

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diacridinium hexachloridoplatinate(IV) dihydrate

Kwang Ha

School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 10 February 2010; accepted 12 March 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.020 Å; R factor = 0.059; wR factor = 0.174; data-to-parameter ratio = 16.1.

The asymmetric unit of the title compound, (C₁₃H₁₀N)₂-[PtCl₆]·2H₂O, contains a protonated acridine cation, one half of a $[PtCl_6]^{2-}$ dianionic complex and a solvent water molecule. The octahedral $[PtCl_6]^{2-}$ dianion is located on an inversion centre. $\pi - \pi$ interactions between neighboring acridinium cations produce stacks along the *a* axis; the shortest distance between the centroids of the six-membered rings within the cations is 3.553 (9) Å. In the crystal, two independent intermolecular O-H···Cl hydrogen bonds, both involving the same Cl atom of the anion as acceptor, give rise to chains also running along the *a* axis; in addition each water molecule, as a hydrogen-bond acceptor, is linked to the acridinium N-H group.

Related literature

For related acridinium salts, see: Hafiz (2006); Veldhuizen et al. (1997). For the crystal structures of $[PtCl_6]^{2-}$ complexes, see: Karaca et al. (2009); Yousefi et al. (2007); Zordan & Brammer (2004).

Experimental

Crystal data $(C_{13}H_{10}N)_{2}[PtCl_{6}]\cdot 2H_{2}O$

 $M_r = 804.26$

 \times 0.06 mm

Triclinic, $P\overline{1}$	$V = 705.29 (13) \text{ Å}^3$
a = 7.4781 (8) Å	Z = 1
b = 9.8973 (10) Å	Mo $K\alpha$ radiation
c = 10.7226 (12) Å	$\mu = 5.57 \text{ mm}^{-1}$
$\alpha = 70.675 \ (2)^{\circ}$	$T = 200 { m K}$
$\beta = 71.505 \ (2)^{\circ}$	$0.24 \times 0.20 \times 0.06$
$\gamma = 77.862 \ (2)^{\circ}$	

Data collection

Bruker SMART 1000 CCD	4295 measured reflections
diffractometer	2725 independent reflections
Absorption correction: multi-scan	2536 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.029$
$T_{\min} = 0.577, \ T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	169 parameters
$wR(F^2) = 0.174$	H-atom parameters constrained
S = 1.21	$\Delta \rho_{\rm max} = 1.99 \text{ e } \text{\AA}^{-3}$
2725 reflections	$\Delta \rho_{\rm min} = -2.96 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.88	1.94	2.782 (16)	161
0.84	2.74	3.485 (12)	149
0.84	2.62	3.342 (12)	145
	<i>D</i> -H 0.88 0.84 0.84	D−H H···A 0.88 1.94 0.84 2.74 0.84 2.62	D-H H···A D···A 0.88 1.94 2.782 (16) 0.84 2.74 3.485 (12) 0.84 2.62 3.342 (12)

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 1, -z.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094056).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2119).

References

- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hafiz, H. R. (2006). Phys. Stat. Sol. (A), 203, 878-885.
- Karaca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m235.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

- Veldhuizen, Y. S. J., Smeets, W. J. J., Veldman, N., Spek, A. L., Faulmann, C., Auban-Senzier, P., Jérome, D., Paulus, P. M., Haasnoot, J. G. & Reedijk, J. (1997). Inorg. Chem. 36, 4930-4937.
- Yousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114-m3115.
- Zordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512-519.

supporting information

Acta Cryst. (2010). E66, m425 [doi:10.1107/S1600536810009566]

Diacridinium hexachloridoplatinate(IV) dihydrate

Kwang Ha

S1. Comment

The asymmetric unit of the title compound, $(C_{13}H_{10}N)_2[PtCl_6].2H_2O$, contains a protonated acridine cation, one half of a $[PtCl_6]^{2-}$ dianionic complex and a solvent water molecule (Fig. 1). The anion occupies a special position in the inversion centre; the Pt—Cl bond lengths, 2.370 (3), 2.377 (3) and 2.379 (3) Å, are similar to those found in other PtCl_6 salts, i.e. $(C_{13}H_{10}N)_2[PtCl_6].2C_2H_6OS$ (Karaca *et al.*, 2009), $(C_{14}H_{13}N_2)_2[PtCl_6]$ (Yousefi *et al.*, 2007) and $(HPyX-3)_2[PtCl_6].2H_2O$ (X = Br or I) (Zordan & Brammer, 2004).

