metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aquabis(isonicotinamide- κN^1)bis(4methylbenzoato)- $\kappa O: \kappa^2 O.O'$ cadmium(II) monohydrate

Hacali Necefoğlu,^a Efdal Cimen,^a Barıs Tercan,^b Yasemin Süzen^c and Tuncer Hökelek^d*

^aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, ^bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, ^cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and ^dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 1 March 2010; accepted 4 March 2010

Key indicators: single-crystal X-ray study; T = 102 K; mean σ (C–C) = 0.002 Å; R factor = 0.020; wR factor = 0.053; data-to-parameter ratio = 17.7.

In the crystal structure of the title compound, $[Cd(C_8H_7O_2)_2]$ -(C₆H₆N₂O)₂(H₂O)]·H₂O, the Cd^{II} cation is coordinated by two 4-methylbenzoate (PMB) anions, two isonicotinamide (INA) ligands and one water molecule in a distorted octahedral CdN₂O₄ geometry. One of PMB ions acts as a bidentate ligand while the other and the two INA are monodentate ligands. An $O-H \cdots O$ hydrogen bond links the uncoordinated water molecule to the carboxyl groups of the complex. The dihedral angles between the carboxyl groups and the adjacent benzene rings are 10.28 (11) and 21.24 $(9)^{\circ}$, while the two benzene rings and the two pyridine rings are oriented at dihedral angles of 6.90(4) and $88.64(4)^{\circ}$, respectively. In the crystal structure, O-H···O and N-H...O hydrogen bonds link the molecules into a supramolecular structure. A π - π contact between the benzene rings [centroid–centroid distance = 3.911(1)Å] may further stabilize the crystal structure. Weak $C-H\cdots\pi$ interactions involving the pyridine rings also occur in the crystal structure.

Related literature

For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d).

Experimental

Crystal data

$\beta = 69.776 \ (2)^{\circ}$
$\gamma = 71.746 \ (3)^{\circ}$
V = 1416.18 (6) Å ³
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.83 \text{ mm}^{-1}$
T = 102 K
$0.40\times0.20\times0.15$

Data collection

Bruker Kappa APEXII CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.819, \ T_{\max} = 0.881$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.020$	H atoms treated by a mixture of
$wR(F^2) = 0.053$	independent and constrained
S = 1.14	refinement
7154 reflections	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
404 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

 \times 0.20 \times 0.15 mm

25922 measured reflections

 $R_{\rm int} = 0.021$

7154 independent reflections

6962 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Cd1-O1	2.2478 (11)	Cd1-O7	2.2947 (11)
Cd1-O3	2.4263 (11)	Cd1-N1	2.3295 (12)
Cd1-O4	2.3794 (11)	Cd1-N3	2.3671 (13)

Table 2

Hydrogen-bond geometry (Å, °).

Cg3	and	Cg4	are	the	centroids	of	the	N1/C17-C21	and	N3/C23-C27	rings,
resp	ective	ely.									

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H21···O5 ⁱ	0.85 (2)	2.05 (2)	2.8990 (19)	177 (2)
$N2-H22\cdots O6^{n}$	0.87 (3)	2.10 (3)	2.948 (2)	163 (2)
$N4 - H41 \cdots O8^{m}$	0.87 (2)	1.99 (2)	2.822 (2)	160 (2)
N4−H42···O6 ^{iv}	0.86 (2)	2.05 (2)	2.8979 (18)	171 (2)
$O7-H71\cdots O2^{v}$	0.79 (3)	1.93 (3)	2.7186 (19)	175 (2)
$O7 - H72 \cdot \cdot \cdot O3^{ii}$	0.80 (3)	1.97 (3)	2.7690 (18)	174 (3)
O8−H81…O4	0.79 (3)	2.21 (3)	2.8767 (18)	143 (3)
O8−H82···O1	0.80 (3)	1.93 (3)	2.7269 (18)	169 (3)
$C6-H6\cdots Cg4^{vi}$	0.93	2.82	3.720 (2)	163
$C14 - H14 \cdots Cg3^{vii}$	0.93	2.78	3.6840 (19)	164

Symmetry codes: (i) -x + 1, -y + 1, -z - 1; (ii) -x, -y, -z; (iii) -x, -y, -z + 1; (iv) -x, -y - 1, -z + 1; (v) -x + 1, -y, -z; (vi) x + 1, y, z; (vii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffract-ometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2732).

