

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$I_8Sb_{10}Ge_{36}$

Mohammed Kars,^a* Thierry Roisnel,^b Vincent Dorcet,^b Allaoua Rebbah^a et L. Carlos Otero-Diáz^c

^aUniversité Houari-Boumedienne, Faculté de Chimie, Laboratoire Sciences des Matériaux, BP 32, El-Alia Bab-Ezzouar, Algérie, ^bCentre de Diffractométrie X, Sciences Chimiques de Rennes, UMR 6226 CNRS Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, Rennes, France, et ^cDepartomento Inorgánica, Facultad C.C. Químicas, Universidad Complutense, 28040 Madrid, Espagne

Correspondence e-mail: mkarsdz@yahoo.fr

Recu le 4 mai 2010; accepté le 12 mai 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (I–Ge) = 0.0004 Å; disorder in main residue; R factor = 0.037; wR factor = 0.091; data-to-parameter ratio = 55.7.

Single crystals of the title compound, octaiodide decaantimonate hexatriacontagermanide, were grown by chemical transport reactions. The structure is isotypic with the analogous clathrates-I. In this structure, the (Ge,Sb)₄₆ framework consists of statistically occupied Ge and Sb sites that atoms form bonds in a distorted tetrahedral arrangement. They form polyhedra that are covalently bonded to each other by shared faces. There are two polyhedra of different sizes, viz. a (Ge,Sb)₂₀ dodecahedron and a (Ge,Sb)₂₄ tetracosahedron in a 1:3 ratio. The guest atom (iodine) resides inside these polyhedra with symmetry m3 (Wyckoff position 2a) and $\overline{4}2m$ (Wyckoff position 2d), respectively.

Littérature associée

La synthèse en phase vapeur des premiers clathrates X_8 Ge₃₈ A_8 (X = Cl, Br, I; A = P, As, Sb) etait décrite par Menke & von Schnering (1973) et von Schnering & Menke (1976). Les structures sont isotypes aux hydrates de gaz correspondants (Pauling & Marsh, 1952). Pour les propriétés semiconductrices et thermoélectriques, voir respectivement Chu et al. (1982) et Kishimoto et al. (2006). Pour les propriétés structurales et la conductivité thermique, voir Nolas et al. (2000) et Shimizu et al. (2009). L'histoire et les développements récents des composés type clathrate du silicium et des éléments de la colonne 14 ont été relatés par Cros & Pouchard (2009). L'étude par diffraction électronique et HRTEM du clathrate I₈Ge_{40.0}Te_{5.3} a été réalisée par Kovnir et al. (2006). Pour autres composés type clathrate du germanium, voir Ayouz (2009); Latturner et al. (2000); Nesper et al. (1986).

Partie expérimentale

Données crystallines

2	
$I_8Sb_{10}Ge_{36}$	Z = 1
$M_r = 4834,8$	Mo $K\alpha$ radiation
Cubique, $Pm\overline{3}n$	$\mu = 30,49 \text{ mm}^{-1}$
a = 10,8907 (2) Å	T = 150 K
V = 1291,72 (3) Å ³	0,10 \times 0,08 \times 0,07 mm
Collection des données	
Diffractomètre Bruker APEXII	27124 réflexions mesurées
Correction d'absorption: multi-scan	1003 réflexions indépendantes
(SADABS; Sheldrick, 2002)	900 réflexions avec $\hat{I} > 3\sigma(I)$
$T_{\rm min} = 0,082, \ T_{\rm max} = 0,116$	$R_{\rm int} = 0,041$
Affinement	

1 Ijjinemeni	
$R[F^2 > 2\sigma(F^2)] = 0.037$	18 paramètres
$wR(F^2) = 0.091$	3 restraintes
S = 2,00	$\Delta \rho_{\rm max} = 1,48 \text{ e} \text{ Å}^{-3}$
1003 réflexions	$\Delta \rho_{\rm min} = -2,97 \ {\rm e} \ {\rm \AA}^{-3}$

Collection des données: SAINT (Bruker, 2002); affinement des paramètres de la maille: SAINT; reduction des données: SAINT; programme(s) pour la solution de la structure: SHELXS97 (Sheldrick, 2008); programme(s) pour l'affinement de la structure: JANA2000 (Petříček et al., 2000); graphisme moléculaire: DIAMOND (Brandenburg & Putz, 2009); logiciel utilisé pour préparer le matériel pour publication: JANA2000.