The essentially planar acridinium cations [maximum deviation from the least-squares plane is equal to 0.025 (17) Å], are stacked in columns along the a-axis (Fig. 2); the shortest distance between the centroids of the six-membered rings in neighboring cations in the stack is equal to 3.553 (9) Å. Two independent O-H…Cl bonds, both involving atom Cl1 of the anion as acceptor (Table 1), give rise to the chains also running along the a-axis; in addition each water molecule, as an H-bond acceptor is linked to the acridinium N-H group (Fig. 2).

S2. Experimental

To a solution of K_2PtCl_6 (0.1999 g, 0.411 mmol) in H_2O (20 ml) was added acridine (0.1548 g, 0.864 mmol) and the mixture was refluxed for 7 h. The precipitate was then separated by filtration, washed with water and acetone, and dried at 50 °C, to give an orange powder (0.2198 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH_3CN solution.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms [C—H = 0.95 Å, N—H = 0.88 Å and $U_{iso}(H) = 1.2U_{eq}(C, N)$]. The H atoms of the solvent water molecule were located from difference maps then allowed to ride on their parent O atom in the final cycles of refinement [O—H = 0.84 Å; $U_{iso}(H)$ = 1.5 $U_{eq}(O)$]. The highest peak (1.99 e Å⁻³) and the deepest hole (-2.96 e Å⁻³) in the difference Fourier map are located 0.60 and 0.84 Å from the Cl3 and Pt1 atoms, respectively.

Figure 1

The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius. Unlabelled atoms are related to the reference atoms by the (1-x, 1-y, -z) symmetry transformation.

Figure 2

Packing diagram for the crystal of the title compound viewed down the c-axis; H-bonds are drawn as dashed lines.

Diacridinium hexachloridoplatinate(IV) dihydrate

Crystal data	
$(C_{13}H_{10}N)_{2}[PtCl_{6}] \cdot 2H_{2}O$ $M_{r} = 804.26$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.4781 (8) Å b = 9.8973 (10) Å c = 10.7226 (12) Å a = 70.675 (2)° $\beta = 71.505$ (2)° $\gamma = 77.862$ (2)° V = 705.29 (13) Å ³	Z = 1 F(000) = 390 $D_x = 1.894$ Mg m ⁻³ Mo Ka radiation, $\lambda = 0.71073$ Å Cell parameters from 2945 reflections $\theta = 2.6-26.0^{\circ}$ $\mu = 5.57$ mm ⁻¹ T = 200 K Plate, orange $0.24 \times 0.20 \times 0.06$ mm
Data collection	
Bruker SMART 1000 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{\min} = 0.577, T_{\max} = 1.000$