References

- Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.
- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628.
- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037–m1038.
- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365–m1366.
- Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.
- Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009*a*). Acta Cryst. E**65**, m1416–m1417.
- Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, m392-m393 [doi:10.1107/S1600536810008366]

Aquabis(isonicotinamide- κN^1)bis(4-methylbenzoato)- κO ; $\kappa^2 O$,O'-cadmium(II) monohydrate

Hacali Necefoğlu, Efdal Çimen, Barış Tercan, Yasemin Süzen and Tuncer Hökelek

S1. Comment

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative *N*,*N*-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli *et al.*, 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a monomeric complex, where the Cd^{II} ion is surrounded by two 4-methylbenzoate (PMB) and two isonicotinamide (INA) ligands and one water molecule. One of the PMB ions acts as a bidentate ligand, while the other PMB and two INA are monodentate ligands. The crystal structures of similar complexes of Cd^{II}, Co^{II}, Mn^{II} and Zn^{II} ions, [Cd(C₈H₅O₃)₂(C₆H₆N₂O)₂(H₂O)].H₂O, (II) (Hökelek *et al.*, 2009a), [Co(C₉H₁₀NO₂)₂(C₆H₆N₂O)(H₂O)₂], (III) (Hökelek *et al.*, 2009b), [Mn(C₉H₁₀NO₂)₂(C₆H₆N₂O)(H₂O)₂], (IV) (Hökelek *et al.*, 2009c), [Zn₂(DENA)₂(C₇H₅O₃)₄].2H₂O, (V) (Hökelek & Necefoğlu, 1996) and [Zn(C₈H₈NO₂)₂(C₆H₆N₂O)₂].H₂O, (VI) (Hökelek *et al.*, 2009d) have also been reported. In (II), the two benzoate ions are coordinated to the Cd atom as bidentate ligands. In the other structures one of the benzoate ligands acts as a bidentate ligand, while the other is monodentate ligand.

In the title compound (Fig. 1), the average Cd—O bond length (Table 1) is 2.3371 (11) Å and the Cd atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C9/O4) by 0.2697 (1) Å and 0.0105 (1) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C10—C15) are 10.28 (11)° and 21.24 (9)°, respectively, while those between rings A, B, C (N1/C17—C21) and D (N3/C23—C27) are A/B = 6.90 (4), A/C = 63.11 (5), A/D = 76.86 (4), B/C = 62.69 (5), B/D = 83.75 (4) and C/D = 88.64 (4)°. The intramolecular O—H···O hydrogen bonds (Table 2) link the water molecules to the carboxylate groups (O1/C1/O2) and (O3/C9/O4). In (I), the O3—Cd1—O4 angle is 54.71 (4)°. The corresponding O—M—O (where M is a metal) angles are 52.91 (4)° and 53.96 (4)° in (II), 60.70 (4)° in (III), 58.45 (9)° in (IV), 58.3 (3)° in (V), 60.03 (6)° in (VI) and 55.2 (1)° in [Cu(Asp)₂(py)₂] (where Asp is acetylsalicylate and py is pyridine) [(VII); Greenaway *et al.*, 1984].

In the crystal structure, intramolecular O—H···O and intermolecular O—H···O and N—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure. The π - π contact between the benzene rings, Cg1—Cg2ⁱ, [symmetry code (i): 1 + x, y, z, where Cg1 and Cg2 are the centroids of rings A (C2—C7) and B (C10—C15)] may further stabilize the structure, with centroid-centroid distance of 3.911 (1) Å. There also exists two weak C—H··· π interactions involving the pyridine rings C and D (Table 2).

S2. Experimental

The title compound was prepared by the reaction of $3CdSO_{4.8}H_2O$ (1.29 g, 5 mmol) in H_2O (40 ml) and INA (1.22 g, 10 mmol) in H_2O (15 ml) with sodium 4-methylbenzoate (1.58 g, 10 mmol) in H_2O (350 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

S3. Refinement

Atoms H21, H22, H41, H42 (for NH₂) and H71, H72, H81, H82 (for H₂O) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Figure 1

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate the hydrogen-bondings.

Aquabis(isonicotinamide- κN^1)bis(4-methylbenzoato)- κO ; $\kappa^2 O$,O'-cadmium(II) monohydrate

Crystal data	
$[Cd(C_8H_7O_2)_2(C_6H_6N_2O)_2(H_2O)] \cdot H_2O$	Z = 2
$M_r = 662.97$	F(000) = 676
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.555 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.5032 (2) Å	Cell parameters from 8576 reflections
b = 12.3543 (3) Å	$\theta = 2.4 - 28.3^{\circ}$
c = 13.6134(3) Å	$\mu = 0.83 \text{ mm}^{-1}$
$\alpha = 78.278 \ (3)^{\circ}$	T = 102 K
$\beta = 69.776 \ (2)^{\circ}$	Block, colorless
$\gamma = 71.746 \ (3)^{\circ}$	$0.40 \times 0.20 \times 0.15 \text{ mm}$
V = 1416.18 (6) Å ³	

