.8422     | 0.093*      |  |
| C8 | 0.6264 (17)  | 0.7454 (15) | 0.7050 (9) | 0.079 (3)   |  |
| H5 | 0.6447       | 0.8656      | 0.6773     | 0.094*      |  |
| H6 | 0.7574       | 0.6884      | 0.7130     | 0.094*      |  |
|    |              |             |            |             |  |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$      | U <sup>23</sup> |
|----|-------------|-------------|-------------|---------------|---------------|-----------------|
| W1 | 0.0489 (2)  | 0.0648 (2)  | 0.0505 (2)  | -0.00673 (13) | -0.00158 (12) | -0.00630 (13)   |
| S1 | 0.0636 (11) | 0.0727 (12) | 0.0541 (10) | -0.0159 (9)   | -0.0067 (8)   | -0.0045 (9)     |
| 01 | 0.103 (6)   | 0.088 (5)   | 0.085 (5)   | -0.032 (4)    | -0.016 (4)    | 0.016 (4)       |
| O2 | 0.069 (4)   | 0.141 (7)   | 0.085 (5)   | 0.002 (4)     | -0.029 (4)    | -0.010 (5)      |
| 03 | 0.057 (3)   | 0.099 (5)   | 0.074 (4)   | -0.006 (3)    | -0.011 (3)    | -0.012 (3)      |
| O4 | 0.126 (7)   | 0.106 (6)   | 0.086 (5)   | 0.018 (5)     | 0.010 (5)     | -0.040 (5)      |
| 05 | 0.089 (5)   | 0.109 (5)   | 0.066 (4)   | 0.010 (4)     | 0.010 (4)     | -0.033 (4)      |
| N1 | 0.088 (6)   | 0.119 (7)   | 0.063 (4)   | -0.038 (5)    | 0.005 (4)     | -0.024 (4)      |
| N2 | 0.078 (5)   | 0.090 (5)   | 0.059 (4)   | -0.030 (4)    | 0.002 (4)     | -0.009 (4)      |
| C1 | 0.070 (5)   | 0.080 (6)   | 0.068 (5)   | -0.013 (4)    | -0.020 (4)    | -0.010 (4)      |
| C2 | 0.057 (4)   | 0.079 (5)   | 0.054 (4)   | -0.006 (4)    | 0.001 (3)     | -0.006 (4)      |
| C3 | 0.042 (3)   | 0.064 (4)   | 0.055 (4)   | -0.006 (3)    | -0.004 (3)    | -0.007 (3)      |
| C4 | 0.059 (4)   | 0.070 (5)   | 0.060 (4)   | -0.006 (4)    | -0.004 (4)    | -0.009 (4)      |
| C5 | 0.054 (4)   | 0.077 (5)   | 0.057 (4)   | -0.012 (4)    | -0.012 (3)    | -0.001 (4)      |
| C6 | 0.061 (4)   | 0.059 (4)   | 0.056 (4)   | -0.004 (3)    | -0.002 (3)    | -0.006 (3)      |
| C7 | 0.080 (6)   | 0.079 (6)   | 0.078 (6)   | -0.008 (5)    | -0.012 (5)    | -0.022 (5)      |
| C8 | 0.077 (6)   | 0.085 (6)   | 0.077 (6)   | -0.031 (5)    | -0.003 (5)    | -0.012 (5)      |

Geometric parameters (Å, °)

| W1-C1 | 1.970 (10) | N1—C6 | 1.327 (11) |  |
|-------|------------|-------|------------|--|
| W1-C4 | 2.042 (9)  | N1—C7 | 1.430 (13) |  |
| W1-C3 | 2.049 (7)  | N1—H1 | 0.8598     |  |
| W1-C2 | 2.050 (9)  | N2—C6 | 1.294 (11) |  |
| W1C5  | 2.055 (10) | N2—C8 | 1.465 (12) |  |
| W1—S1 | 2.599 (2)  | N2—H2 | 0.8601     |  |
| S1—C6 | 1.711 (9)  | C7—C8 | 1.536 (17) |  |
| 01—C1 | 1.148 (11) | С7—Н3 | 0.9700     |  |
| O2—C2 | 1.134 (12) | C7—H4 | 0.9700     |  |
|       |            |       |            |  |

# supporting information

| О3—С3    | 1.118 (10) | С8—Н5    | 0.9700     |
|----------|------------|----------|------------|
| O4—C4    | 1.130 (12) | С8—Н6    | 0.9700     |
| O5—C5    | 1.118 (12) |          |            |
|          |            |          |            |
| C1—W1—C4 | 87.8 (4)   | C8—N2—H2 | 123.5      |
| C1—W1—C3 | 89.7 (3)   | O1—C1—W1 | 178.9 (10) |
| C4—W1—C3 | 89.5 (3)   | O2—C2—W1 | 175.7 (9)  |
| C1—W1—C2 | 88.5 (4)   | O3—C3—W1 | 175.3 (8)  |
| C4—W1—C2 | 92.6 (4)   | O4—C4—W1 | 178.8 (9)  |
| C3—W1—C2 | 177.1 (3)  | O5—C5—W1 | 175.0 (9)  |
| C1—W1—C5 | 89.7 (4)   | N2—C6—N1 | 109.4 (8)  |
| C4—W1—C5 | 176.8 (3)  | N2—C6—S1 | 124.2 (7)  |
| C3—W1—C5 | 88.5 (3)   | N1—C6—S1 | 126.3 (7)  |
| C2—W1—C5 | 89.3 (3)   | N1—C7—C8 | 102.3 (8)  |
| C1—W1—S1 | 172.4 (3)  | N1—C7—H3 | 111.3      |
| C4—W1—S1 | 84.6 (3)   | С8—С7—Н3 | 111.3      |
| C3—W1—S1 | 89.4 (2)   | N1—C7—H4 | 111.3      |
| C2—W1—S1 | 92.8 (3)   | С8—С7—Н4 | 111.3      |
| C5—W1—S1 | 97.8 (3)   | Н3—С7—Н4 | 109.2      |
| C6—S1—W1 | 109.5 (3)  | N2—C8—C7 | 101.7 (8)  |
| C6—N1—C7 | 113.4 (8)  | N2—C8—H5 | 111.4      |
| C6—N1—H1 | 123.3      | С7—С8—Н5 | 111.4      |
| C7—N1—H1 | 123.3      | N2—C8—H6 | 111.4      |
| C6—N2—C8 | 113.0 (8)  | С7—С8—Н6 | 111.4      |
| C6—N2—H2 | 123.5      | Н5—С8—Н6 | 109.3      |
|          |            |          |            |

## Hydrogen-bond geometry (Å, °)

| D—H···A                | <i>D</i> —Н | H···A | D····A     | <i>D</i> —H··· <i>A</i> |
|------------------------|-------------|-------|------------|-------------------------|
| N1—H1…O5 <sup>i</sup>  | 0.86        | 2.39  | 3.039 (11) | 133                     |
| N2—H2…S1 <sup>ii</sup> | 0.86        | 2.88  | 3.630 (9)  | 147                     |

Symmetry codes: (i) -*x*, -*y*+1, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+1.