

metal-organic compounds

 $\beta = 105.342 \ (3)^{\circ}$ $V = 2128.0 \ (5) \ \text{\AA}^3$

Mo $K\alpha$ radiation $\mu = 3.30 \text{ mm}^{-1}$

 $0.28 \times 0.22 \times 0.18 \text{ mm}$

 $T=297~{\rm K}$

Z = 4

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

Substitutional disorder in the ionic diorganoantimony halide adduct [bromido/chlorido(0.33/0.67)][2-(dimethylaminomethyl)phenyl][2-(dimethylammoniomethyl)phenyl]antimony(III) 0.75-bromide 0.25-chloride

Albert P. Soran* and Vilma R. Bojan

Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street, No. 11, RO-400028, Cluj Napoca, Romania Correspondence e-mail: asoran@chem.ubbcluj.ro

Received 20 January 2010; accepted 16 March 2010

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.009 Å; disorder in main residue; R factor = 0.045; wR factor = 0.112; data-to-parameter ratio = 17.3.

The complex, $[SbBr_{0.33}Cl_{0.67}(C_9H_{13}N)(C_9H_{12}N)]$ title Br_{0.75}Cl_{0.25}, exhibits substitutional disorder of both halogen atoms in the asymmetric unit, however, with different occupancies. Thus, the halogen atom bonded to Sb has 0.67 (4) occupancy for Cl and 0.33 (4) for Br, while the anionic halogen atom shows 0.75 (4) occupancy for Br and 0.25 (4) for Cl. An N-H···Cl/Br hydrogen bond is established between the cation and the halide anion. The coordination geometry of the Sb center in the cation is distorted pseudo-trigonalbipyramidal as a result of the strong intramolecular $N \rightarrow Sb$ coordination trans to the Sb-Cl/Br bond. The pendant arm on the second ligand is twisted away from the metal center. The compound crystallizes as a racemate, i.e. a mixture of (R_{N2}, C_{Sb1}) and (S_{N2}, A_{Sb1}) isomers with respect to planar chirality induced by the coordinating N atom and chelateinduced Sb chirality. These isomers are associated through $C_{phenyl}{-}H{\cdots}Cl/Br$ hydrogen bonds, forming a three-dimensional architecture.

Related literature

For an isostructural compound, see: Opris *et al.* (2003). For related ionic organoantimony adducts, see: Sharma *et al.* (2004). For the chirality induced by the coordination of the N atom, see: IUPAC (1979, 2005). For Sb-N distances, see: Emsley (1994).

Experimental

Crystal data

$[SbBr_{0.33}Cl_{0.67}(C_9H_{13}N)(C_9H_{12}N)]$ -
Br _{0.75} Cl _{0.25}
$M_r = 510.07$
Monoclinic, $P2_1/c$
a = 13.8159 (19) Å
b = 12.6775 (18) Å
c = 12.5984 (17) Å

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.458, T_{max} = 0.588$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.112$ S = 1.153745 reflections 216 parameters 2 restraints 15150 measured reflections 3745 independent reflections 3298 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=1.47~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.56~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

	-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \begin{array}{ccc} N1 - H1 \cdots X2^{i} & 0. \\ C12 - H12 \cdots X1^{ii} & 0. \\ C14 - H14 \cdots X1^{iii} & 0. \end{array} $	86 (6)	2.39	3.220 (7)	164
	93	2.91	3.827 (6)	167
	93	2.86	3.766 (8)	164

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004) and *publCIF* (Westrip, 2010).