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.819, T_{\max} = 0.881$	25922 measured reflections 7154 independent reflections 6962 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 28.6^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -12 \rightarrow 12$ $k = -16 \rightarrow 16$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.053$ S = 1.14 7154 reflections 404 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0175P)^2 + 1.1925P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.56$ e Å ⁻³ $\Delta\rho_{min} = -0.38$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.141608 (11)	0.121190 (8)	0.094078 (7)	0.00977 (3)	
01	0.21408 (12)	0.17237 (9)	0.21480 (8)	0.0153 (2)	
O2	0.43486 (13)	0.06777 (9)	0.11883 (8)	0.0158 (2)	
03	-0.09543 (12)	0.15690 (9)	0.04849 (8)	0.0150 (2)	
O4	-0.08901 (13)	0.26914 (10)	0.15327 (9)	0.0164 (2)	
05	0.56683 (13)	0.41643 (10)	-0.38584 (9)	0.0199 (2)	
06	-0.03527 (14)	-0.40999 (9)	0.37641 (9)	0.0178 (2)	
07	0.25490 (14)	-0.02091 (10)	-0.01623 (9)	0.0183 (2)	
H71	0.345 (3)	-0.038 (2)	-0.0464 (19)	0.030 (6)*	
H72	0.214 (3)	-0.064(2)	-0.0261 (18)	0.028 (6)*	
08	-0.06722 (16)	0.23407 (12)	0.36356 (10)	0.0224 (2)	
H81	-0.115 (3)	0.252 (2)	0.323 (2)	0.039 (7)*	
H82	0.021 (3)	0.216 (2)	0.326 (2)	0.039 (7)*	
N1	0.24879 (15)	0.23682 (11)	-0.05300 (10)	0.0131 (2)	
N2	0.32591 (17)	0.46852 (14)	-0.40532 (11)	0.0222 (3)	

H21	0.355 (3)	0.502 (2)	-0.4672 (19)	0.029 (6)*
H22	0.235 (3)	0.4542 (19)	-0.3832 (18)	0.027 (6)*
N3	0.06838 (15)	-0.03017 (11)	0.21984 (10)	0.0139 (2)
N4	0.02873 (16)	-0.36600(12)	0.50561 (10)	0.0162 (2)
H41	0.056 (2)	-0.3201 (18)	0.5322 (17)	0.022 (5)*
H42	0.020 (2)	-0.4306(19)	0.5415 (16)	0.019 (5)*
C1	0.35814 (17)	0.12189 (12)	0.19750 (11)	0.0122 (3)
C2	0.43118 (17)	0.12606 (13)	0.27780 (11)	0.0138 (3)
C3	0.34802 (19)	0.19738 (14)	0.35725 (13)	0.0190 (3)
H3	0.2493	0.2439	0.3587	0.023*
C4	0.4114 (2)	0.19972 (16)	0.43464 (13)	0.0223(3)
H4	0.3544	0.2478	0.4874	0.027*
C5	0 55876 (19)	0.13100(15)	0.43413(12)	0.0196(3)
C6	0.64170 (19)	0.06017 (15)	0.35394(13)	0.0208(3)
H6	0.7406	0.0138	0.3523	0.025*
C7	0.57917 (18)	0.05760 (14)	0.3523 0.27640 (12)	0.023
С7 H7	0.6364	0.009700 (14)	0.2233	0.021*
C8	0.6266 (2)	0.13244(18)	0.2233 0.51874 (14)	0.021 0.0276(4)
H8A	0.7263	0.0775	0.5079	0.0270(4)
H8B	0.5582	0.1132	0.5865	0.041*
HSC	0.6384	0.2075	0.5157	0.041*
	-0.16048(17)	0.2075 0.24072(12)	0.10406 (11)	0.041 0.0123(3)
C10	-0.32334(17)	0.24072(12) 0.30742(12)	0.10400(11) 0.10002(12)	0.0123(3)
C10	-0.41395(19)	0.30742(12) 0.27217(12)	0.10332(12) 0.10310(12)	0.0130(3)
U11	-0.3706	0.3785	0.19319 (12)	0.0100 (3)
C12	-0.56822(10)	0.3783 0.43074(14)	0.2432 0.20102 (12)	0.020°
U12 U12	-0.30823 (19)	0.43074 (14)	0.20192 (15)	0.0193 (3)
П12 С12	-0.0280	0.4752 0.42542(12)	0.2384 0.12678 (12)	0.025
C13	-0.03418(18)	0.42343(13) 0.26422(12)	0.12078(13)	0.0177(3)
U14	-0.54105 (18)	0.36423 (13)	0.04114 (15)	0.01/6(3)
H14	-0.5822	0.3633	-0.0114	0.021*
C15	-0.38809 (18)	0.304//(13)	0.03297 (12)	0.0152 (3)
HI5	-0.3283	0.2629	-0.0240	0.018*
	-0.80317 (19)	0.48229 (16)	0.13/48 (15)	0.0257(4)
HI6A	-0.8456	0.5324	0.1920	0.039*
HI6B	-0.8590	0.4248	0.1551	0.039*
HI6C	-0.8127	0.5259	0.0721	0.039*
C17	0.16137 (17)	0.33676 (13)	-0.08530 (12)	0.0152 (3)
HI7	0.0612	0.3651	-0.0419	0.018*
C18	0.21389 (18)	0.39975 (13)	-0.18067 (12)	0.0166 (3)
H18	0.1500	0.4686	-0.2009	0.020*
C19	0.36446 (17)	0.35759 (13)	-0.24544 (11)	0.0134 (3)
C20	0.45742 (18)	0.25694 (13)	-0.20997 (12)	0.0153 (3)
H20	0.5599	0.2288	-0.2501	0.018*
C21	0.39564 (18)	0.19876 (13)	-0.11404 (12)	0.0148 (3)
H21A	0.4582	0.1308	-0.0911	0.018*
C22	0.42827 (18)	0.41740 (13)	-0.35244 (12)	0.0154 (3)
C23	0.01222 (18)	-0.10290 (13)	0.19260 (12)	0.0153 (3)
H23	-0.0121	-0.0849	0.1296	0.018*