Les auteurs remercient Adrian Gómez-Herrero pour les analyses XEDS.

Des documents complémentaires et figures concernant cette structure peuvent être obtenus à partir des archives électroniques de l'UICr (Référence: BR2144).

Références

- Ayouz, K., Kars, M., Rebbah, A. & Rebbah, H. (2009). Acta Cryst. E65, i15. Brandenburg, K. & Putz, H. (2009). DIAMOND. Crystal Impact GbR, Bonn, Allemagne.
- Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, les Etats Unis. Chu, T. L., Chu, S. S. & Ray, R. L. (1982). J. Appl. Phys. 53, 7102-7103.
- Cros. C. & Pouchard, M. (2009). C. R. Chim. 12, 1014-1056.
- Kishimoto, K. Arimura, S. & Koyanagi, T. (2006). Appl. Phys. Lett. 88, 222115-222117
- Kovnir, K. A., Abramchuk, N. S., Zaikina, J., Baitinger, M., Burkhardt, U., Schnelle, W., Olenev, A. V., Lebedev, O., Van Tendeloo, G., Dikarev, E. & Shevelkov, A. (2006). Z. Kristallogr. 221, 527-532.
- Latturner, S., Bu Xianhui, H., Blake, N., Metiu, H. & Stucky, G. (2000). J. Solid. State. Chem. 151, 61-64.
- Menke, H. & von Schnering, H. G. (1973). Z. Anorg. Allg. Chem. 395, 223-238. Nesper, R., Curda, J. & von Schnering, H. G. (1986). Angew. Chem. 98, 369-370.
- Nolas, G. S., Weakley, T. J. R., Cohn, J. L. & Sharm, R. (2000). Phys. Rev. B, 61, 3845-3850.
- Pauling, L.& Marsh, R. E. (1952). Proc. Natl Acad. Sci. USA, 38, 112-118.
- Petříček, V., Dušék, M. & Palatinus, L. (2000). JANA2000. Institut de Physique, Prague, la République tchèque.
- Schnering, H. G. von & Menke, H. (1976). Z. Anorg. Allg. Chem. 424, 108-114. Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, les Etats Unis.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shimizu, H., Oe, R., Ohno, S., Kume, T., Sasaki, S., Kishimoto, K. & Koyanagi, T. (2009). J. Appl. Phys. 105, 043522-043527.

supporting information

Acta Cryst. (2010). E66, i47 [https://doi.org/10.1107/S1600536810017496]

$I_8Sb_{10}Ge_{36}$

Mohammed Kars, Thierry Roisnel, Vincent Dorcet, Allaoua Rebbah et L. Carlos Otero-Diáz

S1. Comment

Les clathrates semiconducteurs de formulation X₈Ge₃₈A₈ (X: Cl, Br, I; A: P, As, Sb) (Menke & von Schnering, 1973; von Schnering & Menke, 1976) constituent les premiers clathrates à sous réseau hôte anionique et à réseau d'accueil mixte et cationique. Les structures de ces clathrates ont été déterminées par isotypie aux hydrates de gaz correspondants (Pauling & Marsh, 1952). De plus au cours d'essais de synthèse du clathrate vide Ge_{46} , une phase qui correspond à I_8Ge_{46} , I_x (x = 8/3) avait été obtenue de manière inattendue (Nesper et al., 1986). Ces composés ont connus un regain d'intérêt au cours de ces dernières années, essentiellement en raison de leurs propriétés semi-conductrices (Chu et al., 1982), thermoélectriques (Kishimoto et al., 2006) et de conductivités thermique très prometteuses (Shimizu et al., 2009). L'histoire et les derniers développements des composés type clathrate du silicium et des éléments apparentés de la colonne 14 ont été relatés récement dans un étendu article par Cros & Pouchard (2009). Le composé $I_8Sb_{10}Ge_{36}$ est décrit par la juxtaposition de deux types de polyèdres: les dodécaèdres pentagonaux (Ge, Sb)₂₀ et les tétrakaïdècaèdres (Ge, Sb)₂₄. Les atomes d'iode se logent au centre des cavités formées par ces polyèdres. Les atomes clathrands possédent une coordination tétraédriques avec des distances [2.5032 (3)–2.5562 (6) Å] comparables à celles obtenues dans les composés clathrates Ge₁₄Ga₁₂Sb₂₀I₈ [2.5792 (4)–2.6836 (3) Å] (von Schnering & Menke, 1976) et dans Ba₈Ga_{17,134}Sb_{2,78}Ge_{25,595} [2.462 (3)-2.5791 (3) Å] (Latturner *et al.*, 2000). Enfin, il faut remarquer que comme pour le composé I₈As₂₁Ge₂₅ (Ayouz et al., 2009) l'agitation thermique (ADP's) autour de l'atome I2 (site 6d) est comparable à celles des autres atomes constituants le clathrate, ce n'est pas le cas de nombreux composés clathrates au germanium où l'agitation thermique autour de X2 est beaucoup plus large: X8Ga16Ge30 (X: Sr, Eu) (Nolas et al., 2000) et Ge40.0 Te5.3 I8 (Kovnir et al., 2006).