Financial support from the National University Research Council (Research Project PNII-ID 2052/2009) is greatly appreciated. We also thank the National Center for X-ray Diffraction (Babes-Bolyai University, Cluj-Napoca, Romania) for support of the solid-state structure determinations. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2001).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

- Emsley, J. (1994). Die Elemente. Berlin: Walter de Gruyter.
- IUPAC (1979). Nomenclature of Organic Chemistry. Oxford: Pergamon Press. IUPAC (2005). Nomenclature of Inorganic Chemistry, IUPAC Recommenda-
- tions 2005. Cambridge, England: RSC Publishing. Opris, L. M., Silvestru, A., Silvestru, C., Breunig, H. J. & Lork, E. (2003).
- Dalton Trans. pp. 4367–4374. Sharma, P., Castillo, D., Rosas, N., Cabrera, A., Gomez, E., Toscano, A., Lara, F., Hernandez, S. & Espinosa, G. (2004). J. Organomet. Chem. 689, 2593–
- F., Hernandez, S. & Espinosa, G. (2004). J. Organomet. Chem. 689, 259.
 2600.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Westrip, S. P. (2010). *publCIF*. In preparation.

supporting information

Acta Cryst. (2010). E66, m423-m424 [doi:10.1107/S1600536810009797]

Substitutional disorder in the ionic diorganoantimony halide adduct [bromido/chlorido(0.33/0.67)][2-(dimethylaminomethyl)phenyl][2-(dimethylaminomethyl)phenyl]antimony(III) 0.75-bromide 0.25-chloride

Albert P. Soran and Vilma R. Bojan

S1. Comment

The chlorido/bromido[2-(dimethylaminomethyl)phenyl][2-(dimethylammoniomethyl)-phenyl]antimony chloride/bromide, $[C_{72}H_{100}Br_{4,32}Cl_{3.68}N_8Sb_4]$, exhibits substitutional disorder of both halogen atoms of the asymmetric unit, however with different occupancies. Thus, the halogen bonded to Sb has 0.67 (4) occupancy for Cl and 0.33 (4) for Br while the anionic halogen shows 0.75 (4) occupancy for Br and 0.25 (4) for Cl.

A hydrogen bond is established between the cation and the halide anion $[Cl2/Br2\cdots H1 = 2.39 \text{ Å}; N1 - H1 \cdots Cl2/Br2 = 163.6^{\circ}].$

The title compound is isostructural with $[{2-(Me_2NCH_2)C_6H_4}Sb{C_6H_4(CH_2NHMe_2)-2}]^+[I]^-$ (Opris *et al.*, 2003), having only a slightly smaller cell volume.

The coordination geometry of the Sb center in the cationic fragment is distorted, *peudo*-trigonal bipyramidal as a result of the strong intramolecular N \rightarrow Sb coordination [Sb1—N2 = 2.414 (5) Å] *trans* to the Sb1—Cl1/Br1 bond [(N2—Sb1—Cl1/Br1 = 166.8 (1)°]. The pendant arm on the second ligand is twisted away from the metal center [non-bonding Sb1–N1 = 4.312 (6) Å] (Emsley, 1994), its N1 atom being protonated (Fig. 1.)

Coordination of N atom induces planar chirality, with the phenyl ring as chiral plane and the nitrogen as pilot atom (IUPAC, 1979). This intramolecular coordination of the nitrogen atom to antimony induces chirality at the Sb centre (IUPAC, 2005). Thus the compound crystallizes as a racemate, *i.e.* a mixture of (R_{N2} , C_{Sb1}) and (S_{N2} , A_{Sb1}) isomers (Fig. 2.), with two of each isomers in the unit cell.

Same kind of isomers form ribbon-like *all*-(R_{N2} , C_{Sb1}) and *all*-(S_{N2} , A_{Sb1}) polymers through [H12...,Cl1/Br1 = 2.91 Å] hydrogen bonds (Fig. 3.). These ribbon-like polymers are further associated through hydrogen bonds [H14...,Cl1/Br1 = 2.86 Å] to form a three-dimensional architecture (Fig. 4.)

S2. Experimental

In the attempted synthesis of R_2SbMes from mesitylmagnesium bromide and $R_2SbCl.(R = 2-Me_2NCH_2C_6H_4)$, crystals of the title compound were isolated from a chloroform-hexane mixture, due to partial hydrolysis followed by the protonation of one of the organic ligands.