C24	-0.01121 (18)	-0.20371 (13)	0.25425 (12)	0.0158 (3)	
H24	-0.0495	-0.2523	0.2325	0.019*	
C25	0.02332 (17)	-0.23100 (12)	0.34907 (11)	0.0125 (3)	
C26	0.07689 (18)	-0.15443 (13)	0.37961 (12)	0.0160 (3)	
H26	0.0976	-0.1688	0.4437	0.019*	
C27	0.09879 (18)	-0.05607 (13)	0.31243 (12)	0.0156 (3)	
H27	0.1363	-0.0057	0.3326	0.019*	
C28	0.00343 (17)	-0.34324 (12)	0.41280 (11)	0.0131 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01036 (5)	0.01012 (5)	0.00874 (5)	-0.00363 (4)	-0.00264 (4)	0.00016 (3)
01	0.0118 (5)	0.0192 (5)	0.0162 (5)	-0.0038 (4)	-0.0054 (4)	-0.0029 (4)
O2	0.0165 (5)	0.0163 (5)	0.0152 (5)	-0.0032 (4)	-0.0054 (4)	-0.0038 (4)
O3	0.0122 (5)	0.0160 (5)	0.0169 (5)	-0.0018 (4)	-0.0048 (4)	-0.0040 (4)
O4	0.0142 (5)	0.0201 (5)	0.0177 (5)	-0.0041 (4)	-0.0076 (4)	-0.0034 (4)
O5	0.0164 (5)	0.0272 (6)	0.0148 (5)	-0.0095 (5)	-0.0039 (4)	0.0046 (4)
O6	0.0239 (6)	0.0157 (5)	0.0185 (5)	-0.0105 (4)	-0.0098 (4)	0.0023 (4)
O7	0.0141 (5)	0.0195 (6)	0.0213 (6)	-0.0072 (5)	0.0013 (4)	-0.0100 (4)
08	0.0184 (6)	0.0347 (7)	0.0148 (5)	-0.0063 (5)	-0.0039 (5)	-0.0075 (5)
N1	0.0138 (6)	0.0132 (6)	0.0125 (6)	-0.0055 (5)	-0.0033 (5)	0.0003 (4)
N2	0.0179 (7)	0.0322 (8)	0.0158 (6)	-0.0125 (6)	-0.0065 (5)	0.0105 (6)
N3	0.0152 (6)	0.0144 (6)	0.0121 (6)	-0.0049 (5)	-0.0038 (5)	-0.0006 (4)
N4	0.0225 (7)	0.0131 (6)	0.0147 (6)	-0.0078 (5)	-0.0072 (5)	0.0024 (5)
C1	0.0128 (6)	0.0106 (6)	0.0138 (6)	-0.0055 (5)	-0.0045 (5)	0.0017 (5)
C2	0.0135 (6)	0.0162 (7)	0.0128 (6)	-0.0060(5)	-0.0045 (5)	0.0001 (5)
C3	0.0157 (7)	0.0226 (8)	0.0205 (7)	-0.0035 (6)	-0.0068 (6)	-0.0063 (6)
C4	0.0224 (8)	0.0292 (9)	0.0190 (8)	-0.0074 (7)	-0.0063 (6)	-0.0091 (6)
C5	0.0207 (8)	0.0278 (8)	0.0155 (7)	-0.0132 (7)	-0.0078 (6)	0.0014 (6)
C6	0.0142 (7)	0.0299 (9)	0.0190 (7)	-0.0055 (6)	-0.0079 (6)	0.0006 (6)
C7	0.0146 (7)	0.0223 (8)	0.0145 (7)	-0.0037 (6)	-0.0044 (6)	-0.0022 (6)
C8	0.0299 (9)	0.0432 (11)	0.0195 (8)	-0.0202 (8)	-0.0128 (7)	0.0018 (7)
C9	0.0119 (6)	0.0136 (6)	0.0109 (6)	-0.0049 (5)	-0.0029 (5)	0.0016 (5)
C10	0.0114 (6)	0.0124 (6)	0.0157 (7)	-0.0038 (5)	-0.0049 (5)	-0.0002 (5)
C11	0.0158 (7)	0.0173 (7)	0.0183 (7)	-0.0032 (6)	-0.0067 (6)	-0.0042 (6)
C12	0.0162 (7)	0.0189 (7)	0.0209 (8)	-0.0012 (6)	-0.0037 (6)	-0.0057 (6)
C13	0.0130 (7)	0.0150 (7)	0.0246 (8)	-0.0029 (5)	-0.0067 (6)	-0.0004 (6)
C14	0.0169 (7)	0.0159 (7)	0.0241 (8)	-0.0038 (6)	-0.0119 (6)	-0.0019 (6)
C15	0.0151 (7)	0.0136 (7)	0.0177 (7)	-0.0028 (5)	-0.0064 (6)	-0.0027 (5)
C16	0.0142 (7)	0.0257 (9)	0.0352 (10)	0.0002 (6)	-0.0095 (7)	-0.0039 (7)
C17	0.0117 (6)	0.0170 (7)	0.0145 (7)	-0.0040 (5)	-0.0029 (5)	0.0015 (5)
C18	0.0143 (7)	0.0164 (7)	0.0162 (7)	-0.0037 (6)	-0.0051 (6)	0.0044 (6)
C19	0.0151 (7)	0.0151 (7)	0.0114 (6)	-0.0072 (5)	-0.0047 (5)	0.0018 (5)
C20	0.0143 (7)	0.0154 (7)	0.0136 (7)	-0.0040 (5)	-0.0017 (5)	-0.0008 (5)
C21	0.0154 (7)	0.0129 (7)	0.0144 (7)	-0.0029 (5)	-0.0042 (5)	0.0002 (5)
C22	0.0174 (7)	0.0161 (7)	0.0123 (6)	-0.0073 (6)	-0.0035 (5)	0.0019 (5)
C23	0.0190 (7)	0.0170 (7)	0.0115 (6)	-0.0071 (6)	-0.0059(5)	0.0009 (5)