S2. Experimental

La synthèse de monocristaux de $I_8Sb_{10}Ge_{36}$ a été réalisée par la méthode de transport en phase vapeur à partir d'un mélange d'éléments purs. Le mélange broyé puis scellé dans un tube en quartz, est porté à une température de 1100 K pendant environ une semaine.

S3. Refinement

La structure a été déterminée par isotypie aux clathrates-I dans le groupe d'espace $Pm\overline{3}n$ avec une occupation statistique des sites 6c, 16i et 24k par les atomes de germanium et d'antimoine. Tous les sites mixtes Ge/Sb ont été affinés avec une contrainte d'occupation totale égale à l'unité. Les sites 2a et 6d sont occupés totalement par les atomes d'iode. La composition du clathrate obtenue en fin d'affinement I₈Sb_{9.77}Ge_{36.23} [Ge(at.%) = 67.09; Sb(at.%) = 18.09; I(at.%) = 14.81] est proche de celle déduite par analyse chimique au MEB [Ge(at.%) = 65.19; Sb(at.%) = 18.88; I(at.%) = 15.93].

Figure 1

Structure du clathrate $I_8Sb_{10}Ge_{36}$ montrant les deux types de polyèdres: les dodécaèdres pentagonaux (Ge, Sb)₂₀ (en rose) et les tétrakaïdècaèdres (Ge, Sb)₂₄ (en gris). Les atomes d'iode sont localisés au centre de ces polyèdres.

Figure 2

Deux cages adjacentes dans la structure du clathrate I₈Sb₁₀Ge₃₆ avec un déplacement des ellipsoïdes à 95% de probabilité.

octaiodide decaantimonate hexatriacontagermanide

Crystal data	
$I_8Sb_{10}Ge_{36}$	V = 1291.72 (3) Å ³
$M_r = 4834.8$	Z = 1
Cubic, $Pm\overline{3}n$	F(000) = 2082
Hall symbol: -P 4n 2 3	$D_{\rm x} = 6.213 {\rm Mg} {\rm m}^{-3}$
a = 10.8907 (2) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å

Cell parameters from 6120 reflections	
$\theta = 2.6 - 45.3^{\circ}$	
$\mu = 30.49 \text{ mm}^{-1}$	

Data collection

Bruker APEXII	27124 measured reflections
diffractometer	1003 independent reflections
Radiation source: fine-focus sealed tube	900 reflections with $I > 3\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.041$
CCD rotation images, thin slices scans	$\theta_{\text{max}} = 45.3^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Absorption correction: multi-scan	$h = -21 \rightarrow 18$
(SADABS; Sheldrick, 2002)	$k = -21 \rightarrow 21$
$T_{\min} = 0.082, \ T_{\max} = 0.116$	$l = -20 \rightarrow 20$
Refinement	
Refinement on F	3 restraints

T = 150 KCubic, black

 $0.10 \times 0.08 \times 0.07 \text{ mm}$

	5 Testrames
$R[F > 3\sigma(F)] = 0.037$	Weighting scheme based on measured s.u.'s $w =$
wR(F) = 0.091	$1/[\sigma^2(F) + 0.001444F^2]$
S = 2.00	$(\Delta/\sigma)_{\rm max} = 0.0004$
1003 reflections	$\Delta ho_{ m max} = 1.48$ e Å ⁻³
18 parameters	$\Delta ho_{ m min} = -2.97$ e Å ⁻³