S3. Refinement

All hydrogen atoms, except H1 attached to N1, were placed in calculated positions using a riding model, with C—H = 0.93-0.97 Å and with Uiso=1.5Ueq (C) for methyl H and Uiso=1.2Ueq (C) for aryl H. The methyl groups were allowed to rotate while retaining tetrahedral geometry. The H1 hydrogen atom attached to N1 nitrogen atom was located from the difference map and the N1—H1 distance was restrained to 0.86 Å. The two halide atoms were refined as substitutional

disorder between chlorine and bromine, with 0.67 occupancy for Cl and 0.33 for Br for Cl1/Br1 and 0.75 occupancy for Br and 0.25 for Cl for Cl2/Br2.

Figure 1

A view of the asymmetric unit showing the atom-numbering scheme at 30% probability thermal ellipsoids for the (R_{N2}, C_{Sb1}) isomer.

Figure 2

Molecular structure at 30% probability ellipsoids of (R_{N2}, C_{Sb1}) (**a**) and (S_{N2}, A_{Sb1}) (**b**) isomers present in crystals of the title compound. Only the cationic fragment is shown. All hydrogen atoms except H1 atoms have been omitted. Symmetry code: (i) 1-x, 1-y, -z.

Figure 3

Unit cell showing polymeric *all*- (R_{N2}, C_{Sb1}) (thick lines) and *all*- (S_{N2}, A_{Sb1}) (thin lines) strands formed as a result of H12….Cl1/Br1 hydrogen bonding. All hydrogen atoms except H12 and H1 atoms have been omitted.

Figure 4

Three-dimensional network formed by polymeric all- (R_{N2}, C_{Sb1}) and all- (S_{N2}, A_{Sb1}) strands bridged by H14…Cl1/Br1 hydrogen bonds (thick green lines). All hydrogen atoms except H12, H14 and H1 atoms have been omitted.

[bromido/chlorido(0.33/0.67)][2-(dimethylaminomethyl)phenyl][2-(dimethylammoniomethyl)phenyl]antimony(III) 0.75-bromide 0.25-chloride

Crystal data

$[SbBr_{0.33}Cl_{0.67}(C_9H_{13}N)(C_9H_{12}N)]Br_{0.75}Cl_{0.25}$
$M_r = 510.07$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 13.8159 (19) Å
b = 12.6775 (18) Å
c = 12.5984 (17) Å
$\beta = 105.342 \ (3)^{\circ}$
V = 2128.0 (5) Å ³
Z = 4

Data collection

Bruker SMART APEX CCD area-detector	15150 measured reflections
diffractometer	3745 independent reflections
Radiation source: fine-focus sealed tube	3298 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.044$
phi and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -16 \rightarrow 16$
(SADABS; Bruker, 2000)	$k = -15 \rightarrow 15$
$T_{\min} = 0.458, \ T_{\max} = 0.588$	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.112$	neighbouring sites
<i>S</i> = 1.15	H atoms treated by a mixture of independent
3745 reflections	and constrained refinement
216 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0441P)^2 + 3.758P]$
2 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{ m max} < 0.001$
direct methods	$\Delta ho_{ m max} = 1.47 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

F(000) = 1000 $D_x = 1.581 \text{ Mg m}^{-3}$

 $\theta = 2.3-22.7^{\circ}$ $\mu = 3.30 \text{ mm}^{-1}$ T = 297 KBlock, colourless $0.28 \times 0.22 \times 0.18 \text{ mm}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 3355 reflections

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br2	0.96752 (7)	0.33618 (8)	0.40075 (9)	0.0779 (3)	0.75
Br1	0.25490 (8)	0.45952 (8)	0.05792 (9)	0.0561 (3)	0.33