supporting information

C24	0.0216 (7)	0.0152 (7)	0.0132 (7)	-0.0082 (6)	-0.0058 (6)	-0.0012 (5)
C25	0.0124 (6)	0.0117 (6)	0.0123 (6)	-0.0037 (5)	-0.0033 (5)	0.0012 (5)
C26	0.0202 (7)	0.0171 (7)	0.0142 (7)	-0.0088 (6)	-0.0088 (6)	0.0028 (5)
C27	0.0203 (7)	0.0154 (7)	0.0145 (7)	-0.0091 (6)	-0.0073 (6)	0.0014 (5)
C28	0.0111 (6)	0.0128 (6)	0.0136 (6)	-0.0036 (5)	-0.0025 (5)	0.0009 (5)

Geometric parameters (Å, °)

Cd1—01	2.2478 (11)	C8—C5	1.507 (2)
Cd103	2.4263 (11)	C8—H8A	0.9600
Cd104	2.3794 (11)	C8—H8B	0.9600
Cd107	2.2947 (11)	C8—H8C	0.9600
Cd1—N1	2.3295 (12)	C9—C10	1.491 (2)
Cd1—N3	2.3671 (13)	C10-C11	1.395 (2)
01—C1	1.2730 (18)	C10—C15	1.396 (2)
O2—C1	1.2535 (18)	C11—H11	0.9300
О3—С9	1.2730 (18)	C12—C11	1.390 (2)
O4—C9	1.2622 (18)	C12—C13	1.393 (2)
O5—C22	1.2325 (19)	C12—H12	0.9300
O6—C28	1.2422 (18)	C13—C16	1.506 (2)
O7—H71	0.79 (3)	C14—C13	1.393 (2)
O7—H72	0.80 (2)	C14—C15	1.385 (2)
O8—H81	0.79 (3)	C14—H14	0.9300
O8—H82	0.81 (3)	C15—H15	0.9300
N1-C17	1.3406 (19)	C16—H16A	0.9600
N1-C21	1.3435 (19)	C16—H16B	0.9600
N2-C22	1.333 (2)	C16—H16C	0.9600
N2—H21	0.85 (2)	C17—H17	0.9300
N2—H22	0.87 (2)	C18—C17	1.387 (2)
N3—C23	1.3425 (19)	C18—C19	1.394 (2)
N3—C27	1.3433 (19)	C18—H18	0.9300
N4—C28	1.325 (2)	C20—C19	1.387 (2)
N4—H41	0.87 (2)	C20—H20	0.9300
N4—H42	0.86 (2)	C21—C20	1.385 (2)
C1—C2	1.500 (2)	C21—H21A	0.9300
С2—С3	1.390 (2)	C22—C19	1.506 (2)
C2—C7	1.392 (2)	C23—C24	1.387 (2)
C3—C4	1.391 (2)	C23—H23	0.9300
С3—Н3	0.9300	C24—H24	0.9300
C4—C5	1.391 (2)	C25—C24	1.391 (2)
C4—H4	0.9300	C26—C25	1.391 (2)
C6—C5	1.393 (2)	C26—C27	1.390 (2)
C6—C7	1.388 (2)	C26—H26	0.9300
С6—Н6	0.9300	C27—H27	0.9300
С7—Н7	0.9300	C28—C25	1.5077 (19)
O1—Cd1—O3	137.23 (4)	O4—C9—O3	121.19 (13)
01-Cd1-04	83.65 (4)	O4—C9—C10	119.45 (13)