4295 measured reflections	$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 2.1^{\circ}$
2725 independent reflections	$h = -9 \rightarrow 8$
2536 reflections with $I > 2\sigma(I)$	$k = -12 \rightarrow 12$
$R_{\rm int} = 0.029$	$l = -13 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.174$	neighbouring sites
S = 1.21	H-atom parameters constrained
2725 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0248P)^2 + 22.3646P]$
169 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.99 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -2.96 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pt1	0.5000	0.5000	0.0000	0.0289 (2)	
Cl1	0.1916 (4)	0.4938 (3)	0.1558 (3)	0.0282 (7)	
Cl2	0.3696 (4)	0.5171 (3)	-0.1801 (3)	0.0289 (7)	
C13	0.5401 (5)	0.2446 (3)	0.0506 (3)	0.0315 (7)	
N1	0.8227 (15)	0.1042 (13)	0.3453 (12)	0.035 (3)	
H1	0.8630	0.1656	0.2645	0.042*	
C1	0.8023 (17)	0.1451 (13)	0.4598 (13)	0.027 (3)	
C2	0.842 (2)	0.2841 (15)	0.4478 (15)	0.035 (3)	
H2	0.8838	0.3500	0.3600	0.043*	
C3	0.820(2)	0.3208 (17)	0.5619 (18)	0.047 (4)	
H3	0.8465	0.4130	0.5553	0.056*	
C4	0.758 (2)	0.2231 (18)	0.6908 (16)	0.046 (4)	
H4	0.7445	0.2515	0.7699	0.055*	
C5	0.716 (2)	0.0926 (16)	0.7086 (16)	0.040 (3)	
H5	0.6727	0.0301	0.7982	0.048*	
C6	0.7368 (19)	0.0490 (15)	0.5907 (16)	0.037 (3)	
C7	0.694 (2)	-0.0880 (15)	0.6011 (14)	0.036 (3)	
H7	0.6495	-0.1540	0.6883	0.043*	
C8	0.7195 (18)	-0.1244 (15)	0.4794 (14)	0.032 (3)	
C9	0.678 (2)	-0.2605 (15)	0.4860 (15)	0.038 (3)	
H9	0.6376	-0.3289	0.5724	0.045*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0.698 (2)	-0.2930 (16)	0.3666 (16)	0.040 (3)	
H10	0.6665	-0.3824	0.3696	0.049*	
C11	0.765 (2)	-0.1910 (17)	0.2399 (17)	0.047 (4)	
H11	0.7788	-0.2149	0.1582	0.057*	
C12	0.810(2)	-0.0609 (17)	0.2278 (15)	0.040 (3)	
H12	0.8583	0.0039	0.1405	0.048*	
C13	0.784 (2)	-0.0259 (14)	0.3493 (16)	0.037 (3)	
01	0.0214 (17)	0.2503 (13)	0.0838 (11)	0.054 (3)	
H1A	-0.0687	0.3001	0.0522	0.081*	
H1B	0.1071	0.2824	0.0970	0.081*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Pt1	0.0362 (4)	0.0291 (4)	0.0234 (4)	-0.0105 (3)	-0.0078 (3)	-0.0060 (3)
Cl1	0.0281 (16)	0.0351 (17)	0.0217 (14)	-0.0124 (13)	0.0031 (12)	-0.0124 (13)
Cl2	0.0365 (17)	0.0379 (17)	0.0221 (15)	-0.0061 (13)	-0.0158 (13)	-0.0125 (13)
C13	0.049 (2)	0.0154 (14)	0.0234 (15)	-0.0030 (13)	-0.0029 (13)	-0.0041 (12)
N1	0.024 (6)	0.043 (7)	0.039 (7)	-0.006 (5)	-0.008 (5)	-0.012 (5)
C1	0.023 (6)	0.027 (6)	0.028 (7)	-0.013 (5)	0.003 (5)	-0.007 (5)
C2	0.036 (8)	0.036 (8)	0.038 (8)	0.004 (6)	-0.018 (6)	-0.012 (6)
C3	0.042 (9)	0.035 (8)	0.072 (12)	-0.001 (7)	-0.024 (8)	-0.018 (8)
C4	0.049 (9)	0.055 (10)	0.046 (9)	0.014 (8)	-0.017 (7)	-0.036 (8)
C5	0.038 (8)	0.042 (8)	0.040 (8)	-0.001 (6)	-0.008 (6)	-0.016 (7)
C6	0.028 (7)	0.034 (7)	0.052 (9)	0.010 (6)	-0.017 (6)	-0.017 (7)
C7	0.036 (8)	0.035 (7)	0.032 (7)	0.003 (6)	-0.012 (6)	-0.006 (6)
C8	0.024 (7)	0.039 (8)	0.039 (8)	0.002 (5)	-0.015 (6)	-0.019 (6)
C9	0.040 (8)	0.027 (7)	0.042 (8)	-0.003 (6)	-0.016 (7)	0.000 (6)
C10	0.043 (8)	0.037 (8)	0.051 (9)	-0.006 (6)	-0.019 (7)	-0.017 (7)
C11	0.056 (10)	0.048 (9)	0.051 (10)	0.015 (8)	-0.027 (8)	-0.031 (8)
C12	0.032 (8)	0.047 (9)	0.039 (8)	0.010 (6)	-0.007 (6)	-0.020 (7)
C13	0.034 (8)	0.024 (7)	0.053 (9)	0.012 (6)	-0.018 (7)	-0.012 (6)
01	0.052 (7)	0.064 (8)	0.039 (6)	-0.005 (6)	-0.008 (5)	-0.012 (6)

Geometric parameters (Å, °)

Pt1—Cl2 ⁱ	2.370 (3)	C5—C6	1.42 (2)
Pt1—Cl2	2.370 (3)	С5—Н5	0.9500
Pt1—Cl3 ⁱ	2.377 (3)	C6—C7	1.42 (2)
Pt1—Cl3	2.377 (3)	C7—C8	1.412 (19)
Pt1—Cl1 ⁱ	2.379 (3)	С7—Н7	0.9500
Pt1—Cl1	2.379 (3)	C8—C13	1.42 (2)
N1-C13	1.362 (18)	C8—C9	1.418 (19)
N1C1	1.370 (17)	C9—C10	1.38 (2)
N1—H1	0.8800	С9—Н9	0.9500
C1—C6	1.411 (19)	C10—C11	1.41 (2)
C1—C2	1.424 (18)	C10—H10	0.9500
C2—C3	1.34 (2)	C11—C12	1.36 (2)