C1	0.2796 (4)	0.5553 (4)	0.3124 (4)	0.0415 (13)	
C2	0.1990 (5)	0.5470 (5)	0.3592 (5)	0.0474 (14)	
C3	0.2080 (5)	0.4808 (5)	0.4502 (5)	0.0593 (17)	
H3	0.1550	0.4756	0.4825	0.071*	
C4	0.2929 (6)	0.4238 (6)	0.4923 (5)	0.069 (2)	
H4	0.2968	0.3790	0.5517	0.082*	
C5	0.3730 (5)	0.4323 (5)	0.4473 (5)	0.0623 (18)	
H5	0.4315	0.3943	0.4770	0.075*	
C6	0.3662 (5)	0.4972 (5)	0.3581 (5)	0.0503 (15)	
H6	0.4204	0.5024	0.3277	0.060*	
C7	0.1020 (5)	0.6079 (5)	0.3195 (5)	0.0540 (16)	
H7A	0.0884	0.6451	0 3813	0.065*	
H7R	0.1100	0.6601	0.2662	0.065*	
C8	0.0235 (6)	0.4925(8)	0.1645 (6)	0.003	
H8A	-0.0344	0.4499	0.1326	0.141*	
	0.037	0.4499	0.1320	0.141	
	0.0827	0.4494	0.1790	0.141*	
	-0.0283	0.3478	0.1142 0.2520 (0)	0.141°	
	-0.0813(0)	0.0012 (8)	0.2320 (9)	0.100 (5)	
ПУА	-0.0800	0.0002	0.2040	0.150*	
H9B	-0.0867	0.6264	0.3221	0.150*	
H9C	-0.13/9	0.5572	0.2195	0.150*	
C10	0.4296 (4)	0.6542 (4)	0.1811 (5)	0.0414 (13)	
CII	0.4834 (4)	0.7263 (4)	0.2586 (5)	0.0435 (13)	
C12	0.5832 (5)	0.7454 (5)	0.2665 (6)	0.0598 (17)	
H12	0.6190	0.7925	0.3190	0.072*	
C13	0.6304 (5)	0.6950 (5)	0.1970 (6)	0.0594 (17)	
H13	0.6975	0.7094	0.2022	0.071*	
C14	0.5804 (5)	0.6252 (5)	0.1218 (6)	0.0564 (16)	
H14	0.6131	0.5908	0.0759	0.068*	
C15	0.4796 (4)	0.6046 (5)	0.1128 (5)	0.0481 (14)	
H15	0.4451	0.5569	0.0602	0.058*	
C16	0.4306 (5)	0.7800 (5)	0.3341 (5)	0.0559 (16)	
H16A	0.4337	0.7359	0.3979	0.067*	
H16B	0.4634	0.8465	0.3595	0.067*	
C17	0.3179 (6)	0.8851 (5)	0.1948 (6)	0.0618 (18)	
H17A	0.3399	0.9496	0.2336	0.093*	
H17B	0.2495	0.8926	0.1521	0.093*	
H17C	0.3596	0.8696	0.1468	0.093*	
C18	0.2643 (6)	0.8243 (6)	0.3521 (6)	0.0659 (19)	
H18A	0.2700	0.7678	0.4042	0.099*	
H18B	0.1952	0.8329	0.3122	0.099*	
H18C	0.2885	0.8884	0.3905	0.099*	
Cl1	0.25490 (8)	0.45952 (8)	0.05792 (9)	0.0561 (3)	0.67
C12	0.96752(7)	0.33618 (8)	0.40075 (9)	0.0779(3)	0.25
H1	0.008 (6)	0.492 (5)	0.315 (5)	0.08 (3)*	0.20
N1	0.0135(4)	0.5386(5)	0.2675(5)	0.0636(15)	
N2	0.3249(4)	0 7990 (4)	0.2740(4)	0.0486(12)	
Sh1	$0.52 \pm 5(\pm)$ 0.27062 (3)	0.7990(7) 0.64376(3)	0.2(70(7)) 0.16318(3)	0.0400(12) 0.03007(15)	
501	0.27002(3)	0.04370(3)	0.10510(5)	0.05707 (15)	