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > n^*\sigma(F^2)$ is used only for calculating *R*-factors etc. and is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2000, uses the weighting scheme based on the experimental expectations, see

_refine_ls_weighting_details, that does not force *S* to be one. Therefore the values of *S* are usually larger then the ones from the SHELX program.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
I1	0	0	0	0.00492 (8)	
I2	0.25	0.5	0	0.00789 (9)	
Ge1	0.11736 (4)	0	0.30899 (4)	0.00934 (11)	0.823 (7)
Ge2	0.18365 (2)	0.18365 (2)	0.18365 (2)	0.00749 (8)	0.699 (8)
Sb3	0.25	0	0.5	0.00867 (17)	0.118 (11)
Sb1	0.117356	0	0.308994	0.00934 (11)	0.177 (7)
Sb2	0.18365	0.18365	0.18365	0.00749 (8)	0.301 (8)
Ge3	0.25	0	0.5	0.00867 (17)	0.882 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Alomic displacement parameters (A)	Atomic	displacement	parameters	$(Å^2)$
--	--------	--------------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.00492 (14)	0.00492 (14)	0.00492 (14)	0	0	0
I2	0.00455 (18)	0.00956 (15)	0.00956 (15)	0	0	0
Gel	0.00836 (18)	0.00909 (18)	0.01058 (19)	0	-0.00110 (11)	0
Ge2	0.00749 (14)	0.00749 (14)	0.00749 (14)	0.00030 (7)	0.00030 (7)	0.00030(7)
Sb3	0.0117 (4)	0.0071 (3)	0.0071 (3)	0	0	0
Sb1	0.00836 (18)	0.00909 (18)	0.01058 (19)	0	-0.00110 (11)	0
Ge2 Sb3 Sb1	0.00749 (14) 0.0117 (4) 0.00836 (18)	0.00749 (14) 0.0071 (3) 0.00909 (18)	0.00749 (14) 0.0071 (3) 0.01058 (19)	0.00030 (7) 0 0	0.00030 (7) 0 -0.00110 (11)	0.00030 (7) 0 0