O1—Cd1—O7	133.14 (4)	C11—C10—C15	118.94 (14)
O1—Cd1—N1	99.39 (4)	C11—C10—C9	120.24 (13)
O1—Cd1—N3	87.65 (4)	C15—C10—C9	120.82 (13)
O4—Cd1—O3	54.71 (4)	C10—C11—H11	119.8
O7—Cd1—O3	88.51 (4)	C12—C11—C10	120.44 (14)
O7—Cd1—O4	143.07 (4)	C12—C11—H11	119.8
07—Cd1—N1	84.40 (4)	C11—C12—C13	120.59 (15)
O7—Cd1—N3	82.88 (4)	C11—C12—H12	119.7
N1-Cd1-O3	93.12 (4)	C13—C12—H12	119.7
N1—Cd1—O4	93.53 (4)	C12—C13—C14	118.64 (14)
N1—Cd1—N3	167.06 (4)	C12—C13—C16	121.48 (15)
N3-Cd1-O3	88 91 (4)	C14 - C13 - C16	119 87 (15)
N3-Cd1-04	98.06 (4)	C13 - C14 - H14	119.5
C1 - O1 - Cd1	105 84 (9)	C15 - C14 - C13	121.06 (14)
C9-O3-Cd1	90.83 (8)	C15 - C14 - H14	119.5
C9-O4-Cd1	93 27 (9)	C10—C15—H15	119.9
Cd1 = 07 = H71	123 1 (17)	C_{14} C_{15} C_{10}	120 21 (14)
Cd1 = 07 = H72	125.1(17) 127.0(17)	C14 - C15 - H15	110.0
H72 - 07 - H71	127.0(17) 110(2)	C_{13} C_{16} H_{16A}	109.5
H81 - 08 - H82	103(3)	C_{13} C_{16} H_{16B}	109.5
C17 - N1 - Cd1	103(3) 121 04 (10)	C13 - C16 - H16C	109.5
C17 - N1 - C21	121.04(10) 118.25(13)	H_{164} C_{16} H_{16B}	109.5
C_{1} N_{1} C_{1}	120.31(10)	$H_{16A} - C_{16} - H_{16C}$	109.5
C_{22} N2_H21	120.31(10)	H_{16B} C_{16} H_{16C}	109.5
$C_{22} = N_2 = H_{21}$	120.5(15) 119.5(15)	N1-C17-C18	102.5
$H_{22} = N_{2} = H_{21}$	119.0 (10)	N1-C17-H17	118.6
$C_{23}N_{3}C_{41}$	119(2) 11871(10)	C18 - C17 - H17	118.6
$C_{23} N_{3} C_{27}$	117.68 (13)	C_{17} C_{18} C_{19}	118 55 (14)
$C_{23} = N_3 = C_{41}$	123 03 (10)	C17 - C18 - H18	120.7
C_{28} NA H41	125.05(10) 124.1(14)	C19 - C18 - H18	120.7
C_{28} NA H42	124.1(14) 1184(14)	C18 - C19 - C22	120.7 122.10(14)
H42 N4 H41	117.4(19)	$C_{10} - C_{10} - C_{22}$	122.10(14) 118.62(13)
01-C1-C2	117.4(19) 117.01(13)	C_{20} C_{19} C_{22}	110.02(13) 110.28(13)
0^{-} 1^{-} 0^{-	121 75 (13)	$C_{20} = C_{10} = C_{22}$	120.4
02-C1-C2	121.75(13) 121.20(13)	$C_{1}^{2} = C_{2}^{2} = C_{12}^{2}$	120.4
$C_{2} = C_{1} = C_{2}$	121.20(13) 119.49(14)	$C_{21} = C_{20} = C_{12}$	120.4
C_{3} C_{2} C_{7}	119.49(14) 119.02(14)	N1 - C21 - C20	120.4 122.46(14)
C_{7} C_{2} C_{1}	119.02(14) 121 47 (13)	N1_C21_H21A	118.8
$C_{2}^{-} C_{3}^{-} C_{4}^{-}$	121.47(15) 120.48(15)	C_{20} C_{21} H_{21A}	118.8
C2_C3_H3	110.8	05-022 - N2	$124 \ 40 \ (14)$
$C_2 = C_3 = H_3$	119.8	05 - C22 - C19	124.40(14) 120.11(14)
$C_3 - C_4 - H_4$	119.6	$N_2 - C_{22} - C_{19}$	11549(13)
C_{5} C_{4} C_{3}	120.82 (15)	N3-C23-C24	122 90 (14)
C5-C4-H4	119.6	N3-C23-H23	118 5
C4-C5-C6	118 36 (14)	C24—C23—H23	118.5
C4-C5-C8	120.82 (16)	C^{23} C^{24} C^{25}	119.07 (14)
C6-C5-C8	120.82 (16)	C23—C24—H24	120 5
C5—C6—H6	119.5	C25—C24—H24	120.5