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br2	0.0744 (6)	0.0738 (6)	0.0876 (7)	-0.0200 (5)	0.0252 (5)	-0.0053 (5)
Br1	0.0655 (7)	0.0544 (6)	0.0513 (6)	0.0023 (5)	0.0203 (5)	-0.0077 (5)
C1	0.053 (3)	0.041 (3)	0.030 (3)	0.002 (3)	0.010 (2)	0.000 (2)
C2	0.052 (4)	0.049 (3)	0.039 (3)	-0.006 (3)	0.009 (3)	-0.002 (3)
C3	0.064 (4)	0.073 (5)	0.043 (3)	-0.011 (4)	0.017 (3)	0.009 (3)
C4	0.085 (5)	0.071 (5)	0.042 (4)	-0.007 (4)	0.004 (4)	0.015 (3)
C5	0.069 (5)	0.053 (4)	0.054 (4)	0.007 (3)	-0.004 (3)	0.011 (3)
C6	0.050 (4)	0.054 (4)	0.046 (3)	0.004 (3)	0.012 (3)	0.001 (3)
C7	0.056 (4)	0.057 (4)	0.056 (4)	0.000 (3)	0.026 (3)	0.003 (3)
C8	0.077 (6)	0.135 (8)	0.064 (5)	-0.026 (5)	0.010 (4)	-0.011 (5)
C9	0.044 (4)	0.111 (7)	0.145 (9)	0.006 (4)	0.023 (5)	0.025 (6)
C10	0.042 (3)	0.044 (3)	0.040 (3)	0.002 (2)	0.013 (2)	0.004 (2)
C11	0.050 (3)	0.039 (3)	0.039 (3)	0.004 (3)	0.006 (3)	0.003 (2)
C12	0.054 (4)	0.052 (4)	0.063 (4)	-0.010 (3)	-0.002 (3)	0.005 (3)
C13	0.048 (4)	0.056 (4)	0.075 (5)	-0.001 (3)	0.018 (3)	0.013 (3)
C14	0.052 (4)	0.061 (4)	0.062 (4)	0.008 (3)	0.024 (3)	0.005 (3)
C15	0.050 (4)	0.052 (3)	0.041 (3)	0.000 (3)	0.012 (3)	-0.001 (3)
C16	0.062 (4)	0.052 (4)	0.049 (4)	0.000 (3)	0.007 (3)	-0.013 (3)
C17	0.076 (5)	0.040 (3)	0.067 (4)	0.003 (3)	0.015 (4)	0.003 (3)
C18	0.082 (5)	0.061 (4)	0.059 (4)	0.008 (4)	0.026 (4)	-0.018 (3)
Cl1	0.0655 (7)	0.0544 (6)	0.0513 (6)	0.0023 (5)	0.0203 (5)	-0.0077 (5)
Cl2	0.0744 (6)	0.0738 (6)	0.0876 (7)	-0.0200 (5)	0.0252 (5)	-0.0053 (5)
N1	0.050 (3)	0.076 (4)	0.067 (4)	-0.001 (3)	0.018 (3)	0.013 (3)
N2	0.062 (3)	0.041 (3)	0.044 (3)	0.004 (2)	0.016 (2)	-0.006 (2)
Sb1	0.0428 (2)	0.0423 (2)	0.0326 (2)	0.00455 (16)	0.01080 (16)	0.00087 (16)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—Sb1	2.6662 (11)	C10—C11	1.398 (8)
C1—C6	1.393 (8)	C10—Sb1	2.152 (6)
C1—C2	1.396 (8)	C11—C12	1.378 (9)
C1—Sb1	2.164 (5)	C11—C16	1.507 (8)
C2—C3	1.400 (8)	C12—C13	1.379 (9)
C2—C7	1.512 (9)	C12—H12	0.9300
C3—C4	1.359 (10)	C13—C14	1.347 (9)
С3—Н3	0.9300	C13—H13	0.9300
C4—C5	1.375 (10)	C14—C15	1.392 (9)
C4—H4	0.9300	C14—H14	0.9300
C5—C6	1.376 (8)	C15—H15	0.9300
С5—Н5	0.9300	C16—N2	1.476 (8)
С6—Н6	0.9300	C16—H16A	0.9700
C7—N1	1.507 (8)	C16—H16B	0.9700
С7—Н7А	0.9700	C17—N2	1.465 (8)
С7—Н7В	0.9700	C17—H17A	0.9600
C8—N1	1.463 (10)	C17—H17B	0.9600