supporting information

Sb2 Ge3	0.00749 (14) 0.0117 (4)	0.00749 (14) 0.0071 (3)	0.00749 (14) 0.0071 (3)	0.00030 (7) 0	0.00030 (7) 0	0.00030 (7) 0
Bond le	ngths (Å)					
Ge	1	3 5997 (4)	Ľ	2—Ge1 ^{xix}		3 6570 (3)
II—Ge	1 1 ⁱ	3 5997 (4)	L L	$2 - Ge1^{viii}$		3 6570 (3)
II—Ge	1 ¹¹	3 5997 (4)	Ľ	$2 - Ge1^{xx}$	- ,	3 6570 (3)
II—Ge	1 1 ⁱⁱⁱ	3.5997 (4)	Ľ	$2-Ge1^{xxi}$		3.6570 (3)
II—Ge	1 ^{iv}	3.5997 (4)	Ľ	$2-Ge1^{xi}$		3.6570 (3)
II—Ge	1 v	3.5997 (4)	Ľ	$2 - Sb3^{xvi}$		3.8504
II—Ge	1 ^{vi}	3.5997 (4)	Ľ	$2 - Sb3^{xvii}$		3.8504
II—Ge	1 ^{vii}	3 5997 (4)	Ľ	$2 \text{ Sb}3^{\text{xxii}}$	- ,	3 8504
II—Ge	1 ^{viii}	3.5997 (4)	Ľ	$2 - Sb3^{xxiii}$		3.8504
II—Ge	1 ^{ix}	3 5997 (4)	Ľ	2—Sb1 ^{xvi}	- ,	3 657
II—Ge	1 x	3 5997 (4)	Ľ	$2 - Sb1^{xvii}$	- ,	3 657
II—Ge	1 ^{xi}	3 5997 (4)	Ľ	$2 - Sb1^{xviii}$	- ,	3 657
II—Ge	2	3 4642 (3)	Ľ	2—Sb1 ^{xix}	- ,	3 657
II—Ge	2 ⁱ	3 4642 (3)	Ľ	$2 - Sb1^{viii}$	- ,	3 657
II—Ge	2 ⁱⁱ	3 4642 (3)	Ľ	2Sb1^{xx}	- ,	3 657
II—Ge	2 ⁱⁱⁱ	3 4642 (3)	Ľ	2Sb1^{xxi}	-	3 657
II—Ge	2 ^{xii}	3 4642 (3)	Ľ	2—Sb1 ^{xi}	- ,	3 657
II—Ge	2 ^{xiii}	3 4642 (3)	Ľ	2—Ge3 ^{xvi}	-	3 8504
II—Ge	2 ^{xiv}	3 4642 (3)	Ľ	2—Ge3 ^{xvii}	- ,	3 8504
II—Ge	2.xv	3 4642 (3)	Ľ	2—Ge3 ^{xxii}	- ,	3 8504
II—Sbi	-	3.5997	Ľ	2—Ge3 ^{xxiii}		3.8504
II—Sbi	ⁱ	3 5997	G	el—Gel ⁱⁱⁱ		2 5562 (6)
II—Sbi	1 ⁱⁱ	3.5997	G	iel—Ge2	-	2.5269 (4)
II—Sbi	1 1 ⁱⁱⁱ	3 5997	G	$e1 - Ge2^{xv}$,	2.5269 (4)
II—Sb1	l iv	3 5997	G	e1 - Sb3	,	2.5326 (4)
II—Sbi	1 v	3 5997	G	iel—Sb1 ⁱⁱⁱ	,	2.5562 (4)
II—Sb1	l vi	3 5997	G	iel—Sb2	,	2.5269(3)
II—Sbi	l vii	3 5997	G	$e1 - Sb2^{xv}$,	2.5269 (3)
II—Sbi	l viii	3 5997	G	iel—Ge3	,	2.5326 (4)
II—Sb1	l ^{ix}	3 5997	G	e2—Ge2 ^{xxiv}		2.5032 (4)
II—Sb1	1 ×	3 5997	G	e^2 —Sh1	,	2 5269 (3)
II—Sbi	1 xi	3.5997	G	e^2 Sb1 ^{iv}	-	2.5269 (3)
II—Sb2	2	3.4642	G	ie2—Sb1 ^{viii}		2.5269 (3)
II—Sb2	- 2 ⁱ	3.4642	6	e^2 —Sb2 ^{xxiv}		2.5032 (3)
II—Sb2	2 ⁱⁱ	3.4642	S	b3—Sb1		2.5326
11—Sb2	- 2 ⁱⁱⁱ	3.4642	S	b3—Sb1 ^{xxv}		2.5326
11-Sb2	– 2 ^{xii}	3,4642	S	b3—Sb1 ^{xxvi}	-	2.5326
11—Sb2	- 2xiii	3 4642	S	b3—Sb1 ^{xxvii}	-	2.5326
11-Sb2		3,4642	S	b1—Sb1 ⁱⁱⁱ	-	2.5562
11—Sb2	 2 ^{xv}	3.4642	S	b1—Sb2		2.5269
I2—Ge	1 ^{xvi}	3.6570 (3)	S	b1—Sb2 ^{xv}		2.5269

supporting information

I2—Ge1 ^{xvii}	3.6570 (3)	Sb1—Ge3	2.5326
I2—Ge1 ^{xviii}	3.6570 (3)	Sb2—Sb2 ^{xxiv}	2.5032

Symmetry codes: (i) -x, -y, -z; (ii) x, -y, -z; (iii) -x, y, z; (iv) z, x, y; (v) -z, -x, -y; (vi) z, -x, -y; (vii) y, z, x; (ix) -y, -z, -x; (x) -y, -z, -x; (x) y, z, x; (ix) -y, z, x; (ix) -y, -z, -x; (x) -y, -z, x; (x) y, z, x; (iii) -x, -y, z; (iiii) x, y, -z; (ivi) -x, y, z; (ivi) -x, -x; (ivi) y, z, x; (ivi) -y, -z, -x; (x) -y, -z; (x) -z, -z; (x) -z