C7 C6 C5	121 08 (15)	C24 C25 C26	118.47(13)
C7 - C6 - U6	121.00 (15)	$C_{24} = C_{25} = C_{20}$	110.47(13)
$C^{-}C^{-}H^{0}$	119.5	$C_{24} = C_{23} = C_{28}$	118.30(13)
$C_2 = C_1 = H_1$	119.9	$C_{26} = C_{25} = C_{28}$	123.23 (13)
	120.24 (15)	C25—C26—H26	120.7
С6—С7—Н7	119.9	C27—C26—C25	118.64 (14)
С5—С8—Н8А	109.5	C27—C26—H26	120.7
C5—C8—H8B	109.5	N3—C27—C26	123.20 (14)
C5—C8—H8C	109.5	N3—C27—H27	118.4
H8A—C8—H8B	109.5	C26—C27—H27	118.4
H8A—C8—H8C	109.5	O6—C28—N4	123.03 (14)
H8B—C8—H8C	109.5	O6—C28—C25	119.00 (13)
O3—C9—C10	119.35 (13)	N4—C28—C25	117.97 (13)
O3—Cd1—O1—C1	178.82 (8)	O1—C1—C2—C3	-9.6(2)
O4—Cd1—O1—C1	-168.65 (9)	O1—C1—C2—C7	168.54 (14)
07—Cd1—O1—C1	15.00 (11)	02-C1-C2-C3	172.66 (14)
N1-Cd1-O1-C1	-7611(9)	$0^{2}-C^{1}-C^{2}-C^{7}$	-9.2(2)
N_3 —Cd1—Q1—C1	92 97 (9)	$C_1 - C_2 - C_3 - C_4$	177.80(14)
01 - Cd1 - 03 - C9	15.18(11)	C7 - C2 - C3 - C4	-0.4(2)
$O_1 C_1 O_3 C_9$	-0.14(8)	$C_1 C_2 C_3 C_4$	-177.67(14)
07 Cd1 03 C9	-17656(0)	$C_1 - C_2 - C_7 - C_0$	177.07(14)
0/-cd1 = 03 = 03	170.50(9)	$C_{3} = C_{2} = C_{1} = C_{0}$	0.3(2)
N1 - Cd1 - O3 - C9	-92.23(9)	$C_2 = C_3 = C_4 = C_3$	0.0(3)
N_{3} —Cd1—O3—C9	100.53 (9)	C_{3} C_{4} C_{5} C_{6}	0.3 (3)
01-Cd1-04-C9	-169.47 (9)	C3-C4-C5-C8	-179.23 (16)
O3—Cd1—O4—C9	0.14 (8)	C5—C6—C7—C2	-0.2 (2)
O7—Cd1—O4—C9	6.09 (12)	C7—C6—C5—C4	-0.2(2)
N1—Cd1—O4—C9	91.47 (9)	C7—C6—C5—C8	179.32 (15)
N3—Cd1—O4—C9	-82.76 (9)	O3—C9—C10—C11	159.36 (14)
O1—Cd1—N1—C17	-98.58 (11)	O3—C9—C10—C15	-20.3 (2)
O1-Cd1-N1-C21	88.82 (11)	O4—C9—C10—C11	-21.4 (2)
O3—Cd1—N1—C17	40.37 (11)	O4—C9—C10—C15	158.92 (14)
O3—Cd1—N1—C21	-132.23 (11)	C9-C10-C11-C12	-176.66 (14)
O4—Cd1—N1—C17	-14.44 (11)	C15—C10—C11—C12	3.0 (2)
O4—Cd1—N1—C21	172.96 (11)	C9-C10-C15-C14	177.96 (14)
O7—Cd1—N1—C17	128.57 (12)	C11—C10—C15—C14	-1.7 (2)
O7—Cd1—N1—C21	-44.04 (11)	C13—C12—C11—C10	-1.2(2)
N3—Cd1—N1—C17	139.16 (18)	C11—C12—C13—C14	-1.9(2)
N_3 —Cd1—N1—C21	-334(3)	$C_{11} - C_{12} - C_{13} - C_{16}$	176.95(15)
Ω_1 Cd_1 N_3 C_{23}	-17851(11)	C_{15} C_{14} C_{13} C_{12}	3 3 (2)
O1 Cd1 N3 C27	-7.44(12)	C15 C14 C13 C12	-175.65(15)
$O_1 = C_1 = N_2 = C_2^2$	7.44(12)	$C_{13}^{12} = C_{14}^{14} = C_{15}^{15} = C_{10}^{10}$	-15(2)
O_{3} C_{41} N_{2} C_{23}	44.15 (11)	$C_{13} - C_{14} - C_{13} - C_{10}$	-1.3(2)
O_{3} O_{4} O_{4} O_{1} N_{2} O_{2}	-144.00(12)	C17 = C10 = C10 = C20	-0.4(2)
04 - 01 - N3 - 023	90.24 (11)	C17 - C18 - C19 - C20	-2.0(2)
U4-Ua1-N3-U2/	-90.69 (12)	C1/C18C19C22	1//.02(14)
O'/Cd1N3C23	-44.50 (11)	C21—C20—C19—C18	3.1 (2)
O7—Cd1—N3—C27	126.57 (12)	C21—C20—C19—C22	-176.49 (13)
N1—Cd1—N3—C23	-55.1 (2)	N1—C21—C20—C19	-0.8 (2)
N1—Cd1—N3—C27	115.9 (2)	O5—C22—C19—C18	145.44 (16)