C8—H8A	0.9600	C17—H17C	0.9600
C8—H8B	0.9600	C18—N2	1.486 (8)
C8—H8C	0.9600	C18—H18A	0.9600
C9—N1	1.500 (9)	C18—H18B	0.9600
С9—Н9А	0.9600	C18—H18C	0.9600
С9—Н9В	0.9600	N1—H1	0.86 (6)
С9—Н9С	0.9600	N2—Sb1	2.414 (5)
C10—C15	1.388 (8)		
C6-C1-C2	118.6 (5)	C14—C13—C12	120.7 (6)
C6-C1-Sb1	118.6 (4)	C14—C13—H13	119.6
C2-C1-Sb1	122.5 (4)	C12—C13—H13	119.6
C1—C2—C3	118.9 (6)	C13—C14—C15	119.7 (6)
C1—C2—C7	123.9 (5)	C13—C14—H14	120.1
C3—C2—C7	117.2 (6)	C15—C14—H14	120.1
C4—C3—C2	121.3 (6)	C10—C15—C14	121.1 (6)
С4—С3—Н3	119.4	C10—C15—H15	119.5
С2—С3—Н3	119.4	C14—C15—H15	119.5
C3—C4—C5	120.2 (6)	N2-C16-C11	109.2 (5)
C3—C4—H4	119.9	N2—C16—H16A	109.8
С5—С4—Н4	119.9	C11—C16—H16A	109.8
C4—C5—C6	119.6 (6)	N2—C16—H16B	109.8
С4—С5—Н5	120.2	C11—C16—H16B	109.8
С6—С5—Н5	120.2	H16A—C16—H16B	108.3
C5-C6-C1	121.4 (6)	N2—C17—H17A	109.5
С5—С6—Н6	119.3	N2—C17—H17B	109.5
C1—C6—H6	119.3	H17A—C17—H17B	109.5
N1	113.1 (5)	N2—C17—H17C	109.5
N1—C7—H7A	109.0	H17A—C17—H17C	109.5
С2—С7—Н7А	109.0	H17B—C17—H17C	109.5
N1—C7—H7B	109.0	N2—C18—H18A	109.5
С2—С7—Н7В	109.0	N2—C18—H18B	109.5
H7A—C7—H7B	107.8	H18A—C18—H18B	109.5
N1—C8—H8A	109.5	N2-C18-H18C	109.5
N1—C8—H8B	109.5	H18A—C18—H18C	109.5
H8A—C8—H8B	109.5	H18B—C18—H18C	109.5
N1—C8—H8C	109.5	C8—N1—C9	112.3 (7)
H8A—C8—H8C	109.5	C8—N1—C7	111.3 (5)
H8B—C8—H8C	109.5	C9—N1—C7	109.2 (6)
N1—C9—H9A	109.5	C8—N1—H1	113 (5)
N1—C9—H9B	109.5	C9—N1—H1	103 (5)
Н9А—С9—Н9В	109.5	C7—N1—H1	108 (5)
N1—C9—H9C	109.5	C17—N2—C16	110.4 (5)
Н9А—С9—Н9С	109.5	C17—N2—C18	110.0 (5)
Н9В—С9—Н9С	109.5	C16—N2—C18	110.5 (5)
C15—C10—C11	118.0 (5)	C17—N2—Sb1	105.0 (4)
C15—C10—Sb1	124.6 (4)	C16—N2—Sb1	106.1 (3)
C11—C10—Sb1	116.9 (4)	C18—N2—Sb1	114.6 (4)
			· · · ·