С2—Н2	0.9500	C11—H11	0.9500
C3—C4	1.40 (2)	C12—C13	1.40 (2)
С3—Н3	0.9500	C12—H12	0.9500
C4—C5	1.33 (2)	O1—H1A	0.8400
C4—H4	0.9500	O1—H1B	0.8400
Cl2 ⁱ —Pt1—Cl2	180.0	C3—C4—H4	118.2
Cl2 ⁱ —Pt1—Cl3 ⁱ	89.44 (11)	C4—C5—C6	118.4 (15)
Cl2—Pt1—Cl3 ⁱ	90.56 (11)	С4—С5—Н5	120.8
Cl2 ⁱ —Pt1—Cl3	90.56 (11)	С6—С5—Н5	120.8
Cl2—Pt1—Cl3	89.44 (11)	C1—C6—C7	119.4 (13)
Cl3 ⁱ —Pt1—Cl3	180.00 (16)	C1—C6—C5	118.8 (13)
Cl2 ⁱ —Pt1—Cl1 ⁱ	90.27 (11)	C7—C6—C5	121.8 (14)
Cl2—Pt1—Cl1 ⁱ	89.73 (11)	C8—C7—C6	118.7 (13)
$Cl3^{i}$ — $Pt1$ — $Cl1^{i}$	90.55 (11)	С8—С7—Н7	120.6
Cl3—Pt1—Cl1 ⁱ	89.45 (11)	С6—С7—Н7	120.6
Cl2 ⁱ —Pt1—Cl1	89.73 (11)	C7—C8—C13	120.8 (13)
Cl2—Pt1—Cl1	90.27 (11)	C7—C8—C9	120.3 (13)
Cl3 ⁱ —Pt1—Cl1	89.45 (11)	C13—C8—C9	118.9 (12)
Cl3—Pt1—Cl1	90.55 (11)	C10—C9—C8	119.7 (13)
Cl1 ⁱ —Pt1—Cl1	180.00 (10)	С10—С9—Н9	120.1
C13—N1—C1	123.9 (12)	С8—С9—Н9	120.1
C13—N1—H1	118.0	C9—C10—C11	118.7 (13)
C1—N1—H1	118.0	C9—C10—H10	120.6
N1—C1—C6	119.2 (11)	С11—С10—Н10	120.6
N1—C1—C2	120.8 (12)	C12—C11—C10	123.9 (14)
C6—C1—C2	119.9 (12)	C12—C11—H11	118.1
C3—C2—C1	119.3 (14)	C10—C11—H11	118.1
C3—C2—H2	120.4	C11—C12—C13	117.3 (15)
C1—C2—H2	120.4	C11—C12—H12	121.4
C2—C3—C4	119.9 (14)	С13—С12—Н12	121.4
С2—С3—Н3	120.0	N1—C13—C12	120.7 (14)
С4—С3—Н3	120.0	N1—C13—C8	117.9 (13)
C5—C4—C3	123.7 (14)	C12—C13—C8	121.4 (13)
C5—C4—H4	118.2	H1A—O1—H1B	125.9
C13—N1—C1—C6	-0.4 (19)	C6—C7—C8—C13	-1 (2)
C13—N1—C1—C2	-178.9 (12)	C6—C7—C8—C9	180.0 (12)
N1—C1—C2—C3	179.7 (13)	C7—C8—C9—C10	177.9 (13)
C6-C1-C2-C3	1 (2)	C13—C8—C9—C10	-1 (2)
C1—C2—C3—C4	0 (2)	C8—C9—C10—C11	2 (2)
C2—C3—C4—C5	-1 (2)	C9—C10—C11—C12	-1 (2)
C3—C4—C5—C6	1 (2)	C10-C11-C12-C13	-2 (2)
N1—C1—C6—C7	0.3 (19)	C1—N1—C13—C12	-179.3 (12)
C2—C1—C6—C7	178.8 (12)	C1—N1—C13—C8	-0.1 (19)
N1—C1—C6—C5	-179.8 (12)	C11—C12—C13—N1	-178.5 (13)
C2—C1—C6—C5	-1.3 (19)	C11—C12—C13—C8	2 (2)
C4—C5—C6—C1	0(2)	C7—C8—C13—N1	0.6 (19)
	· /		× /

C4—C5—C6—C7	-179.7 (14)	C9—C8—C13—N1	179.9 (12)
C1—C6—C7—C8	0.2 (19)	C7—C8—C13—C12	179.8 (13)
C5—C6—C7—C8	-179.7 (13)	C9—C8—C13—C12	-1 (2)

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱⁱ	0.88	1.94	2.782 (16)	161
O1—H1A···Cl1 ⁱⁱⁱ	0.84	2.74	3.485 (12)	149
O1—H1B···Cl1	0.84	2.62	3.342 (12)	145

Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) –*x*, –*y*+1, –*z*.