Cd1—N1—C17—C18	-170.02 (12)	O5—C22—C19—C20	-35.0 (2)
C21—N1—C17—C18	2.7 (2)	N2-C22-C19-C18	-34.9 (2)
Cd1—N1—C21—C20	170.65 (11)	N2-C22-C19-C20	144.70 (15)
C17—N1—C21—C20	-2.2 (2)	N3—C23—C24—C25	0.6 (2)
Cd1—N3—C23—C24	169.79 (12)	C26—C25—C24—C23	1.5 (2)
C27—N3—C23—C24	-1.8 (2)	C28—C25—C24—C23	-177.50 (14)
Cd1—N3—C27—C26	-170.25 (12)	C27—C26—C25—C24	-2.2 (2)
C23—N3—C27—C26	0.9 (2)	C27—C26—C25—C28	176.66 (14)
Cd1-01-C1-02	7.16 (16)	C25—C26—C27—N3	1.1 (2)
Cd1-01-C1-C2	-170.52 (10)	O6—C28—C25—C24	3.6 (2)
Cd1O3O4	0.24 (14)	O6—C28—C25—C26	-175.30 (14)
Cd1-03-C9-C10	179.43 (11)	N4-C28-C25-C24	-176.55 (14)
Cd1O4O3	-0.25 (14)	N4—C28—C25—C26	4.5 (2)
Cd1O4C9C10	-179.43 (11)		

Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the N1/C17-C21 and N3/C23-C27 rings, respectively.

<i>D</i> —H··· <i>A</i>	D—H	H…A	D····A	D—H··· A
N2—H21···O5 ⁱ	0.85 (2)	2.05 (2)	2.8990 (19)	177 (2)
N2—H22···O6 ⁱⁱ	0.87 (3)	2.10 (3)	2.948 (2)	163 (2)
N4—H41···O8 ⁱⁱⁱ	0.87 (2)	1.99 (2)	2.822 (2)	160 (2)
N4—H42…O6 ^{iv}	0.86(2)	2.05 (2)	2.8979 (18)	171 (2)
O7—H71···O2 ^v	0.79 (3)	1.93 (3)	2.7186 (19)	175 (2)
O7—H72···O3 ⁱⁱ	0.80(3)	1.97 (3)	2.7690 (18)	174 (3)
O8—H81…O4	0.79 (3)	2.21 (3)	2.8767 (18)	143 (3)
O8—H82…O1	0.80 (3)	1.93 (3)	2.7269 (18)	169 (3)
C6—H6··· $Cg4^{vi}$	0.93	2.82	3.720 (2)	163
C14—H14···· $Cg3^{vii}$	0.93	2.78	3.6840 (19)	164

Symmetry codes: (i) -x+1, -y+1, -z-1; (ii) -x, -y, -z; (iii) -x, -y, -z+1; (iv) -x, -y-1, -z+1; (v) -x+1, -y, -z; (vi) x+1, y, z; (vii) x-1, y, z.