C12—C11—C10	120.2 (6)	C10—Sb1—C1	96.8 (2)
C12—C11—C16	121.2 (6)	C10—Sb1—N2	74.76 (19)
C10-C11-C16	118.6 (5)	C1—Sb1—N2	88.97 (18)
C11—C12—C13	120.3 (6)	C10—Sb1—Br1	93.01 (15)
C11—C12—H12	119.8	C1—Sb1—Br1	87.51 (14)
C13—C12—H12	119.8	N2—Sb1—Br1	166.78 (12)
C6—C1—C2—C3	0.0 (8)	C2-C7-N1-C8	-66.9 (7)
Sb1—C1—C2—C3	174.4 (4)	C2-C7-N1-C9	168.5 (6)
C6-C1-C2-C7	178.3 (6)	C11—C16—N2—C17	-73.5 (6)
Sb1—C1—C2—C7	-7.3 (8)	C11—C16—N2—C18	164.6 (5)
C1—C2—C3—C4	-0.9 (10)	C11-C16-N2-Sb1	39.8 (5)
C7—C2—C3—C4	-179.3 (6)	C15-C10-Sb1-C1	112.6 (5)
C2—C3—C4—C5	1.5 (11)	C11—C10—Sb1—C1	-75.7 (4)
C3—C4—C5—C6	-1.2 (11)	C15-C10-Sb1-N2	-160.4 (5)
C4—C5—C6—C1	0.3 (10)	C11—C10—Sb1—N2	11.3 (4)
C2-C1-C6-C5	0.3 (9)	C15-C10-Sb1-Br1	24.7 (5)
Sb1—C1—C6—C5	-174.3 (5)	C11-C10-Sb1-Br1	-163.6 (4)
C1—C2—C7—N1	112.2 (6)	C6-C1-Sb1-C10	-22.0 (5)
C3—C2—C7—N1	-69.5 (7)	C2-C1-Sb1-C10	163.7 (5)
C15—C10—C11—C12	-0.9 (8)	C6—C1—Sb1—N2	-96.5 (5)
Sb1—C10—C11—C12	-173.1 (4)	C2-C1-Sb1-N2	89.1 (5)
C15—C10—C11—C16	-179.4 (5)	C6-C1-Sb1-Br1	70.8 (4)
Sb1—C10—C11—C16	8.3 (7)	C2-C1-Sb1-Br1	-103.6 (4)
C10-C11-C12-C13	1.1 (9)	C17—N2—Sb1—C10	88.5 (4)
C16—C11—C12—C13	179.6 (6)	C16—N2—Sb1—C10	-28.5 (4)
C11—C12—C13—C14	-1.1 (10)	C18—N2—Sb1—C10	-150.6 (5)
C12—C13—C14—C15	0.9 (10)	C17—N2—Sb1—C1	-174.2 (4)
C11—C10—C15—C14	0.6 (9)	C16—N2—Sb1—C1	68.8 (4)
Sb1-C10-C15-C14	172.3 (5)	C18—N2—Sb1—C1	-53.3 (4)
C13—C14—C15—C10	-0.7 (9)	C17—N2—Sb1—Br1	111.3 (6)
C12-C11-C16-N2	146.5 (6)	C16—N2—Sb1—Br1	-5.7 (8)
C10-C11-C16-N2	-34.9 (7)	C18—N2—Sb1—Br1	-127.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
N1—H1···Cl2 ⁱ	0.86 (6)	2.39	3.220 (7)	164
C12—H12···Cl1 ⁱⁱ	0.93	2.91	3.827 (6)	167
C14—H14····Cl1 ⁱⁱⁱ	0.93	2.86	3.766 (8)	164

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) -*x*+1, -*y*+1, -*z*.